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Abstract—Objective speech intelligibility (SI) metrics for
hearing-impaired people play an important role in hearing aid
development. The work on improving SI prediction also became
the basis of the first Clarity Prediction Challenge (CPC1). This
study investigates a physiological auditory model called EarModel
and acoustic parameters for SI prediction. EarModel is utilized
because it provides advantages in estimating human hearing,
both normal and impaired. The hearing-impaired condition is
simulated in EarModel based on audiograms; thus, the SI per-
ceived by hearing-impaired people is more accurately predicted.
Moreover, the extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS) and WavLM, as additional acoustic parameters
for estimating the difficulty levels of given utterances, are included
to achieve improved prediction accuracy. The proposed method
is evaluated on the CPC1 database. The results show that the
proposed method improves the SI prediction effects of the baseline
and hearing aid speech prediction index (HASPI). Additionally,
an ablation test shows that incorporating the eGeMAPS and
WavLM can significantly contribute to the prediction model by
increasing the Pearson correlation coefficient by more than 15%
and decreasing the root-mean-square error (RMSE) by more than
10.00 in both closed-set and open-set tracks.

I. INTRODUCTION

Building communication and relationships with others in-
volves hearing ability. Hearing ability also helps humans
receive information from the outside world to understand the
situations happening around them. Unaddressed hearing loss
problems can negatively impact many aspects of life, especially
for elderly individuals. Hearing loss problems can introduce
communication barriers and an inability to relate to other
people [1] and cause other social issues [2], [3]. The Lancet
Commission has also reported that hearing loss in the mid-
and late-life stages affects dementia [4], which may result in
reduced quality of life.

Hearing aids are used as a solution to correct the perception
of hearing impairment, specifically for those with sensorineural
hearing loss. A hearing aid system collects sound from the
environment, analyzes it, and adjusts based on the user’s
hearing loss level. Hearing loss can be explained based on the
frequency selectivity in the inner ear that is simultaneously
mapped to the auditory threshold with sound loudness. The
auditory threshold of hearing loss is always lifted above the
normal hearing (NH) threshold, depending on the degree of
damage. Another explanation is related to the contribution of
outer hair cells (OHCs) to the signal compression transmitted
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to the inner ear. The dynamic range compression in individuals
with hearing loss changes the compression ratio, contributing
to the elevated auditory threshold [5]. In addition, the loss of
inner hair cells (IHCs) affects the perception of hearing loss by
providing additional attenuation [6]. Therefore, in addition to
amplifiers, some features are added to hearing aids to improve
hearing ability.

The evaluation of the signal processing effects in hearing
aids is based on subjective and objective assessments. Al-
though a subjective evaluation gives the most correlated results
to measure hearing loss, the process might take much time and
a certain number of subjects with hearing loss. In contrast,
the preparation required to conduct an objective evaluation
is less expensive [7]. Moreover, objective metrics are usually
preferable for assessments since they correlate highly with the
quality and intelligibility measurements in subjective tests [8].
Despite these advantages, the development of objective metrics
specifically for hearing aid systems is still in progress [9].

The objective intelligibility measurement that is often con-
sidered in hearing aid development is the hearing aid speech
prediction index (HASPI) [10]. Despite its high accuracy,
the HASPI model has evaluation limitations, an inability to
handle the binaural data and invalidity for tonal languages.
In the first Clarity Prediction Challenge (CPC1), the modified
binaural short-time objective intelligibility (MBSTOI) model
was incorporated into the MBSG hearing loss model [11] and
eventually included in the baseline model. In addition, several
prediction methods were proposed by CPC1 participants, such
as metrics using a multibranched network (MBI-Net) [12] and
the unsupervised uncertainty measurement of automatic speech
recognition (ASR) [13].

The purpose of this paper is to predict speech intelligibility
(SI) using the auditory periphery model and acoustic parame-
ters. We propose a method for predicting SI using EarModel,
WavLM, and the extended Geneva Minimalistic Acoustic
Parameter Set (eGeMAPS). The idea of utilizing the additional
acoustic parameters is based on the study of predicting speech
intelligibility with acoustic parameters measured from room
impulse response [14]. The research found that the parameters
from room acoustic highly correlate with phoneme and word
recognition rate (PRR and WRR). The higher the PRR and
WRR simultaneously, the more likely an increase in speech
intelligibility occurs.

We hypothesize that EarModel can improve SI prediction for
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Fig. 1. Baseline model for the CPC1.

hearing aids because it estimates normal and impaired hearing.
Furthermore, the additional acoustic parameters can be used to
estimate utterance characteristics (e.g., sentence difficulty, the
statistical parameters of speech characteristics, etc.), which are
beneficial for improving the prediction accuracy of the model.
To achieve our goal, we investigate the physiological auditory
model and develop an SI prediction method by using a machine
learning approach.

The rest of the paper is comprised of a few sections. Section
2 contains information about the CPC1, including its rules
and scenarios. The details of the related work, that is, the
HASPI and baseline MBSTOI, are explained in Section 3.
Section 4 describes the proposed method. Section 5 describes
the experimental data, evaluation method, and results. Section
6 concludes the findings.

II. CLARITY CHALLENGE

The Clarity Challenge1 is a series of machine learning
tasks that focus on improving signal processing in hearing
aids. The challenge was created based on the need to solve
the current problem concerning hearing aids: the difficulty
of discriminating speech from noise in hearing loss cases
[15], which brings dissatisfaction to users [16]. The challenge
utilizes machine learning since the performance of some deep
learning processes seems promising. Unfortunately, a learning
algorithm should form new ways of processing audio to
estimate how the sound is degraded by hearing loss. Moreover,
it should consider binaural hearing since the collaboration
between both ears to reduce noise works better than the use of
a single ear, as it allows the brain to locate and boost speech
over noise [17].

The project was divided into the Clarity Enhancement Chal-
lenge (CEC) and the CPC. In the first challenge, the enhance-
ment challenge focused on maximizing the SI score, and the
prediction challenge focused on evaluating the enhancement
model based on a hearing loss simulation. The components of
the baseline model for the prediction challenge are described
in Fig. 12. The available information for the baseline predic-
tion model included the listener characteristics, the improved
speech perception in noise (SPIN) generated from the hearing
aid processing in the CEC, clean speech, and a transcript
produced by a scene generator. As in the baseline figure,
the prediction model consisted of a hearing loss simulation
and an intelligibility model. However, the participants could
reconfigure their own design for the prediction model. In the

future, SI scores will be used to develop better hearing aid
systems using machine learning techniques.

III. RELATED WORK

The CPC1 challenge involved the prediction of SI when
listeners perceived SPIN processed by a hearing aid. The given
baseline system consisted of a hearing loss simulation and SI
models for binaural hearing. Nevertheless, the configuration
of the prediction model could be changed as needed. The
remaining part of this section describes the existing hearing-
impaired intelligibility models the HASPI and baseline MB-
STOI models.

A. HASPI

The HASPI [10], [18] is an SI metric for normal and
impaired hearing. It takes a monaural clean signal without
processing and a monaural degraded signal considering the
hearing loss condition and performs parallel processing on both
signals in EarModel 2. The ability of EarModel to simulate
processing with hearing loss motivates us to incorporate this
model into the proposed method. The processing approach in
EarModel will be explained in Section 4.

The envelope output of EarModel, in dB, is low-pass filtered
and subsampled before being converted into a time-varying
spectrum. As a result, the dB envelope represents the log
spectrum on the frequency scale for each sample according to
the subsampling rate. The resulting short-time spectra fit five
basis functions with the 1

2 cycle to the 2 1
2 cosine spanning

the spectrum from 80 to 8000 Hz. Each cepstral coefficient
is passed through a modulation filter bank with ten filters and
generates fifty filtered sequences. For each sequence, the clean
and degraded signals are compared using the normalized cross-
correlation averaged across the basis functions to produce
ten modulation filter outputs. Last, the intelligibility index is
estimated by mapping the ten modulation filter outputs using
neural networks [18].

The advantage of the HASPI mainly comes from the pres-
ence of an auditory model to consider normal and impaired
hearing. In addition, reference and processed signal fidelity
measurements have been evaluated over a wide range of
processing conditions, including additive stationary and mod-
ulated noise, nonlinear distortion, noise suppression, dynamic
range compression, frequency compression, feedback cancel-
lation, and linear filtering. Due to these advantages, the HASPI
has been used in several applications, especially for hearing aid
assessment [9]. On the other hand, this metric cannot measure
SI for binaural inputs, making it invalid for tonal languages,
and the evaluation process is limited to the training data.

B. Baseline Modified Binaural Short-time Objective Intelligi-
bility (MBSTOI)

The baseline prediction metric for the CPC12 is baseline
MBSTOI as shown in Fig. 1. The baseline MBSTOI consists of

1https://claritychallenge.org/
2https://claritychallenge.org/docs/cpc1/cpc1 intro
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Fig. 2. EarModel processing for the right ear (R) [19].

a hearing loss module and MBSTOI as the speech intelligibility
module [20]. The hearing loss module is based on the auditory
model developed by Moore et al. in the Auditory Perception
Group at the University of Cambridge [11]. The auditory
model attenuates the binaural reference and processed signal in
each frequency band based on the audiogram of each listener
to simulate the auditory threshold elevation. The loudness re-
cruitment simulates by a filterbank with two times broadening.
Then, the frequency selectivity reduction performed by the
hearing loss severity is defined by the average loss in dB
hearing loss.

The intelligibility model is the MBSTOI, which is con-
structed based on the STOI metric [21]. The model utilizes
the binaural processing advantages of the deterministic bin-
aural STOI (DBSTOI) [22] for both multiple and spatially
distributed interferers. The inputs of the baseline MBSTOI
model are the binaural degraded yl/r(n)and the clean reference
signal xl/r(n). The input degraded signal in the MBSTOI is
assumed to be the summation of clean input speech with an
uncorrelated additive noise component dl/r(n).

yl/r(n) = xl/r(n) + dl/r(n) (1)

Each signal is analyzed by a short-time discrete Fourier
transform (DFT) to generate coefficients. The 1

3 octave
equalization-cancellation (EC) operation combines and mod-
ifies the coefficient to align the interferer and distortion in
both ears. Next, the combined DFT coefficient is mapped
in the 1

3 octave band to produce signal power envelopes.
Finally, the envelopes are converted into zero-mean vectors
and used to calculate the estimated correlation, as in the STOI
measurement approach [21].

Based on an application, the baseline MBSTOI outperforms
the other existing method, i.e., the HASPI, in predicting SI.
The MBSTOI is capable of predicting intelligibility in cases
with fluctuating interferers and reverberation. It corrects the
delay per ear caused by hearing loss. Although the degraded
signal assumption may limit its applicability in some situa-
tions, the baseline performs identical, linear, slow-changing,
constant processing in the 1

3 octave band for both ears, which
makes its implementation relevant to a broader range of
noise conditions. However, the delay induced after hearing aid

processing for HI cannot be corrected by the baseline. Another
problem is that the MBSTOI prediction process utilizes a
correlation function and yields signal-level insensitivity, which
results in a high intelligibility score when the sound level falls
below the set auditory thresholds.

IV. PROPOSED METHOD

Figure 3 shows the overall block diagram of the proposed
method. The method consists of EarModel to extract signal
envelope, pre-trained self-supervised learning (SSL) mode and
eGeMAPS extractor to obtain acoustic parameters which may
introduce further speech intelligibility improvement [14]. The
descriptions of the feature extraction process and the SI model
are explained as follows.

A. Feature Extraction

1) EarModel: EarModel, developed by James Kates [19],
is used to extract the input signal envelope. The proposed
method takes clean binaural speech and improved SPIN and
then splits them into left and right signals to be processed in
an equal and parallel manner. The clean speech and improved
SPIN of the right ear process are shown in Fig. 2. Each
signal is resampled to 24 kHz to ensure equal shapes for all
cochlear filters before aligning them via broadband temporal
alignment. Next, processing is performed through a bandpass
filter, such as the middle ear filter, and gammatone filterbank
(GTFB)3. The decomposition into the 32 channel and the
impulse response of the gammatone function in Eq. (2) is
converted into a fourth-order digital filterbank whose describe
in impulse-invariant transform [6] as in Eq. (3).

g(n) = A(nT )N−1e−2πBnT cos(2πfcnT ) (2)

H(z) = T 3 × (az−1)(a2z−2 + 4az−1 + 1)

1− 4az−1 + 6a2z−2 − 4a3z−3 + a4z−4
(3)

with
a = e−b×2π/fs×B (4)

B = 1.019× ERB (5)

3https://staffwww.dcs.shef.ac.uk/people/N.Ma/resources/gammatone/
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Fig. 3. Block diagram of proposed method

ERB = 24.7 +
fc

9.26449
(6)

where A is the signal amplitude; N is the filter order (which
is set to 4 to model human hearing); B is the filter bandwidth
based on ERB scale; fc is the filter center frequency with a
range from 80 to 8000 Hz; T is the sampling period equals to
1/fs; a is the filter coefficient depending on the input; and b
is the bandwidth for input signal relative to ear condition. b is
set to bNH for clean speech and bHI for improved SPIN.

The bandwidth of the GTFB for normal hearing is based
on the equivalent rectangular bandwidth (ERB) scale [23].
Furthermore, the bandwidth for HI is influenced by the OHC
loss model and utilizes an input audiogram to increase the
cochlear filter in proportion to the dynamic range compression
(DRC) reduction based on [24], [25], [26]; the compression

gain for each control signal is expressed as follows.

Gcomp(i) = −attnOHC −
(
1− 1

CR

)(
θlow − Êc(i)

)
(7)

where

Êc(i) = max
(
θlow,

(
min

(
Êc(i), θhigh

)))
. (8)

i, Êc(i), θlow, θhigh, and CR are the channel number, control
signal envelope in dB, a lower threshold equal to (attnOHC+
30), the highest threshold equal to 100 dB, and the compres-
sion ratio, respectively [19], [27]. Then, the filter bandwidth
approximation relative to normal hearing is described in Eq.
(9). attnOHC indicates the loss caused by OHC damage in dB,
and the maximum value is 50 dB [6], [19].

bHI =

(
1 +

(
attnOHC

50

)
+ 2×

(
attnOHC

50

)6
)
bNH (9)
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The output of GTFB is 32 channel signals that are rep-
resented as temporal amplitude envelopes and temporal fine
structures (BM vibration) of each channel signal. Each signal
envelope is temporally aligned again with its BM vibration
to reduce the loss of speech information in the envelope
extraction step. In addition to OHC damage, the IHC loss
that simulates the IHC firing rate adaptation [28] is added
to generate additional attenuation [6] to the signal envelope
based on an equivalent RC circuit model. Furthermore, the
temporal envelope delay and fine structures are corrected for
each channel using a group delay compensator.

2) Pre-trained Self-Supervised Learning (SSL) Model: Au-
tomatic speech recognition (ASR) is a technique for transcrib-
ing a spoken language. ASR requires clean speech to produce
the ratio of the number of errors in the transcript to the total
number of spoken words, which is called the word error rate
(WER). However, the limitation of this technique is mainly
its demand for large quantities of labeled training data. The
solution for this issue is the use of an SSL framework [29].

SSL is a learning process used to build a better downstream
ASR model [29], [30]. The process in pretrained SSL usually
consists of two phases: pretraining on unlabeled data and fine-
tuning the model on a specific dataset. WavLM [31] is used as
the pretrained model in the proposed method. The WavLM
model includes a masked prediction loss and a denoising
process for SSL, making it different from other models, such
as wav2vec2.0 [30] and HuBERT [32].

The architecture mode of WavLM contains transformer and
convolutional neural network (CNN) encoders. The convolu-
tional encoder contains seven blocks of temporal convolution
with layer normalization and a Gaussian error linear unit
(GELU) activation function layer. Furthermore, the transformer
encoder is composed of 512 channels, resulting in output
transformation and gated relative position bias in the network
calculation. During training, WavLM randomly transforms the
input wav file, and approximately 50% of the input signal
is randomly covered and labeled according to the covered
position predicted in the output [31].

3) eGeMAPS extractor: The last model is the eGeMAPS
[33], which extracts the acoustic parameter set with a toolkit
named openSMILE [34]. The result of the extraction process
is that the frequency, energy, and related spectral parameters
are specified, as shown in [33]. The reason for including this
model is based on the speech perception of hearing-impaired
people: distortion based on sensorineural hearing loss changes
the pitch perception, frequency discrimination, and amplitude
modulation detection processes. This indirectly means that
the speaker’s gender influences his or he speech recognition
in noisy environments. Hearing-impaired people have more
difficulty perceiving a female voice since it has a higher F0
average, higher spectral energy above 4 kHz, and lower energy
below 4 kHz [35].

B. SI Model

After each feature extraction step, the SI score is calculated
using specific machine learning techniques. First, the Pearson

correlation coefficient of the signal envelope in each ear
for EarModel is calculated. Then, the resulting correlation
coefficients for 32 channels pass through a typical dual-stream
CNN and a fully connected layer to calculate the SI score,
as shown in Fig. 3. We chose CNN encoders to reduce
the high-dimensional speech feature input. Consequently, the
time and space complexity using the CNN could be reduced
significantly from those of the traditional neural networks.

Subsequently, a WaveNet was utilized to learn the input from
binaural pre-trained SSL model. WaveNet [36] stacks ten 1-D
convolutional layers, doubling the dilation rate by 1,2,4,... at
every layer. Before every layer, the left-padded input sequences
also include the same number of zeros in the dilatation rate to
maintain the same sequence length across the network.

Finally, for eGeMAPS feature extraction, the SI score is
calculated by applying various regression analyses, such as
linear regression, support vector regression, and random forest
regression. Then, the meta-regressor combines the analysis
results and compares and synthesizes them into an SI score.
The overall proposed method is illustrated in Fig. 3. As the
final process of the proposed model, another stack regressor
synthesizes the SIs derived from the combined models to
predict the final SI score.

V. EVALUATION

A. Dataset
The experiment utilizes the CPC1 dataset4. This dataset con-

sists of data related to scenes (the scene dataset) and metadata.
The scene dataset consists of wav files of generated scenes,
interference signals, clean speech (target) that is convolved
with the anechoic binaural room impulse response (BRIR)
for each ear, and improved SPIN obtained from hearing aid
processors. Each target speech is spoken by a British English
speaker. Six speakers, ten hearing aid processors from the first
CEC 5, and 27 hearing-impaired listeners are involved in the
dataset. The metadata provide detailed information about the
scenes, listeners, and transcripts. The listener’s characteristics
include a pure-tone air conduction audiogram; a digit triplet
test (DTT) [37]; a Glasgow hearing aid benefit profile ques-
tionnaire (GHABP) [38]; and the speech and spatial qualities
of the hearing questionnaire (SSQ12) [39]. The DTT, GHABP,
and SSQ12 data contain missing data; thus, further processing
is required before utilized these data to develop a prediction
model. Similar to the baseline system, we only utilize the
audiogram for the proposed method.

The CPC1 contains two tracks: a closed set as track 1 and
an open set as track 2. The test data in the closed-set track
consists of all unseen scenes (the listeners and HA processors
are all seen in the training data). Additionally, the test data in
the open-set track consist of all unseen scenes from unseen
listeners and unseen HA processors. The training and test data
distributions for both tracks are different and do not overlap.
For track 1, the data are split into training/development data

4https://claritychallenge.org/clarity CPC1 doc/docs/cpc1 data
5https://claritychallenge.org/docs/cec1/cec1 intro
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(4,863 scenes) and test data (2,421 scenes). Track 2 consists
of 3,580 scenes for training/development data and 632 scenes
for test data.

B. Evaluation Metrics

We use four metrics to evaluate our proposed method:
the Pearson correlation coefficient (ρ), root-mean-square error
(RMSE), coefficient of determination (R2), and F1 score (F1).
The Pearson correlation coefficient (ρ) measures the strength
of a linear association between the actual correctness level of
the subjective listening test and the predicted SI. The RMSE
indicates the prediction errors between the predicted SI and the
actual SI. R2 is a regression score function that measures the
proportion of the variance of a dependent variable (prediction
score) that is explained by the independent variable (actual
score) in the model. It ranges from 1 (perfect score) to a
negative score (the independent variable cannot explain the
variance and contributes negatively to the prediction model).
The F1 score is utilized to evaluate the prediction accuracy by
grouping the obtained scores into three classes (low (scores
less than or equal to 30%), medium (scores between 30% and
70%), and high (scores greater than or equal to 70%)).

TABLE I
EVALUATION RESULTS OF SEVERAL INTRUSIVE SI PREDICTION MODELS:

THE BASELINE (MBSTOI + MBSG MODEL), THE HASPI (LEFT AND
RIGHT), AND OUR PROPOSED METHOD. FOR REFERENCE, THE RESULTS
OBTAINED BY OTHER METHODS ON THE CPC1 ARE AVAILABLE HERE6 .

MetricsMethod
ρ ↑ RMSE ↓ R2 ↑ F1 (%) ↑
Track 1 (close-set)

Baseline 0.62 28.5 ± 0.58 0.39 78.7
HASPI (left) 0.60 37.7 ± 0.60 -0.08 51.9
HASPI (right) 0.60 37.7 ± 0.60 -0.07 52.1
Proposed method 0.74 24.6 ± 0.50 0.54 81.2

Track 2 (open-set)
Baseline 0.53 36.5 ± 1.35 -0.02 68.2
HASPI (left) 0.57 37.9 ± 1.20 -0.10 52.4
HASPI (right) 0.55 38.6 ± 1.23 -0.14 53.7
Proposed method 0.71 26.2 ± 1.02 0.48 77.4

C. Results

First, we carried out a comparative analysis between our
proposed method and other existing methods. Table I shows the
SI prediction results of the baseline method (Subsection III-B),
the HASPI (Subsection III-A), and the proposed method for the
closed-set and open-set tracks. Since the HASPI is a prediction
method for monaural hearing, we analyzed the results obtained
from each ear (HASPI (left) for the left ear and HASPI (right)
for the right ear). The results indicate that the proposed method
performed better than the baseline and HASPI on both tracks.
Additionally, our proposed method could achieve high ranks in
terms of the ρ and RMSE metrics compared to other methods
in the CPC16, including [13], [12], [40], [41], [42]). Figures

6https://claritychallenge.org/clarity2022-workshop/results.html

TABLE II
COMPARISON BETWEEN THE INTRUSIVE AND NONINTRUSIVE VERSIONS

OF THE PROPOSED METHODS. THE INTRUSIVE MODEL USED EARMODEL,
THE EGEMAPS, AND WAVLM AS THE INPUT FEATURES. THE

NONINTRUSIVE MODEL USED THE EGEMAPS AND WAVLM AS THE INPUT
FEATURES.

MetricsModel
ρ ↑ RMSE ↓ R2 ↑ F1 (%) ↑

Track 1 (close-set)
Intrusive 0.74 24.6 ± 0.50 0.54 81.2
Non-intrusive 0.74 25.0 ± 0.51 0.53 80.4

Track 2 (open-set)
Intrusive 0.71 26.2 ± 1.02 0.48 77.4
Non-intrusive 0.63 28.3 ± 1.12 0.39 74.4

5 and 6 show the average prediction results per listener and
system, respectively. Note that the dotted lines only help show
the correlations between the methods and do not represent
relationships between listeners. The results in Fig. 5 indicate
that the proposed method could better predict SI scores from
various HI listeners. Moreover, the results in Fig. 6 show that
the predictions obtained by the proposed method had an almost
perfect association with the actual SI scores from the listening
test (ρ = 0.997). This result is clarified by the system E005
and E018 where the error between actual and proposed method
is lower than the error between actual and baseline.

Second, we conducted an ablation test by excluding the
additional features, including the eGeMAPS and WavLM.
Ablation tests are often used to analyze the contribution of
each feature in a tested model. Figure 4 shows the results of
the ablation test. The overall results obtained for both tracks
indicate that the proposed method (without the exclusion of
the proposed features) could achieve the highest correlation
and lowest RMSE. A more significant difference was observed
in the open-set track. In addition, these results also indicated
that the eGeMAPS feature contributed more to the prediction
model than WavLM. Additionally, adding both the eGeMAPS
and WavLM significantly improved the prediction model (ρ
increased by more than 15%, and the RMSE decreased by
more than 10.00 in both tracks).

Last but not least, we considered the possibility of pro-
viding a nonintrusive (blind) prediction method in this study.
The nonintrusive method is important and more applicable
in realistic situations since clean speech may not always
be available. From Fig. 3, the features that required clean
speech were only the features extracted using EarModel.
The eGeMAPS and WavLM features only required improved
SPIN as the prediction model input, so this version could
be regarded as a nonintrusive prediction method. Table II
shows the results produced by the nonintrusive version of
the proposed method. The results obtained for the closed-
set track indicate that the nonintrusive method could achieve
almost similar results to those of the intrusive method (using
all features described in Section IV-A). However, in the open-
set track, a relatively more significant prediction performance
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Fig. 4. Results of an ablation test conducted by excluding additional features (the eGeMAPS and WavLM).

Fig. 5. Average SI prediction based on the listeners in the closed-set track.

Fig. 6. Average SI prediction based on the system in the closed-set track.

reduction was obtained (ρ was 0.08 lower than the results
of the intrusive method). Despite these results, the proposed
nonintrusive method still outperformed the baseline method for
both tracks.

VI. CONCLUSIONS

This study utilized EarModel as an auditory model for SI
prediction. The inputs of EarModel were binaural clean speech,
improved SPIN signals, and an audiogram for estimating
the hearing loss condition. Additionally, the eGeMAPS and
WavLM were included as features to estimate the acoustic
parameters contributing to hearing-impaired speech perception.
The evaluation utilized the CPC1 dataset and several evaluation
metrics, such as the Pearson correlation coefficient, RMSE,
coefficient of determination, and F1 score. A comparative
analysis was performed between the proposed method, the
baseline, and the HASPI. The overall results showed that the
proposed method predicted SI better than the baseline and
HASPI. The improvement was indicated by higher ρ, R2,
and F1 scores and lower RMSEs than those of the other
methods in closed-set and open-set tracks. Furthermore, the
average prediction results per listener and system appeared to
be closely related to the actual SI scores.

An ablation test was also conducted to analyze the con-
tribution of each additional feature, i.e., the eGeMAPS and
WavLM. From the ablation test, it could be concluded that
incorporating the eGeMAPS and WavLM could significantly
improve the prediction results. Last, the possibility of mod-
ifying the proposed method into a nonintrusive version was
considered, and this version could outperform the baseline
method in terms of accuracy.
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