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Abstract—This paper evaluates the performance of single-
input/multiple-output (SIMO) wireless communications systems
with binary combining vectors for maximum-ratio combining
(MRC). Unlike recent work by other researchers who employed
BPSK-like-modulated (i.e., ±1-valued) vectors for MIMO trans-
mit beamforming, we employ 0/1-valued vectors, for SIMO
MRC. Thus, for highly correlated antennas in Rician and
Rayleigh fading, such binary MRC is found nearly as effective
as MRC using a channel gain vector estimated based on the
minimum mean square error (MMSE) criterion. Furthermore,
binary MRC is less demanding than MMSE-based MRC because
it does not require signal-to-noise ratio knowledge or matrix
inversion. We also find that BPSK-like modulation prevents
binary MRC from achieving performance similar to that of
MMSE-based MRC. Finally, we determine that for binary MRC
it is crucial to transform the matrix with the binary combiners
according to the channel statistics.

I. INTRODUCTION
Wireless communications systems employing multiple-

antenna-based transceivers have been shown theoretically to
boost performance [1]. However, conventional implementa-
tions require high volumes of memory and digital signal
processing [2] [3] [4], substantial feedback from the receiver to
the transmitter [5], as well as suitable propagation conditions
[6] [7] [8] [9]. In this paper, we limit ourselves to the
single-input/multiple-output (SIMO) case and study various
conventional implementations of maximal-ratio combining
(MRC) as well as a novel binary-combining approach that
may achieve optimum performance and reduce complexity.
Nevertheless, the concepts and methods described herein can
be extended to MISO systems [10] and MIMO systems [11]
with limited receiver–transmitter feedback. They have been
devised for multi-antenna-based orthogonal frequency-division
multiplexing (OFDM) systems, e.g., WiFi, LTE, and WiMAX.

In a recent paper on MIMO transmit beamforming with
limited feedback, for uncorrelated Rayleigh fading [11],
Kim&Beaulieu propose replacing the conventional Grassman-
nian line packing (GLP) design procedure for the beamforming
codebook with a novel procedure based on BPSK-modulating
a Hamming block code that is thus found to yield the same
performance as GLP codebooks, which are difficult to design.
The binary approach can also greatly reduce precoder-related
memory storage requirements.

Herein, we pick up on the binary-combiner idea from [11]
and evaluate binary MRC employing 0/1 combiner entries
versus conventional pilot-based approaches, for SIMO. Also,
we consider the general case of correlated Rician fading, which

is more realistic, according to the WINNER II measurements
and modeling [12]. Finally, for correlated fading we transform
the binary combiner according to the channel correlation
matrix, as proposed in [13].

Thus, binary MRC average error rate (AER) performance
is shown to approach that of MRC using as combiner the
unquantized minimum mean square error (MMSE) channel
vector estimate, i.e., MMSE-based MRC for some propagation
conditions. Note that, MMSE-based MRC may require more
information and computations than the proposed binary MRC.
We also find that the binary MRC approach with ±1-valued
combiners from [11] may not help MRC achieve performance
similar to that of MMSE-based MRC.

This paper is organized as follows. Section II introduces
the signal and channel models. Section III describes the ideal,
conventional pilot-based, and new binary MRC approaches.
Finally, Section IV shows numerical simulation results.

II. SIGNAL AND CHANNEL MODELS

Consider a mobile station that transmits through a
frequency-flat fading channel. At an NR-element base-station
antenna array the received signal vector after demodulation,
matched-filtering, and symbol-rate sampling is [6]

y =
√
Es s h+ n, (1)

where Es is the average per-symbol transmitted energy,
and s is the unit-average-energy transmitted symbol from
a constellation with M symbols (e.g., M -PSK, M -QAM).
Channel-fading and receiver-noise vectors are described by
h ∼ Nc(hd, R̃) and n ∼ Nc(0, N0 INR), respectively, where
N0 is the noise variance for each antenna, and INR is the
NR ×NR identity matrix.

When the channel vector elements, hl, l = 1 : NR, have zero
mean, due to diffuse propagation, their absolute values, |hl|,
have Rayleigh distribution [14, Eqn. (2.6), p. 18]. When the
channel vector elements have nonzero mean, due to specular
propagation, their absolute values have Rician distribution [14,
Eqn. (2.15), p. 21].

Propagation conditions determine the specular, i.e., deter-
ministic, component hd of the channel gain vector and the
correlation matrix of the random component hr, as described in
[1, Section 3.4.2] [12]. The Rician K-factor is the power ratio
of the deterministic (i.e., the mean) and random components
of the channel gain [1, Section 3.4.2]. Assuming equal K for
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all antennas, the channel gain vector is:

h = hd + hr =

√
K

K + 1
hd,n +

√
1

K + 1
hr,n, (2)

where, without loss of generality, the elements of hd,n and
hr,n are assumed to be normalized, i.e., |hd,n,l| = 1 and
E{|hr,n,l|2} = 1, respectively, so that E{|hl|2} = 1. Then, at
detection, the average per-symbol signal-to-noise ratio (SNR)
is given by γs =

Es
N0

E{|hl|2} = Es
N0

.
The deterministic channel-gain-vector component (i.e., the

mean) is given by:

E
{
h
}
= hd =

√
K

K + 1
hd,n. (3)

Its normalized version hd,n can be computed as the steering
vector corresponding to the line-of-sight (LOS) angle of ar-
rival (AOA) θLOS. The distribution of the normalized random
component is completely described by its correlation matrix,
R = E

{
hr,n h

H
r,n

}
. This correlation matrix can be computed

for realistic Laplacian power azimuth spread (PAS) [12] as a
function of the PAS azimuth spread (AS) and central AOA
θC (ALSO ASSUMED ), as well as the antenna interelement
distance relative to the carrier wavelength [15]. Then,

R̃ = E
{
(h− hd) (h− hd)

H
}

=
1

K + 1
R. (4)

Let us also define the correlation matrix of the channel gain
vector C = E{hhH}, given by:

C =
K

K + 1
hd,nh

H
d,n +

1

K + 1
R. (5)

For the rest of the paper the following are assumed perfectly
known: channel-vector mean, hd, K-factor, covariance matrix,
R, and noise variance, N0. These channel and noise statistics
can, in practice, be estimated accurately since they fluctuate
very slowly compared to Doppler-induced multipath fading
[16] [6]. Also, since their estimation can be distributed over
long intervals, it does not significantly increase the numerical
complexity of combining methods employing these estimates
[17].

III. MAXIMAL-RATIO COMBINING (MRC)

A. Combining and Signal Detection

Given the received signal vector y from (1), an estimate ĥ
of the channel gain vector h, and a linear combiner w, the
transmitted symbol s is detected, in general, by mapping

ŝ =
1√
Es

wHy

wHĥ
=

wHh

wHĥ︸ ︷︷ ︸
α

s+
1√
Es

wHn

wHĥ︸ ︷︷ ︸
n

(6)

= α s+ n (7)

into the modulation constellation. The operations in (6) com-
pensate for transmit energy ( 1√

Es
) and channel fading (w

Hy

wHĥ
).

However, note that since wHĥ is typically real-valued (be-
cause w is typically computed as w = Aĥ, where A is some
estimation-method-dependent Hermitian matrix, normalization

with 1√
Es

1

wHĥ
is not required for PSK modulation. Note also

that α ≈ 1 for accurate channel estimation, and that the
variance of n is inversely proportional to Es/N0.

By averaging over the noise vector n, the SNR for the
symbol-detection problem from (6)-(7) is:

γ =
|α|2

En [|n|2]
=

Es
|wHh|2

|wHĥ|2

En[|wHn|2]
|wHĥ|2

=
Es

N0

|wHh|2

∥w∥2
. (8)

B. Ideal MRC

Given perfect knowledge of the channel gain vector h, the
combiner w that maximizes the SNR in (8) is given by:

wMRC,ideal = h. (9)

Combining y with wMRC,ideal is referred to as maximal-
ratio combining (MRC). Then, the symbol is estimated by
appropriately mapping

ŝMRC,ideal =
1√
Es

wH
MRC,idealy

wH
MRC,idealh

(10)

into the modulation constellation.

C. Simple, Pilot-Based MRC

In practice, the channel gain vector h is estimated from pilot
samples. For example, if the pilot symbol (i.e., known at the
receiver) s = 1 is transmitted, the received pilot sample is

yp =
√
Esh+ n, (11)

and the simplest estimate of the channel gain vector h is:

ĥp =
yp√
Es

= h+
1√
Es

n. (12)

Then, the typical MRC-like combining approach employs [18]

wMRC,pilot = ĥp, (13)

and the symbol s is estimated by appropriately mapping

ŝMRC,pilot =
1√
Es

wH
MRC,piloty

wH
MRC,pilotĥp

(14)

into the modulation constellation.

D. MMSE MRC

Above, we have solely employed instantaneous channel
knowledge, through ĥp. Given statistical knowledge about
channel fading and receiver noise, the channel gain vector can
be estimated optimally with the minimum mean square error
(MMSE) approach. The MMSE estimate is given by [15]:

ĥMMSE = GH ĥp, (15)

where the NR ×NR matrix G is given by:

G =
[
E{ĥp ĥ

H
p }

]−1

E{ĥp h
H}

=

[
C+

1

Es/N0
INR

]−1

C. (16)



The computation of this G requires knowledge of C and
Es
N0

. Also, it requires the inversion of a matrix (which may
be inaccurate for high SNR and high correlation) and a
multiplication of two matrices. Finally, G requires memory
storage space for its NR

2 complex-valued elements. Thus, if
real and imaginary parts are represented on 8 bits and NR = 4,
storing G requires 42·2·8 = 256 bits. Many such matrices may
have to be stored for an OFDM system with many subcarriers.

Then, the MMSE-based MRC combiner is:

wMRC,MMSE = ĥMMSE, (17)

and the symbol s is estimated by appropriately mapping

ŝMRC,MMSE =
1√
Es

wH
MRC,MMSEy

wH
MRC,MMSEĥMMSE

(18)

into the modulation constellation. This approach is herein
referred to as MMSE MRC.

E. Binary MRC

Let us assume that the receiver maintains an NR×N matrix
W with N binary-valued NR×1 combiners for MRC. (For an
OFDM system, this same W would be used at all subcarriers,
as shown below.) Numerical results will be shown for NR = 4
and N = 8, 16.

The first matrix W for which numerical results are shown
later is the 4× 8 matrix

Wb =


0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 , (19)

Such matrix was proposed for limited-feedback-based transmit
beamforming in [11]. Note that in [11] this matrix was
obtained from a (4, 4) Hamming block code. Storing Wb in
memory would require 4 · 8 = 32 bits. Such matrix could also
easily be generated every time it is needed.

Numerical results will also be shown for the 4× 16 matrix
whose first 8 columns are given by Wb and last 8 columns
are given by:

Wa(:, 9 : 16) =


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 . (20)

Notice that Wa comprises all possible 4-tuples, whereas Wb
comprises all 4-tuples that start with a 0. Storing Wa in
memory would require 4 · 16 = 64 bits. Such matrix could
also easily be generated every time it is needed.

We also show numerical results for the case when the
elements of Wa or Wb are BPSK-modulated (i.e., 1 becomes
−1, and 0 becomes 1), as proposed in [11]. We then denote
these matrices as Wa,BPSK or Wb,BPSK. Note that the BPSK
modulation of W is not related to the modulation of the
transmitted symbol s.

Let us assume that, beside ĥp, the receiver knows also W
(i.e., Wa or Wb). Let us also assume that the columns of W

are normalized. Then, the columns of W can be employed
for an optimum combining approach herein denoted ‘binary
MRC’. Its steps, for independent and identically distributed
(i.i.d.) Rayleigh fading, are as follows:

1) Determine the (normalized) column of W that maxi-
mizes symbol-detection SNR, as follows:

wMRC,binary = arg max
wi∈W

|wH
i ĥp|, (21)

which requires N inner products.
2) Isolate the ‘phase’ of h · s with the inner product

wH
MRC,binary y. (22)

3) Isolate the ‘phase’ of h with the inner product

wH
MRC,binary ĥp. (23)

4) Estimate symbol s by mapping

ŝMRC,binary =
1√
Es

wH
MRC,binary y

wH
MRC,binary ĥp

(24)

into the modulation constellation. Note that, unlike for
conventional MRC, binary MRC requires the denomina-
tor term wH

MRC,binary ĥp even for PSK-modulated s.
For correlated Rayleigh fading we can write h = R1/2hw,

where hw is an i.i.d., zero-mean, unit-variance, complex-
valued Gaussian vector. Then, we employ the channel gain
correlation matrix to modify the matrix with the binary MRC
combiners as follows

Wcorr. Rayleigh = R1/2W, (25)

based on a previous proposal for MIMO precoding [13].
Similarly, for correlated Rician fading we can transform our

binary combiners either using information only about the AS
with (25) or by using information about the K, hd, and AS
with

Wcorr. Rician = C1/2W. (26)

Note that binary MRC requires that the receiver maintains
R1/2 or C1/2. On the other hand, the operations required to
compute (25) or (26) are very simple for binary W.

IV. NUMERICAL RESULTS

We now describe simulation results for the MRC meth-
ods presented above. The simulation settings are as follows:
Rayleigh and Rician fading (K = 7 dB); BPSK modulation;
300 000 samples of BPSK symbol, channel, and noise; uni-
form linear array (ULA) receive antenna with NR = 4 and
normalized interelement distance dn = 1 (i.e., actual distance
equal to half of the carrier wavelength); Laplacian PAS with
central AOA θc = 0, LOS AOA θLOS = 0 (unless specified
otherwise)1, AS = 2◦ (unless specified otherwise); spatial
correlation computed from dn = 1, θc = 0, and AS as in
[15, Eqns. (4.3),(4.4)].

1These angles are measured with respect to the line perpendicular on the
ULA
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Fig. 1. Simulated MRC AER vs. SNR, for Rician i.i.d. fading with K = 7 dB,
BPSK, NR = 4, and Wcorr. Rician derived from unmodulated Wb.

In most of the figures described below, the horizontal axis
represents is the SNR, i.e., Es/N0, and the vertical axis
represents the average symbol error rate (AER) obtained by
numerical simulation.

Fig. 1 depicts the i.i.d. Rician fading case whereby binary
MRC employs Wcorr. Rician and unmodulated Wb. Note that
even simple pilot-based MRC outperforms binary MRC over
the entire SNR range. Nevertheless, binary MRC appears to
yield the same diversity order as conventional MRC. On the
other hand, MMSE MRC substantially outperforms simple
pilot-based MRC at low SNR. At high SNR, they yield similar
performance, which is expected, because G from (16) then
becomes INR , and thus wMRC,MMSE = wMRC,pilot = ĥp.

Fig. 2 depicts the MRC performance for Rician fading with
θc = θLOS = 0 and AS = 2◦. Such a low AS value yields sig-
nificant antenna correlation [15, p. 138] [6]. The figure reveals
that MMSE-MRC-like performance is achievable with binary
MRC. Recall that the latter does not require the inversion of
a matrix (which may be inaccurate, at high correlation).

Fig. 3 reveals the effect of BPSK-modulating Wb on binary
MRC performance.2 Note that such modulation was proposed
for binary precoders in [11]. The figure reveals that binary
MRC is now outperformed even by simple pilot-based MRC.
Therefore, hereafter we employ only unmodulated W.

Results not shown here have revealed that unmodulated Wb
and Wa yield similar binary-MRC performance when θc =
θLOS = 0. On the other hand, for θc ̸= θLOS, Fig. 4 reveals
that, at high-SNR, Wa can significantly outperform Wb. The
plot identified by I4 is explained shortly.

Let us now consider Rician fading with combiner matrix

2Note that BPSK-modulated Wa would yield the same performance
because Wa = [Wb,−Wb], and thus its second half reduces to the first
half by the absolute-value operation in (21). On the other hand, unmodulated
Wa and Wb do not yield the same performance, as shown later.
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Fig. 2. Simulated MRC AER vs. SNR, for Rician fading with K = 7 dB and
AS = 2◦, BPSK, NR = 4, and Wcorr. Rician derived from unmodulated Wb.
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Fig. 3. Simulated MRC AER vs. SNR, for Rician fading with K = 7 dB and
AS = 2◦, BPSK, NR = 4, and Wcorr. Rician with Wb,BPSK.

Wcorr. Rician computed with (26) from unmodulated W. Then,
the column with index i of Wcorr. Rician that is selected by (21)
corresponds to the column with index i of the binary W.
Fig. 5 shows the histograms of these column indexes, revealing
that certain binary combiners from Wb and Wa (in fact,
the corresponding combiners from Wcorr. Rician) are selected
more frequently than others. For example, for Wb from (19),
columns 2, 3, 5 are selected for more than 80% of the channel
samples. On the other hand, for Wa from (19) and (20),
columns 2, 3, 5, 9 are selected for more than 70% of the
channel samples. Note that these contain a single 1 entry. Note
also that column 5 is selected twice more often for Wb than for
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Wa. Finally, note that, for Wa, columns 9 − 16 are selected
for about 30% of the channel samples. Their absence from
Wb renders the performance with Wb worse than with Wa,
as shown in Fig. 4. The absence of column 9 (with a single
1 entry) from Wb is particularly significant, as this column is
selected with Wa for about 20% of the channel samples.

When the binary approach is applied for maximal-ratio
transmission (MRT) [10] for correlated Rician fading and
limited transmit–receive feedback [13], we can exploit the
fact that some of the combiners are selected more frequently
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Fig. 6. Simulated binary-MRC AER vs. SNR, for Rician fading with K =
7 dB and AS = 2◦, NR = 4, and various choices of W derived from
unmodulated Wa.

than others as follows. Instead of assigning to all codebook
beamformers the same number of bits for their codebook
indices, we propose to assign shorter codes to the more
frequently selected beamformers and longer codes to the less
frequently selected beamformers. This approach, inspired by
the source coding concept, is currently under study.

Lets us now return to our numerical results for SIMO
binary MRC. Fig. 5 also shows the histogram for the combiner
matrix W formed with the 4 columns of Wa with a single
1 entry. Since W is then a permutation of the I4 identity
matrix, the columns of Wcorr. Rician are simply the columns of
C1/2. Back in Fig. 4 we show that, at high SNR, the low-
dimension and simple combiner matrix I4 outperforms Wb
and underperforms Wa. Hereafter, we show results only for
unmodulated Wa.

Fig. 6 reveals a negligible difference in the performance
of binary MRC for W computed as a function of AS only
with (25), or as a function of K, hd, and AS with (26).
On the other hand, using the untransformed binary W yields
significantly poorer performance. These results would suggest
that accounting only for spatial correlation in designing the
binary-MRC weight matrix is sufficient. However, other results
(not shown here) have revealed that, for θc ̸= θLOS, W
computed with (25) renders binary MRC useless, whereas W
computed with (26) still helps binary MRC achieve nearly the
same AER as MMSE MRC, at least for low SNR.

Fig. 7 shows results for Rayleigh fading, Wcorr. Rayleigh
derived from unmodulated Wa with (25), and otherwise the
same settings as for Fig. 2, which depicts Rician fading. Note
that binary MRC still performs close to MMSE MRC, but only
for low-to-medium SNR.

Fig. 8 shows that binary MRC can extract extra diversity
gain induced by specular propagation. Therefore, for SIMO,
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Fig. 7. Simulated MRC AER vs. SNR, for Rayleigh fading with AS = 2◦,
NR = 4, and Wcorr. Rayleigh derived from (25) with unmodulated Wa.
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7 dB and for Rayleigh fading, both with AS = 2◦, NR = 4, Wcorr. Rayleigh
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Rician fading yields better performance than Rayleigh fading
even with binary MRC.

V. CONCLUSIONS

We have shown that binary MRC can achieve near-optimum
performance for Rician fading, high channel correlation (i.e.,
low AS), and non-high SNR. We found that BPSK-modulating
the binary combiner matrix, as proposed previously, is not
effective for SIMO MRC. Instead we have employed a 0/1-
valued binary combiner matrix. We have also found that the
combiner matrix with all binary combinations performs best.
On the other hand, because of missing a crucial combiner,

a previously-proposed combiner matrix is outperformed even
by the identity matrix. We are currently attempting to analyze
binary MRC mathematically, in order to derive average error
probability expressions. Future work will investigate whether
binary MRC has lower memory storage and computational re-
quirements than conventional approaches. Then, binary MRC
may be suitable in OFDM systems, to simplify combining
on the many subcarriers. Future work will also attempt to
generalize the binary-transceiver concept to MIMO.
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