
Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai, Thailand

An Empirical Study of Training Mixture
Generation Strategies on Speech Separation:

Dynamic Mixing and Augmentation
Shukjae Choi1,2, Younglo Lee1,2, Jihwan Park1,2, Hyung Yong Kim1,2, Byeong-Yeol Kim1,2,

Zhong-Qiu Wang3, Shinji Watanabe3
1 Hyundai Motor Company, 2 42dot.ai, Seoul, Republic of Korea

E-mail: {shukjae.choi, younglo.lee, jihwan.park, hyungyong.kim, byeongyeol.kim}@42dot.ai
3 Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA

E-mail: wang.zhongqiu41@gmail.com, shinjiw@cmu.edu

Abstract—Deep learning has dramatically advanced speech
separation (SS) in the past decade. Although advances in model
architectures play an essential role in improving the separation
performance, an efficient training strategy is also important.
In this study, we investigate various strategies for training
mixture generation in SS, considering that such strategies are
likely essential in improving the generalization abilities of the
trained models. More specifically, instead of using the vanilla
training mixtures pre-generated by a given dataset, we remix
clean source signals to generate more mixtures by using dynamic
mixing (DM), which is an on-the-fly speech mixing strategy
for model training. In addition, we combine DM with other
data augmentation methods to further improve the separation
performance. We analyze the effects of training data generation
strategies for training sets at different scales and with various
diversities. Evaluation results on multiple public datasets suggest
that increasing the number of speech mixtures using DM with
data augmentations is a very effective strategy for SS, especially
for training sets with a limited number of clean sources.

I. INTRODUCTION

Riding on the tide of deep learning, significant progress
has been made in speech separation (SS) [1]. Since deep
clustering [2], [3] and permutation invariant training (PIT) [4],
[5] successfully solved the label permutation problem in talker-
independent speaker separation, many subsequent studies have
been focusing on designing more efficient and more end-to-end
neural networks to improve the performance. Representative
models along this line include time-domain audio separa-
tion network (TasNet) [6], fully-convolutional TasNet (Conv-
TasNet) [7], dual-path recurrent neural network (DPRNN) [8],
dual-path transformer network [9], Wavesplit [10] and Sep-
Former [11], which have shown remarkable separation perfor-
mance and strong potential towards solving the SS problem.

Although architectural advances play an essential role in
improving separation, they are often simultaneously introduced
with changes in the details of the training methodologies,
hyper-parameters, or data augmentation techniques [12]. This
paper studies training mixture generation strategies for SS.
We investigate how dynamic mixing (DM) and various data
augmentation methods influence the performance of SS. This
investigation is necessary because, even for advanced SS

architectures, an effective strategy for training data generation
is needed for the commercialization of SS systems.

Many on-the-fly data augmentation techniques have been
proposed in various audio signal processing tasks [13], [14]. In
automatic speech recognition (ASR) or speech enhancement,
various data augmentations can be easily applied on the fly to
a clean speech source [15], [16], [17]. On-the-fly data augmen-
tation can prevent the model from overfitting and make it more
robust to various situations by imitating various environmental
conditions. It can usually improve the robustness of modern
deep neural network (DNN) models.

In this paper, we use the term “DM” to refer to a method
for creating speech mixtures and the term “data augmentation”
for speech source perturbations. Since SS tasks aim to separate
speech signals from the mixture, we can easily presume that
DM can control the complexity of the training mixtures and
would directly affect model performance. However, in SS,
speech mixtures are conventionally fixed and used in the train-
ing phase for the standard SS benchmark, so an application of
DM and data augmentation is rarely investigated. For a general
performance improvement in SS, it would be beneficial to
investigate the effect of DM and various augmentations. In the
SS literature, Wavesplit [10] first revealed the effectiveness of
DM. Subsequently, SepFormer [11] achieved the state-of-the-
art separation performance on the WSJ0-2mix dataset [2] by
combining a DM strategy with other types of data augmenta-
tion. Different from the above studies, our study concentrates
on the effects of DM and augmentation itself. We analyzed
the benefits of using DM on datasets with various scales and
speaker diversities and compared them with their vanilla cases,
where no DM is applied. We also thoroughly investigated the
effectiveness of each individual augmentation type as well
as their combinations for SS. During the investigation, we
propose a phase-shifting data augmentation method that has
the potential to be applied to a variety of speech processing
tasks.

We chose Conv-TasNet [7] as the major reference model to
analyze the effects of DM and augmentations. DPRNN [8] is
additionally selected to show that a similar trend in perfor-
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TABLE I
NUMBER OF MIXTURES, SPEAKERS, AND SOURCE SIGNALS FOR TRAINING

IN LIBRI2MIX TRAIN-{360, 100} AND WHAM!.

Datasets #mixtures #speakers #sources
Libri2Mix train-360 50,800 921 101,600
Libri2Mix train-100 13,900 251 27,800

WHAM! train 20,000 101 8,769

mance can also be observed in other models. Both models
are commonly-used baselines in many recent studies [9],
[10], [11], [18]. For the training data, WHAM! [19] and
Libri2Mix [20] were used considering their popularity. Their
test sets and the VCTK2Mix test set [20], which cover a wide
range of scales in terms of the numbers of speakers and source
signals, were chosen to analyze the performance in matched
and mismatched conditions. We picked these datasets because
they contain realistic noisy mixtures for model training, which
are important for product development.

The rest of this paper is organized as follows. We first
describe our experimental design in Section II and then detail
the proposed training strategies in Section III, followed by ex-
periments and discussions in Section IV. Section V concludes
this paper.

II. BACKGROUND

This section describes the models, metrics, and datasets we
use to show the effectiveness of our training strategies.

A. Reference models: Conv-TasNet and DPRNN

Since TasNet [6] was proposed to mitigate the inherent
phase estimation problem of the short-time Fourier trans-
form (STFT) domain, real-valued masking-based separation
methods, Conv-TasNet [7] has become a milestone in the
history of time-domain SS. It outperformed previous STFT-
domain separation models and even surpassed several oracle
magnitude-domain masks. This model effectively increases the
size of the receptive field by stacking dilated convolutions to
model long-range contextual information while keeping the
number of parameters moderate by using depth-wise separable
convolutions.

Although Conv-TasNet achieved superior results over con-
ventional approaches, convolutions with fixed receptive fields
may have difficulty in learning extremely long-range temporal
dependencies and hence may limit the separation performance.
DPRNN [8] was proposed to address the above problem by
using recurrent neural network (RNN) layers at multiple time
scales. It splits a long input sequence into shorter chunks
and processes them locally and globally with intra- and inter-
block RNNs. This makes the modeling of extremely long-range
temporal contexts possible [21].

These two models have been widely used as baselines in
SS [9], [10], [11], [18]. We selected these models to show that
our training strategies are not limited to a particular model and
are general techniques that can bring improvements to many
different models.

TABLE II
NUMBERS OF MIXTURES, SPEAKERS, AND SOURCE SIGNALS IN

VCTK2MIX, LIBRI2MIX AND WHAM! TEST SETS.

Datasets #mixtures #speakers #sources
VCTK2Mixtrim 3,000 108 6,000

Libri2Mix 3,000 40 2,073
WHAM! 3,000 18 1,770

B. Metrics

Scale-invariant signal-to-distortion ratio (SI-SDR) [22] is a
commonly used evaluation metric in SS. All of our models
are trained with PIT [5] to maximize the SI-SDR between
target and estimated sources. For the comparison metric, we
used SI-SDR improvement (∆SI-SDR), which is the difference
between the SI-SDRs of the estimated sources and the mixture.

C. Dataset

There are many open datasets for SS. The most popular one
is WSJ0-2mix [2], which has been commonly used to validate
the effectiveness of DNN architectures. If the goal is to per-
form separation in realistic noisy environments, WHAM! [19],
WHAMR! [23], and Libri2Mix [20] are commonly used.
Among the public SS datasets, we selected the WHAM! and
the Libri2Mix, both containing noisy two-speaker mixtures, to
validate our proposed strategies. Both datasets use the WHAM!
noises [19] as the noise sources, but the signal-to-noise ratio
(SNR) of WHAM! is slightly lower on average. In addition,
the two datasets differ in the number of speakers and clean
source signals in their training sets, and the WHAM! training
mixtures are generated based on a relatively smaller set of
speakers and clean source signals (see Table I for the details).

Evaluation results serve as an indicator of whether the
trained models would perform well after being deployed in
real-world conditions. Besides the WHAM! and Libri2Mix
test sets, we additionally evaluate our models using the
VCTK2Mix test set, which contains a larger set of speakers
(see Table II), to show their cross-corpus generalization abil-
ities. We applied two pre-processings to the sources of the
VCTK2Mix test set. First, we further trimmed the silence pe-
riods in the VCTK2Mix sources because ∆SI-SDR is reported
to be less meaningful in silence periods [24], and long silence
periods in the VCTK2Mix sources are already known and dealt
with in [20]. We also found that some VCTK2Mix source
signals start without pauses, unlike the other source signals
in the training and test sets we selected. For the consistency
of the evaluation results, zero padding with a length sampled
from U(0.5, 0.7) seconds was applied at the beginning of
the VCTK2Mix source signals, where U(a, b) denotes the
uniform distribution between a and b. Then, we generated
VCTK2Mixtrim test sets, denoted as VCTK2Mix for simplicity
in the rest of the article.

III. TRAINING STRATEGY

This section describes the strategies for training mixture
generation, including DM and various types of data augmen-
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tations. The conditions and settings of the training strategies
for experiments are also introduced.

A. Dynamic mixing

DM can be regarded as a type of data augmentation, often
referred to as on-the-fly data augmentation in other speech
processing tasks. For example, clean speech is often perturbed
with noise signals on the fly when training ASR [15] or
enhancement models [16], [17]. However, in the context of
SS, we restrict the term “dynamic mixing” to on-the-fly multi-
speaker mixture generation. That is, the clean speech sources
in the fixed, pre-generated training set are randomly chosen
and mixed on the fly to generate mixtures. So far, only a few
studies employ the DM strategy for SS [10], [11].

Several factors need to be considered when utilizing DM.
Since new speaker mixtures are continuously generated, the
models can observe more speaker and source combinations
than by using the vanilla pre-defined training set. As a result,
the models need more training iterations than when using the
vanilla training set, if the same training setup is used.

To fairly compare the model trained with dynamically
mixed signals and the one trained with the vanilla pre-defined
mixtures, we feed the models the same number of mixtures
in each epoch, which equals the number of mixtures in the
pre-defined training set.

In practice, we can use DM to generate mixtures with very
different characteristics from the vanilla, pre-defined mixtures.
Because our focus is on comparing the DM with the vanilla
in terms of mixture diversity, we decide to closely follow
the mixing policy of the vanilla dataset. When performing
DM on the WHAM! training set, we sampled the relative
energy levels among the two speakers and the noise from the
energy-level distribution of the pre-defined WHAM! mixtures
for each newly generated mixture. This method is similar to the
DM method implemented in the SpeechBrain toolkit [25]. We
directly applied the mixing policy in [20] to the LibriSpeech
clean sources when using DM on Libri2Mix train-{360, 100}.
It assigns an absolute range of random levels in the loudness
unit relative to full scale (LUFS) to speech and noise signals.

B. Data augmentation

Data augmentation applies various modifications to source
signals, imitating various environmental conditions to increase
the complexity and diversity of training data. It can prevent
the model from overfitting and make it more robust to various
situations. Depending on the task type, different augmentation
methods should be applied. In classification tasks like ASR
or keyword spotting, latent representation of data sources is
used, making many types of augmentations like removal [26],
mixing [27], or transposition [28] possible. Numerous studies
have demonstrated the benefits of these types of augmenta-
tions. However, not all types of augmentations can be applied
to a regression task because it needs to accurately estimate
each sample of the source signal. As a result, for regression
tasks, data augmentation that preserves the information from

the source is more effective, such as speed, tempo, and pitch
shift.

In SS, many studies usually only use the pre-defined training
set for model training so that they can fairly compare their
models with earlier models that were trained on the same
set of mixtures. When building practical products, it is often
desirable to leverage data augmentations for better separation.
Recently, SepFormer [11] observed clear improvements by
combining speed augmentation and DM. Motivated by their
findings, we comprehensively investigated the effects of using
other types of data augmentations with DM.

Given a clean-speech segment, the following augmentations
were considered:

• “pitch,” “tempo,” and “speed” augmentations are proba-
bly the most popular augmentations used in speech signal
processing since they preserve speech characteristics and
can, to some extent, increase diversity. “pitch” shifts the
pitch of the segment without changing the tempo, whereas
“tempo” stretches the segment in time without changing
the pitch. “speed” adjusts the segment speed, affecting
both pitch and tempo by first changing the sampling rate
information and then re-sampling the segment back to
the original sample rate. In “pitch,” the pitch is shifted
by U(−3, 3) semitones, which is the distance between
two adjacent notes in music. The scales of “tempo” and
“speed” are chosen from the set {0.9, 1.0, 1.1} [29].

• “gain” and “white noise (wn)” simulate actual recording
conditions while preserving the original sources. “gain”
alters the overall level of the mixture and target signals
by a factor uniformly sampled from the range [−10, 10]
dB. This augmentation can make the trained models
more robust to variations in input gains. “wn” applies
a white noise with a LUFS sampled from U(−90,−46)
dB. This augmentation could alleviate overfitting in noisy
environments.

• In monaural audio signals, human ears are known to be
insensitive to the phase of the sound [30]. If we change
the phase of the sound, the segment in the temporal and
phase domain will be changed, but the spectral magnitude
of the segment and the audible sound will remain the
same. Because of these characteristics, we believe that
“phase shift” augmentation has the potential to be applied
to a variety of machine learning models operating in
temporal, phase, or complex domains. “phase shift” shifts
the phase of the segment by a value θ sampled uniformly
from the range [−π, π) (i.e., the segment is multiplied
by ejθ, where j denoting the imaginary unit, in the STFT
domain). It is an extension of “polarity inversion,” which
multiplies −1 to the segment and shifts the phase by π.

• In classification tasks such as ASR, a model is often
trained to be able to guess the original sources in latent
space, which makes it reasonable to use augmentations
that corrupt the original sources, such as removal or
transposition. “drop chunk” and “drop frequency” are
components proposed in SpecAugment [26]. They are
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TABLE III
AVERAGE ∆SI-SDR (DB) RESULTS OF DM AND FIXED-MIXTURE CASES (VANILLA).

Training set
Conv-TasNet DPRNN

WHAM! Libri2Mix VCTK2Mix WHAM! Libri2Mix VCTK2Mix
DM vanilla DM vanilla DM vanilla DM vanilla DM vanilla DM vanilla

Libri2Mix
train-360

100% 13.14 12.77 12.59 12.23 11.76 11.10 14.10 13.65 13.27 12.89 12.57 11.67
25% 12.06 11.43 11.52 10.87 10.43 9.68 12.87 12.72 12.07 11.95 11.27 10.60

Libri2Mix
train-100

100% 11.90 11.51 11.45 11.12 10.44 9.54 12.82 12.64 12.07 11.97 11.20 10.62
25% 10.43 9.51 10.06 9.27 8.77 7.42 11.40 10.52 10.85 10.23 9.67 8.29

WHAM!
train

100% 13.88 13.09 8.72 8.47 8.64 7.92 14.49 13.84 9.33 8.72 9.49 8.73
25% 12.47 4.72 7.52 4.65 7.67 -2.79 13.16 4.69 8.20 5.34 8.31 -4.70

well-known for their effectiveness and simplicity. “drop
chunk” randomly removes signals in the time domain,
and “drop frequency” randomly removes some fre-
quency bands in the frequency domain. We included the
“reverse” augmentation [28], following its success in
ASR. We randomly split each utterance into segments
with lengths drawn from U(5, 10) ms and flipped the
samples in the time domain.

We also investigated various combinations of the above aug-
mentations to achieve better separation. After performing aug-
mentations to the clean-speech segment of each speaker, we
mix them according to the mixing policy to generate a mixture
for model training.

IV. EXPERIMENTS AND DISCUSSION

For fair comparisons, all experiments were performed
with the same hyper-parameters for each model. For Conv-
TasNet [7], the training parameters were a batch size of 16 and
an initial learning rate of 0.001, which were multiplied by 0.98
every two epochs. The mixture length was 2.8 seconds during
training. For DPRNN, we used a kernel size of 16, a batch size
of 16, and a chunk size of 150 frames, and the mixture length
during training was 4.8 seconds. All models were trained in
the same sampling rate of 16 kHz. We matched the number of
mixtures generated in DM cases with the number of mixtures
of the corresponding vanilla set in each epoch. To match the
number of total mixtures fed to the models, the models trained
for the DM and vanilla cases were evaluated when the model
trained for the vanilla case was converged.

A. DM vs. vanilla

This section compares the SS performance in the DM and
the fixed-mixture (i.e., vanilla) cases. For both cases, we
trained Conv-TasNet and DPRNN using the Libri2Mix train-
{360, 100} or the WHAM! training set, and reported their
∆SI-SDR results on the WHAM!, Libri2Mix, and VCTK2Mix
test sets. The evaluation results are shown in Table III. The
same numbers of speakers, sources, and mixtures for each
epoch were used when training using 100% of each dataset.
The ∆SI-SDR in the DM cases was always higher than that
in the vanilla cases for all the training set cases and for
both models. This aligns with the findings of earlier studies
such as Wavesplit [10] or SepFormer [11], which found that
because DM generates more speaker mixtures on the fly, DNN
models can learn from many more speaker combinations and

TABLE IV
AVERAGE ∆SI-SDR (DB) RESULTS WHEN APPLYING VARIOUS

AUGMENTATIONS. NUMBERS IN PARENTHESIS ARE DIFFERENCE FROM
EACH TEST SET’S DYNAMIC MIXING CASE. “ALL AUGS.” MEANS ALL

AUGMENTATIONS ARE APPLIED.

Augmentations WHAM! Libri2Mix VCTK2Mix
Dynamic mixing 13.88 8.72 8.64
+pitch 14.11 (0.23) 9.28 (0.56) 9.39 (0.75)
+tempo 13.82 (-0.06) 8.82 (0.10) 8.66 (0.02)
+speed 13.98 (0.10) 9.24 (0.52) 9.37 (0.73)
+phase shift (ps) 13.66 (-0.22) 9.94 (1.22) 9.84 (1.20)
+polarity inversion 14.05 (0.17) 9.86 (1.14) 9.59 (0.95)
+gain 13.90 (0.02) 8.74 (0.02) 8.47 (-0.17)
+white noise (wn) 13.81 (-0.07) 8.83 (0.11) 8.69 (0.05)
+drop chunk (dc) 13.72 (-0.16) 8.75 (0.03) 8.70 (0.06)
+drop frequency 13.74 (-0.14) 9.40 (0.68) 9.06 (0.42)
+reverse 13.30 (-0.58) 8.51 (-0.21) 8.47 (-0.17)
+pitch+tempo 14.04 (0.16) 9.37 (0.65) 9.59 (0.95)
+pitch+ps 13.52 (-0.36) 9.97 (1.25) 9.92 (1.28)
+pitch+tempo+ps 13.63 (-0.25) 10.10 (1.38) 10.05 (1.41)
+gain+dc+wn 13.77 (-0.11) 8.74 (0.02) 8.80 (0.16)
+all augs. 12.49 (-1.39) 9.53 (0.81) 8.93 (0.29)

yield better results. We can observe that the performance on
VCTK2Mix was relatively closer to other test sets than in
the previous studies [20], [31]. It is because we trimmed
VCTK2Mix sources as mentioned in Section II-C and zero-
padded them to have a consistent beginning, and hence the
evaluation became more reliable.

We also simulated cases when the original training set is
small because the number of training examples is usually lim-
ited in many real-world applications. In such a scenario, DM
becomes very useful because it can continuously produce new
mixtures for training. We simulated a smaller-scale training
set by reducing the number of mixtures in the vanilla cases
to 25%. For the DM cases, we generated new mixtures from
source signals and set the number of mixtures to generate in
each epoch equal to the number of training mixtures in the
vanilla case. Note that although we fed the same number of
mixtures for each epoch for both DM and vanilla, the number
of sources for the WHAM! 25% case were different by 2,192
and 5,154, respectively. As mentioned earlier in Section II-C,
this difference is because the WHAM! reused source signals
when generating mixtures. When using less training data, we
observed that ∆SI-SDR degraded more in the vanilla case
than in the DM case. For example, in the WHAM! train 25%
case, both Conv-TasNet and DPRNN trained in the vanilla case
nearly failed to learn to separate (see the “vanilla” columns in
the last row of Table III), largely because there are much fewer
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TABLE V
COMPARISON OF AVERAGE ∆SI-SDR (DB) RESULTS OF DM WITH AUGMENTATIONS (DM+AUGS), DM AND VANILLA.

Model WHAM!
training set

WHAM! Libri2Mix VCTK2Mix
DM+augs DM vanilla DM+augs DM vanilla DM+augs DM vanilla

Conv-TasNet 100% 13.63 13.88 13.09 10.10 8.72 8.47 10.05 8.64 7.92
25% 10.76 12.47 4.72 9.82 7.52 4.65 8.46 7.67 -2.79

DPRNN 100% 14.34 14.49 13.84 10.83 9.33 8.72 10.38 9.49 8.73
25% 13.21 13.16 4.69 9.73 8.20 5.34 9.40 8.31 -4.70

mixtures and speakers for model training. However, when
trained using DM, the models trained in the 25% case showed
only slightly worse performance compared to the 100% case.

These results suggest the effectiveness of DM for modern SS
models, especially when the training set is small-scale, which
is typically the case in many real-world applications.

B. Effectiveness of data augmentations

This section evaluates the performance of data augmenta-
tions described in Section III-B and explores their combi-
nations to find the most effective combination for SS. We
applied data augmentations and DM on the WHAM! train-
ing set to Conv-TasNet using the same parameter used in
Section IV-A. When multiple augmentations are combined,
each augmentation is applied with a probability of 50%.
For a fair comparison, different random states were used for
DM and augmentations; that is, while the stream of mixture
input remained the same for all cases, only combinations of
augmentations applied were changed.

The evaluation results of each augmentation for each test set
are reported in Table IV. We observed that not all augmenta-
tions were effective. In addition, augmentations were effective
on mismatched datasets, Libri2Mix and VCTK2Mix. Since the
WHAM! test set shares relevant recording conditions, speaking
styles, and mixing policy with its training set, we cannot regard
the WHAM! test set as a fully mismatched set. This is likely
the reason why we did not observe performance improvement.

We focused on augmentations that preserve the original
information, such as stretching and shifting. The “pitch”
augmentation was effective on all three test sets. We inves-
tigated the combinations of “speed,” “tempo,” and “pitch”
augmentations, as they are closely related. We found that even
the “speed” augmentation changes time and frequency depen-
dently, “pitch + tempo” worked better than just using speed in
all test sets. The “phase shift (ps)” and “polarity inversion”
augmentations produced noticeable improvements; effective-
ness was valid even when they were combined with other
augmentations, indicating their broad application potential in
speech signal processing. Additional experiments on combina-
tions of augmentations suggested that “pitch + tempo + ps” was
the most effective combination with a relatively small number
of augmentations. This could be because the “pitch” aug-
mentation can increase the speaker diversity, and the “tempo”
and “phase shift” augmentations can increase the diversity of
temporal characteristics.

We also investigated combinations of ineffective augmen-
tations. The intention was to check if a combination of the

TABLE VI
COMPARISON OF AVERAGE ∆SI-SDR (DB) RESULTS ON SEPFORMER.

Training strategy WHAM! Libri2Mix VCTK2Mix
vanilla 20.08 14.57 13.16

DM + speed 21.83 16.16 15.50
DM + augs 21.34 17.14 16.15

ineffective ones would improve performance. Unlike in the
ASR task, the “reverse” augmentations was ineffective for SS,
likely because, in SS, detailed speech signal characteristics
need to be reconstructed through regression. This observation
indicates that augmentations with removal or transposition
of original information are unlikely to work on regression
tasks. The “gain” effect might have been canceled during the
normalization process of the model. The effect of “drop chunk
(dc)” overlapped with the source signal’s silence period. The
“wn” augmentation was ineffective because the noise signal
canceled the white noise. Since performance does not improve
even if all augmentations (i.e., all augs.) are used or ineffective
augmentations are combined (i.e., gain + dc + wn), individual
performance needs to be carefully investigated before applica-
tion.

C. Application of augmentations to SS models

Next, we applied the best augmentation combination (i.e.,
pitch + tempo + phase shift) to train Conv-TasNet and DPRNN
models based on the WHAM! training set and evaluated their
performance on the test sets of WHAM!, Libri2Mix and
VCTK2Mix. See Table V for the results.

We can see that the proposed augmentation combination is
effective on mismatched datasets for both Conv-TasNet and
DPRNN (see the Libri2Mix and VCTK2Mix columns). One
notable finding is that even just 25% of sources with DM
and augmentations showed similar or even better performance
than vanilla cases and DM cases. Still, as can be seen from
Section IV-B, we did not observe dramatic improvement in
the matched dataset, the WHAM! test set. It is reasonable to
believe that the chosen combination of augmentation increases
speaker diversity and improves performance on mismatched
conditions.

To verify our ideas, we applied the training strategy to a
state-of-the-art SS model, SepFormer [11]. For a fair compari-
son, we carefully followed the configuration in the paper [11].
Two major factors of the experimental setup were different
from our previous setup: the sampling rate was at 8 kHz,
and the model was trained using WSJ0-2mix dataset, which
is the same to WHAM! but without the noise sources. The
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evaluation results are shown in Table VI. The “vanilla” and
“DM + speed” are the reproduced results following [11].
They show similar results to the original paper. Our proposed
augmentation combination, which is “pitch + tempo + phase
shift” (denoted as DM + augs in the table), was applied the
same way as how the previous augmentations were applied.
The results show that our ideas are consistent with the recent
model, even with different SS settings.

V. CONCLUSION

We have analyzed the effects of training mixture gener-
ation strategies using DM and various data augmentations
for SS based on popular public datasets such as WHAM!
and Libri2Mix. We found that DM, which generates speech
mixtures on the fly, is effective for SS. It is particularly
powerful than using a conventional pre-defined mixture dataset
for training, especially when the number of speakers and
sources for training is at a small scale. In addition, among
various augmentation methods, the ones that increase speaker
diversity and temporal characteristics, such as phase, pitch, or
tempo shift, are more effective. Overall, data augmentation was
found effective in most cases and was more effective when the
training data has limited speaker diversity and when the test
set is mismatched from the training data. The effectiveness has
been demonstrated using popular separation models, including
Conv-TasNet and DPRNN. We believe that the findings in this
paper could play an essential role in the realization of SS in
consumer products.
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