
Optimized Wavelet-based Speech Enhancement for
Speech Recognition in Noisy and Reverberant

Conditions
Randy Gomez and Tatsuya Kawahara

Kyoto University, Academic Center for Computing and Media Studies (ACCMS),
Sakyo-ku, Kyoto 606-8501, JAPAN

Abstract—We present an improved speech enhancement
method based on Wiener filtering in the wavelet domain for
automatic speech recognition (ASR). The wavelet coefficients that
are contaminated by the effects of late reflection and background
noise are filtered using a Wiener gain. We optimize the wavelet
parameters for speech, background noise and late reflection
to achieve a better estimate of the Wiener gain for effective
filtering. Wiener gains to compensate for the effects of late
reflection and background noise are independently estimated and
then combined. Moreover, we introduce the noise profile and
reverberation time identification to cope with different noise and
reverberant conditions. Experimental results in large vocabulary
continuous speech recognition (LVCSR) show that the proposed
method outperforms the conventional methods.

I. I NTRODUCTION

In real-environment conditions, reverberation and additive
background noise often contaminate the quality of speech
signal used in automatic speech recognition (ASR) systems.A
contaminated speech signal results to degradation in recogni-
tion performance due to mismatch with the acoustic model
(AM). Thus, speech enhancement including denoising and
dereverberation is one of the most important topics in ASR.
While speech enhancement has been conventionally studied
independently from ASR, we are studying on tight integra-
tion of enhancement and ASR using a maximum likelihood
criterion [1].

The model of the reverberant speechX(w, f) (short-term
spectrum, w: window frame, f : frequency) we adopt is
based on the additive effects of the earlyXE(w, f) and late
XL(w, f) reflection,

X(w, f) ≈ XE(w, f) + XL(w, f)

≈ S(w, f)H(0, f) +
∑D

d=1 S(w − d, f)H(d, f)
(1)

whereS(w, f) andH(w, f) are the frequency response of the
clean speech and the room impulse response (RIR), respec-
tively. D is the number of frames, over which the reverberation
has an effect. The early reflection is due to the direct signal
and some reflections that occur at earlier time. It is mostly
addressed through Cepstral Mean Normalization (CMN) in the
ASR system as it falls within the frame. On the other hand,
the late reflection, whose effect spans over frames, can be
treated as long-period noise [2][3]. Following our assumption

above, we include the effects of the additive background noise
N(w, f) by expanding the reverberant model in Eq. (1)

X(w, f) ≈ XE(w, f) + XL(w, f) + N(w, f). (2)

For ASR in noisy and reverberant conditions, enhancing
the contaminated signal is defined by suppressing the effects
of late reflectionXL(w, f) and background noiseN(w, f).
Since the late reflection is treated as noise, the enhancement
problem is reduced to a simple denoising problem. Thus,
we can apply existing wavelet-based denoising techniques to
address both the effects of late reflection and background noise
based on the model in Eq. (2). In this paper, we treat the
contaminants separately since the late reflection is dependent
on the smearing effect of the previousD frames while the
background noise is not.

Several wavelet-based speech enhancement methods have
been proposed. A typical method [4] is constructed by integrat-
ing a voice activity detection (VAD) and introducing different
threshold profiles for different conditions. The use of several
threshold profiles enables to cope with colored and non-
stationary signals. A method which relies on the robustness
of the all-pole filter in modeling the clean speech from the
contaminant subspace is also proposed [5]. By clustering only
the wavelet extrema, the reconstructed signal is robust to the
effect of the contaminant subspace. Another method is based
on filtering of the contaminated wavelet coefficients using
Wiener gains [6], which we extended for dereverberation in
[7]. The methods [4]-[6] are generally designed to enhance the
speech waveform, but this does not guarantee an improvement
in performance for the ASR application. Moreover, these
methods do not address the problem of both late reflection
and noise simultaneously.

In this paper, we present a method of suppressing the
effects of late reflection and background noise through Wiener
filtering in the wavelet domain. In the proposed scheme,
prior to filtering, the wavelet parameters are optimized to
improve the likelihood of the acoustic model. The optimization
renders the proposed method to be more effective in the ASR
application. In this paper, background noise and late reflection
are jointly referred to as “contaminant signal”.

The paper is organized as follows; Section II presents the
proposed enhancement method based on Wiener filtering in
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Fig. 1. Wavelet parameter optimization scheme.

the wavelet domain using optimized wavelet parameters. In
Section III we explain the noise profile and reverberation time
identification. The experimental setup and ASR evaluation
results are presented in Section IV. Finally, we conclude the
paper in Section V.

II. W IENER FILTERING IN WAVELET DOMAIN

A. Optimizing Wavelet Parameters

A wavelet is generally expressed as

Ψ(υ, τ, t) =
1√
υ

Ψ

(

t − τ

υ

)

, (3)

where t denotes time,υ and τ are the scaling and shifting
parameters respectively.Ψ

(

t−τ
υ

)

is often referred to as the
mother wavelet. Assuming that we deal with real-valued
signal, the wavelet transform (WT) is defined as

F (υ, τ) =

∫

f(t)Ψ(υ, τ, t)dt, (4)

whereF (υ, τ) is the wavelet coefficient andf(t) is the time-
domain function. With an appropriate training algorithm, we
can optimizeτ and υ so that the wavelet captures specific
characteristics of a certain signal of interest. The resulting
wavelet is sensitive in detecting the presence of this signal
given any arbitrary signal. In the wavelet filtering method,we
are interested in detecting the power of clean speech, noise
and late reflection given an observed contaminant. Thus, we
optimize the wavelet parameters to detect these separately
based on the AM likelihood as shown in Fig. 1.

1) Speech:Since we are interested in the speech subspace
in general, optimizing a single wavelet to capture the general
speech characteristics is sufficient. In Fig. 1, we illustrate
the optimization of the wavelet for clean speech. Wavelet
coefficientsS(υ, τ), extracted through Eq. (4), are converted
back to the time domainsυ,τ through inverse wavelet trans-
form (IWT). Likelihood scores are computed using the clean
speech acoustic modelλs, a Gaussian Mixture Model (GMM)
of 64 components. This is a text independent model which
captures the statistical information of the speech subspace. A
greedy search process is iterated by adjustingυ and τ . The

correspondingυ=a and τ=α that result to the highest score
are selected.

2) Noise: The same procedure is applied to the case of
noise, except for the creation of multiple profiles(i), repre-
senting different types of noise.N(υ, τ)(i) and n

(i)
υ,τ are the

wavelet and time domain of noise profile(i), respectively.
Likelihood scores are computed using the corresponding noise
modelλn(i) (same model structure as that ofλs). This model
is trained using a noise database. The correspondingυ=b

(i)

and τ=β(i) that maximize the likelihood score are stored in
the profile.

The noise database is originally composed of seven base
noise, i.e. Car, Computer, Office, Crowd, Park, Mall and
Vacuum cleaner. To generalize to a variety of noise charac-
teristics, additional entries are made by combining different
types of the base noise. To remove redundancy and suppress
the increase of the entries, we measure the correlation of
the resulting combinations and select the ones that are less
correlated with existing noise entries. Thus, the expandednoise
database referred to as noise profiles will provide more degree
of freedom in characterizing various noise distributions.

3) Late reflection: In the case of the late reflection in
Fig. 1 (bottom),D templates for every reverberation time
T60 (j) are to be optimized for both scale (υ1, ...υD)(j)

and shift (τ1, ..., τD)(j). These correspond toD preceding
frames that cause smearing to the current frame of interest.
We note that the effect of smearing is not constant, thus
D templates are created. By estimating the reverberation
time T60 (j), we can generate the impulse response and its
corresponding late reflection coefficientsh

(j)
L [7]. Then, late

reflection observationsx(j)
L are generated by convolving the

clean speech withh(j)
L . Next, wavelet coefficientsX(υ, τ)

(j)
L

are extracted through WT. In order to makeX(υ, τ)
(j)
L void

of speech characteristics, thresholding is applied toX(υ, τ)
(j)
L .

Speech energy is characterized with high coefficient values[8]
[4] and thresholding sets these coefficients to zero,



X̄(υ, τ)
(j)
L =

{

0 , | X(υ, τ)
(j)
L | > thr

X(υ, τ)
(j)
L , | X(υ, τ)

(j)
L | ≤ thr

(5)

thr is calculated similar to that in [8]. The thresholded
signal is converted back to time domain̄x(j)

υ,τL
and evaluated

against a late reflection modelλ
x̄
(j)
L

. The parametersυ and

τ are adjusted and the correspondingυ={e1,...,eD}(j) and
τ={ξ1,...,ξD}(j) that result to the highest likelihood score are
selected. We note thatλ

x̄
(j)
L

is trained using the synthetically
generated late reflection data (during training) with threshold-
ing applied.

B. Wiener Filtering

The general expression of the Wiener gain at window frame
w and bandm for background noise and late reflection are
expressed as

κN
wm =

S(υ, τ)2wm

S(υ, τ)2wm + N(υ, τ)2wm

(6)

and

κXL

wm =
S(υ, τ)2wm

S(υ, τ)2wm + XL(υ, τ)
2
wm

, (7)

where S(υ, τ)2wm, N(υ, τ)2wm and XL(υ, τ)2wm are wavelet
power estimates for the clean speech, noise, and late reflection,
respectively. By using the optimized values forυ and τ as
described in Section II-A, we can compute the respective
power estimates directly from the observed contaminated
signalX(υ, τ)wm. Thus, the speech power estimate becomes

S(υ, τ)2wm ≈ X(a, α)2wm, (8)

the noise power estimateN(υ, τ)
2
wm as

N(υ, τ)2wm ≈ X(b(i), β(i))
2

wm, (9)

and the late reflection estimateXL(υ, τ)
2
wm as

XL(e
(j)
d , ξ

(j)
d )

2

wm
≈



















X(e
(j)
1 , ξ

(j)
1 )2wm, d = 1

∑d−1
k=1 X(e

(j)
k , ξ

(j)
k )2wm

d − 1
+

X(e
(j)
d , ξ

(j)
d )2wm, otherwise,

(10)
Wiener filtering is conducted by weighting the contaminated

wavelet coefficientX(υ, τ)wm with the Wiener gain as,

X(υ, τ)wm(enhanced) = X(υ, τ)wm . κwm, (11)

where we define

κwm =
κN

wm + κXL
wm

2
. (12)

Although this is not a direct calculation of the Wiener gain
based on the combined effects of both noise and late reflection,
we used Eq. (12) for reason of tractability. In Eq. (11), the

Wiener weightκwm dictates the degree of suppression of the
contaminant to the observed signal at particular framew and
bandm. If the contaminant power estimate is greater than the
estimate of the speech power, thenκwm for that band may
be set to zero or a small value. This attenuates the effect of
contamination. On the other hand, if the power of the clean
speech estimate is greater, the Wiener gain will emphasize its
effect. The enhanced wavelet coefficients are converted back to
the time domain through IWT and given to the ASR process.

III. N OISE PROFILE AND T60 IDENTIFICATION

Each noise profile(i) and reverberation timeT60 (j)
has corresponding optimized wavelet parameters (b

(i), β(i)),
{e1,...,eD}(j) and{ξ1,...,ξD}(j) as shown in Section II-A. For
actual ASR, it is necessary to identify the profile that corrupts
the speech signal to retrieve the appropriate parameters. To
identify the noise profile(i), a GMM-based classifier is em-
ployed. The GMMs (λn(i) ) are same as used in optimizing the
wavelet parameters for the noise profiles discussed in Section
II-A. Prior to ASR, high-energy frames are removed from
the input noisy speech and the remaining noise segments are
evaluated with the GMMs. Subsequently, the profile(i) that
leads to the best likelihood is selected. The same procedure
is applied to the identification ofT60 (j), using the GMM
classifier λ

(j)
x̄L

trained with the synthetically generated late
reflection data. We have found out that the identification works
well even with only a few frames of data.

IV. EXPERIMENTAL EVALUATIONS

We have evaluated the proposed method in large vocabulary
continuous speech recognition (LVCSR). The training database
is the Japanese Newspaper Article Sentence (JNAS) corpus
with a total of approximately 60 hours of speech. The test
set is composed of 200 sentences uttered by 50 speakers. The
vocabulary size is 20K and the language model is a standard
word trigram model.

Speech is processed using 25ms-frame with 10ms. shift. The
features used are 12-order MFCCs,∆MFCCs, and∆Power.
The AM is a phonetically tied mixture (PTM) HMMs with
8256 Gaussians in total. It is trained using the speech database
with super-imposition of Gaussian noise, that is differentfrom
those in the noise profiles [9][10]. We note that in our proposed
method, we use only a single AM in ASR for different
noise and SNR conditions. We used seven types of real noise
(base noise) in the NAIST database [10]: Car, Computer,
Office, Crowd, Park, Mall and Vacuum cleaner. As the result
of combination of the base noise entries, 20 noise profiles
are generated. We considered reverberation timeT60 from
100ms. to 500ms. with 100ms. interval. In the experiments, we
compare the proposed method against modified wavelet-based
methods [4]-[6] in dealing with the reverberation problem [7].
Then we perform post-processing using the ETSI advanced
front-end (AFE) [11] to deal with the background noise for
these methods.

In Fig. 2, we show the ASR performance in word accuracy
for different noise types, SNRs (10, 20dB) and reverberation



Fig. 2. Recognition Performance.

time (200, 400ms.). We note that when a particular noise-
type is being evaluated, it is held-out during noise profile
generation. (A) is the result when the contaminated data is
not processed and recognized using an AM re-trained with
the same condition. (B) is the result when processed with the
improved wavelet-based enhancement that incorporates VAD
and threshold profiles [4]. Another method based on extrema
clustering [5] is evaluated in (C). The result of wavelet filtering
without optimization [6][7] is shown in (D), while the result of
the proposed method which incorporates both late reflection
and background noise is given in (E). The results in Fig. 2
show that the proposed method outperforms existing wavelet-
based methods in all cases [4]-[7]. By optimizing the wavelet
parameters, the enhancement process is tuned to improving the
acoustic model likelihood. As a result, the proposed method
becomes more effective in the ASR application.

V. CONCLUSION

We have presented an improved Wiener filtering in the
wavelet domain, by optimizing the wavelet parameters to
effectively estimate the power of the clean speech, noise,
and late reflection. This optimization is based on the AM
likelihood, and results to a more accurate Wiener gain estimate
in suppressing the contaminant signal. Currently, we deal with
simple additive background noise. In the future, we will further
investigate its convolutive effect. This scenario occurs when

the noise source is located at a considerable distance from the
microphone.
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