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Abstract—This paper develops a technique for dominant pole
localization of the adaptation process, performed by the FxLMS
algorithm in active noise control systems. This development results
in a new adaptation algorithm, called Filtered Weight FxLMS
(FwFxLMS). Similar to the FxLMS, FwFxLMS uses a recursion
for updating the weight vector of a transversal ANC controller.
However, in the new algorithm, the weight vector is filtered before
being updated by the recursion. This filtering procedure causes
dynamic behaviors of the adaptation process to be improved. This
improvement can be theoretically proved by plotting and analyzing
the root locus of the adaptation process in the z-plane. Also,
simulation results show the efficiency of the proposed algorithm
in active control of acoustic noise.

I. INTRODUCTION

Active control of acoustic noise, usually referred to as Active
Noise Control (ANC), relies on the simple concept that the
combination of two acoustic waves with equal magnitudes
but opposite phases makes silence at the conjunction point;
consequently, in a neighborhood of the conjunction point, a
silence zone is created. However, only with the advent of digital
technology, did the design and implementation of adaptive
ANC systems become possible. The idea of adaptive ANC
was published in 1975 [1]. Shortly after, different structures
for realization of this theory were developed [2]–[5]. Usually,
these structures consist of an acoustic data acquisition system,
a DSP processor and an adaptation algorithm. This algorithm,
itself, consists of the following two processes.

1) An estimation process for generating an anti-noise signal.
2) An adaptation process for automatic adjustment of the

parameters used in the estimation process.
Usually, a transversal filter is used for performing the estima-
tion process. In ANC literature, this filter is called the ANC
controller [6], [7]. Also, an adaptation algorithm is used for
performing the adaptation process on the weight vector of the
ANC controller. This algorithm is responsible for the automatic
adjustment of the ANC controller such that the combination of
environmental noise and anti-noise at a desired silence zone
is minimized. The most popular ANC adaptation algorithm,
called Filtered-x Least-Mean-Square (FxLMS) was proposed
by Widrow in 1981 [8]. The main advantage of this algorithm
is its simplicity; however, it has slow dynamics.

The main objective of this paper is to modify the FxLMS
algorithm in order to improve its dynamic behavior. This
modification leads to develop a new adaptive algorithm, called
Filtered Weight FxLMS. The rest of this paper is organized

as follows. Section 2 introduces the FxLMS-based ANC and
describes the FxLMS root locus, based on the authors previous
work [9], [10]. Section 3 modifies the FxLMS algorithm and
determines influences of the proposed modification on the
FxLMS root locus. It is then shown that the dominant pole
of the adaptation process can be localized by adjusting the
proposed modification. This ability enable us to make the
adaptation process faster. Section 4 shows the validity of the
theoretical results using computer simulation. Finally, Section
5 gives concluding remarks.

II. FXLMS-BASED ACTIVE NOISE CONTROL

The functional block diagram of the FxLMS-based ANC
system is illustrated in Figure 1. In this diagram, transfer func-
tions P (z) and S (z) represent primary and secondary paths
(or systems), respectively. These two linear systems are un-
known electro-acoustic channels with finite impulse responses.
As shown, the FxLMS algorithm adjusts the ANC controller
weight vector in accordance with the residual acoustic noise
signal e (n) and the reference signal x (n), picked up by
two separate microphones. Referring to the diagram, electrical
signal e (n) can be expressed as

e (n) = d (n)−
Q−1∑
q=0

sqw
T (n− q) x (n− q) , (1)

where scalar parameters s0, s1, . . . , sQ−1 are coefficients of the
secondary path impulse response, x (n), called the reference
vector, is the L× 1 tap vector of the reference signal x (n):

x (n) =
[
x (n) x (n− 1) . . . x (n− L+ 1)

]T
(2)

and w (n), called the weight vector is given by

w (n) =
[
w0 (n) w1 (n) . . . wL−1 (n)

]T
(3)
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Figure 1. Functional block diagram of FxLMS-based ANC system
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The FxLMS algorithm updates w (n) by using the following
recursive equation at time index n .

w (n+ 1) = w (n) + µe (n)

Q−1∑
q=0

sqx (n− q)︸ ︷︷ ︸
xf (n)

, (4)

where scalar parameter µ is the adaptation step-size and xf (n)
is the filtered reference vector, obtained by filtering x (n) using
an estimate of the secondary path, called the secondary path
model. In practice, this model can be estimated using off-line
or on-line secondary path modeling techniques [6]. Usually, it
can be assumed that the secondary path model is identical to
the actual secondary path.

A. FxLMS Characteristic Equation

In [11], it is shown that for a broad-band white acoustic
noise of power σ2

x, the variation of the first order moment of
the weight vector w (n) can be modeled as

c (n+ 1) = c (n)− µσ2
x

Q−1∑
q=0

s2qc (n− q) (5)

where c (n) is the first order moment of w (n), defined as

c (n) , E {w (n)−wopt} (6)

In this model, constant vector wopt denotes the optimum
Wiener–Hopf solution and operator E {.} denotes the statistical
expectation. Taking the z-transform from Eq. (5), the FxLMS
characteristic equation can be obtained as

z − 1 + µσ2
x

Q−1∑
q=0

s2qz
−q = 0 (7)

This equation can be expressed in the standard form of

1 + µσ2
xH (z) = 0 (8)

where H (z), called the FxLMS open loop transfer function, is
defined as

H (z) =

Q−1∑
q=0

s2qz
Q−1−q

zQ − zQ−1
(9)

B. FxLMS Root Locus

Since the FxLMS characteristic equation, given in Eq. (8),
is a parametric polynomial equation of order Q (with scalar
parameter µ), finding closed-loop expressions for its roots is
impossible in mathematics. However, the authors derived the
rules governing on the root locus of this equation in [10] and
[9]. In the following these rules are briefly described.

−1 0 1

−1

0

1

Im
ag

in
ar

y

Real

z−plane

B1

xB

xA

B6

B5

B4

B3

B2

Figure 2. An example for FxLMS root locus when s0 = s1 = s2 = 0,
s3 = s4 = 1 and s5 = 0.8 (Q = 6).

Number of Branches : the FxLMS root locus has Q branches,
denoted by B1, B2, ...and BQ. As a particular example, for the
secondary path impulse response, given by parameters s0 =
s1 = s2 = 0, s3 = s4 = 1 and s5 = 0.8, the FxLMS root locus
contains 6 distinct branches (because Q = 6). For this example,
the open loop transfer function H (z) can be computed as

H (z) =
z2 + z + 0.8

z6 − z5
(10)

Trajectories of these branches in the z-plane are computed in
MATLAB and then plotted in Figure 2.

Start Points : the start point of B1 locates at z = 1 and those
of B2, B3, ... and BQ locate at the z = 0, commonly. These
points are marked in Figure 2 by “x”.

End Points: end points of B1, B2, ...and BQ locate at the
zeros of H (z). Unlike start points, end points are not constants
and their location is a function of secondary path coefficients
squares s20, s

2
1, . . . , and s2Q−1. Accordingly, end points of the

FxLMS root locus can not be given in closed-form expressions.
However, it is obvious from Eq. (9) that the number of zeros
of H (z) can be less than the number of branches (that is Q).
This is because, the first coefficients of the secondary path are
likely to be zero, due to the existence of a time delay in in the
secondary path. Assuming that the first Q0 coefficients of the
secondary path are zero (s0 = s1 = . . . = sQo−1 = 0), H (z)
can have only Q−Q0−1 finite zeros. This is while the FxLMS
root locus has Q separate branches in the z-plane. In this case,
the branches for excess poles approach one asymptote each.
For the example described above, the three first coefficients
of the secondary path impulse response are zero (Q0 = 3).
Consequently, H (z) have only 2 finite zeros at which two
branches of the root locus can end. These points are shown
in Figure 2 by “o”. As can be seen, B4 and B5 ends at these
points. The other 4 branches approach infinity along with 4
distinct asymptotes of the root locus.



Asymptotes: according to the root locus theory, the number
of asymptotes in a root locus is equal to the difference between
the number of poles and zeros of the open loop transfer
function H (z). Accordingly, the FxLMS root locus has Q0 +1
asymptotes. In [9], it is shown that these asymptotes originate
on the real axis at the centroid point xA, given by

xA =
1 +

(
sQ0+1

sQ0

)2
Q0 + 1

(11)

and form angles with respect to the real axis of

ϕk =
(2k + 1)

Q0 + 1
π k = 0, 1, ..., Q0 (12)

For the example described above, xA can be obtained by setting
Q0 = 3, sQ0

= s3 = 1 and sQ0+1 = s4 = 1 in Eq. (11) as
xA = 1

2 . Also, the angles of the 4 asymptotes can be obtained
by setting Q0 = 3 in Eq. (12) as ϕ1 = π

4 , ϕ2 = 3π
4 , ϕ3 =

5π
4 and ϕ4 = 7π

4 . The centroid point at xA = 1
2 and the 4

asymptotes, specified above, are shown in Figure 2. As can be
seen, B1, B2, B3 and B6 approach these asymptotes.

Departure Angles: the departure angle of the FxLMS root
locus branches from their start points are given by

θq =

{
π, q = 1
2(q−2)
Q−1 π, q = 2, 3, ..., Q

(13)

For the example, described above, departure angles can be
computed by setting Q = 6 in Eq. (13) as θ1 = π, θ2 = 0,
θ3 = 2π

5 , θ4 = 4π
5 , θ5 = 6π

5 and θ6 = 8π
5 .

Real Sections: an interval on the real axis belongs to the
FxLMS root locus if H (z) has an odd number of zeros and
poles to its right. Since all nominator coefficients of H(z) are
positive, H (z) can only have complex conjugate zeros to the
right of the imaginary axis. Besides, H (z) has a single pole
at z = 1. Therefore the only interval of the positive real axis
which belongs to the FxLMS root locus is (0, 1).

Breakaway Points: the most important breakaway point in
the FxLMS root locus locates at the real axis between (0, 1).
The location of this point is given by [10]

xB =
Deq

Deq + 1
(14)

where Deq is defined as

D =
sTΨs

‖s‖2
(15)

and

Ψ = diag (0, 1, . . . , Q− 1) (16)

For the example, described above, Deq can be computed as
Deq = 3.86. Setting this value in Eq. (14) results in xB = 0.79.
The location of this point is shown in Figure 2.

C. Typical Trajectories of FxLMS Root Locus

From the rules described above, it can be deduced that B1

always starts at z = 1 and moves towards the origin on the
real axis. This branch leaves the real axis and detours towards
the unit circle once reaching the breakaway point xB . Also,
it can be deduced that B2 starts at z = 0 and moves towards
the unit circle on the positive real axis. This branch leaves the
real axis once reaching the breakaway point xB in such a way
that points of this branch remain complex conjugates of those
of B1. Other branches (B3, B4, . . . , and BQ) always start at
z = 0 (with different departure angles) and moves towards the
unit circle in order to end at the zeros of H (z) or approach
the asymptotes.

Based on these typical trajectories in the FxLMS root locus,
it is expected that the nearest root to the unit circle locates on
B1. Therefore, this branch always contains the dominant root
of the FxLMS characteristic equation. As a conclusion, if a
mechanism can push this root towards the origin, the dynamic
of the first order moment c̄ (n) becomes faster. This is the
key idea for the development of the algorithm, proposed in the
following section.

III. FILTERED WEIGHTS FXLMS ALGORITHM

The update equation of the proposed adaptation algorithm,
called the Filtered Weights FxLMS (FwFxLMS) is given by

w (n+ 1) = wa (n) + µe (n)

Q−1∑
q=0

sqx (n− q) (17)

where wa (n), called the filtered weight vector, is obtained by
passing the weight vector w (n) through a recursive filter with
the transfer function given by

A (z) =
1− ξ

1− ξz−1
(18)

The reason behind the current form of A (z) will become
apparent, later. Obviously, internal stability of A (z) requires
−1 < ξ < 1; however, at this stage, it is assumed that ξ is
positive; therefore,

0 < ξ < 1 (19)

Assuming that a (n) is the inverse z-transform of A (z), the
filtered weight vector wA (n) can be expressed as

wa (n) , a (n) ∗w (n)

= w (n)− ξ [w (n)−wa (n− 1)] (20)

Now, it is required to express the proposed updating equation
in terms of the misalignment weight vector. For this purpose,
both sides of Eq. (17) is modified to

w (n+ 1)−wopt = wa (n)−wopt + µe (n)

Q−1∑
q=0

sqx (n− q)

(21)
Now, by defining the misalignment weight vector as

c (n) = w (n)−wopt (22)



Eq. (21) can be re-expressed as

c (n+ 1) = wa (n)−wopt + µe (n)

Q−1∑
q=0

sqx (n− q) (23)

On the other hand, it can be shown from Eq. (20) that

wa (n)−wopt = [w (n)−wopt]− ξ [w (n)−wopt

−wa (n− 1) + wopt] (24)

Now, substituting Eq. (22) into (24) results in

wa (n)−wopt = c (n)−ξ [c (n)− (wa (n− 1) + wopt)] (25)

Based to the definition given in Eq. (20), it can be shown from
Eq. (25) that

wa (n)−wopt = a (n) ∗ c (n) (26)

Finally, substituting Eq. (26) into (23) gives

c (n+ 1) = a (n) ∗ c (n) + µe (n)

Q−1∑
q=0

sqx (n− q) (27)

which gives an alternative expression for the FwFxLMS update
equation.

A. FwFxLMS Characteristic Equation

By taking the statistical expectation from both sides of Eq.
(27) and after applying the same logic used in [11] for the
derivation of Eq. (5), it can be shown that

c (n+ 1) = a(n) ∗ c (n)− µσ2
x

Q−1∑
q=0

s2qc (n− q) (28)

Now, taking the z-transform from both sides of Eq. (28), the
FwFxLMS characteristic equation is obtained as

z −A (z) + µσ2
x

Q−1∑
q=0

s2qz
−q = 0 (29)

Substituting Eq. (18) into (29) results in

z − 1

1− ξz−1
+ µσ2

x

Q−1∑
q=0

s2qz
−q = 0 (30)

which can be written in the standard form of

1 + µσ2
xH̃ (z) = 0 (31)

where

H̃ (z) =

(z − ξ)
Q−1∑
q=0

s2qz
Q−1−q

zQ+1 − zQ
(32)

As can be seen, the FwFxLMS open loop transfer function
H̃ (z) has one more zero (at z = ξ) and one more pole (at
the origin) in addition to the zeros and poles of the FxLMS
open loop transfer function H (z). This is the main reason
behind the form of A (z), given in Eq. (18). In fact, filtering

the weight vector in the FwFxLMS algorithm introduces a finite
real zero to the open loop transfer function of the characteristic
equation. The dynamic of the adaptation process, performed by
the FwFxLMS algorithm, can be thus controller by localizing
this zero. This is the main privilege of the FwFxLMS algorithm,
compared to the FxLMS algorithm.

B. FwFxLMS Root Locus

According to the similarity between the FxLMS and
FwFxLMS characteristic equations and based on the same
logic, used for the derivation of FxLMS root locus rules in
[9], the following rules governing on the FwFxLMS root locus
can be derived.

Number of Branches : Since H̃ (z) has one pole more than
H (z), FwFxLMS root locus has one branch more than the
FxLMS root locus. Accordingly, this root locus has Q + 1
branches, denoted by B̃1, B̃2, ...and B̃Q+1.

Start Points : the start point of B̃1 locates at z = 1 and
those of B̃2, B̃3, ... and B̃Q+1 locate at the z = 0, commonly.

End Points: end points of the FwFxLMS root locus locate at
the zeros of H̃ (z). Since s20, s

2
1, . . . , s

2
Q−1 are positive scalars,

the FxLMS open loop transfer function H (z) can not have
any real zero to the right side of the imaginary axis (positive
real zero). However, the FwFxLMS open loop transfer function
H̃ (z) has a real zero inside the unit circle at z = ξ (since
0 < ξ < 1). This is one of the main distinction between the
FxLMS and FwFxLMS root loci.

Asymptotes: asymptotes of the FwFxLMS root locus origi-
nate on the real axis at the centroid point x̃A, given by

x̃A = xA −
ξ

Q0 + 1
(33)

and form angles with respect to the real axis of

ϕ̃k = ϕk k = 0, 1, ..., Q0 (34)

where xA is the centroid point in the FxLMS root locus and ϕk
is the angle of the k-th asymptotes in the FxLMS root locus. For
a given secondary path, FxLMS and FwFxLMS root loci have
the same number of asymptotes. This is because this number
equals to the difference between the poles and zeros of the open
loop transfer function and for both the FxLMS and FwFxLMS
characteristic equations this number equals to Q0 + 1.

Departure Angles: the departure angle of the FwFxLMS root
locus branches from their start points are given by

θ̃q =

{
π, q = 1
2(q−1)
Q π, q = 2, 3, ..., Q+ 1

(35)

Real Sections: since 0 < ξ < 1, the real interval of (ξ, 1)
always belongs to the FwFxLMS root locus. However, the real
interval of (0, ξ) does not definitely belong to the FwFxLMS
root locus. This is while the interval of (0, 1) belongs to the
FxLMS root locus, entirely.



Breakaway Points: unlike the FxLMS root locus, the
FwFxLMS root locus does not necessarily have a breakaway
point close on its real section. More precisely, when ξ is set
properly (not very close to the origin) the root locus has no
breakaway point in the interval of (0, 1). However, when ξ is
set close to the origin the root locus may have two breakaway
point in this interval.
In the following, it is shown that if ξ holds the following
inequality, the the FwFxLMS root locus has no breakaway point
on the positive real axis.

2− xB − 2
√

1− xB < ξ < 1 (36)

Proof: Any breakaway point in the FwFxLMS root locus
should satisfy the breakaway point equation of

x̃B = arg

{
∂

∂z

1

H̃ (z)

}
= 0 (37)

On the other hand, from Eq. (32) it can be shown that

∂

∂z

1

H̃ (z)
=

zQ−1

(z − ξ)2G2 (z)
×{

[(Qz −Q+ 1) (z − ξ)− ξ (z − 1)]G (z)

−
(
z2 − z

)
(z − ξ) Ǵ (z)

}
(38)

where G (z) is defined as

G (z) =

Q−1∑
q=0

s2qz
Q−1−q (39)

Now, combining Eqs. (37) and (40) gives the following equa-
tion for the FwFxLMS root locus breakaway point.

(Qx̃B −Q+ 1) (x̃B − ξ)− ξ (x̃B − 1)

−
(
x̃2B − x̃B

)
(x̃B − ξ)

Ǵ (x̃B)

G (x̃B)
= 0 (40)

If there is a breakaway point of the FwFxLMS root locus, it
should be close to z = 1; therefor, the following assumptions
can be made (similar to those made in [9] for the FxLMS root
locus)

x̃2B − x̃B = (x̃B − 1)
2

+ x̃B − 1 ≈ x̃B − 1 (41)

and
Ǵ (x̃B)

G (x̃B)
≈
Ǵ (1)

G (1)
(42)

Using these two assumptions, Eq. (40) can be simplified to

(Qx̃B −Q+ 1) (x̃B − ξ)− ξ (x̃B − 1)

− (x̃B − 1) (x̃B − ξ)
Ǵ (1)

G (1)
= 0 (43)

In [9], it is shown that

Ǵ (1)

G (1)
= Q− 1−Deq (44)

Now, substituting Eq. (44) into (43) results in

(1 +Deq) x̃
2
B − (2ξ + ξDeq +Deq) x̃B + ξ (1 +Deq) = 0

(45)
which can be expressed as

x̃2B −
(
ξ +

Deq + ξ

1 +Deq

)
x̃B + ξ = 0 (46)

Since Deq � 1 and 0 < ξ < 1, this equation can be
approximated by

x̃2B −
(
ξ +

Deq

1 +Deq

)
x̃B + ξ = 0 (47)

As can be seen, the FxLMS breakaway point xB , as given
in Eq. (14), appears in the breakaway point equation of the
FwFxLMS root locus. Thus,

x̃2B − (ξ + xB) x̃B + ξ = 0 (48)

Note that in the above breakaway point equation, x̃B is the
unknown variable and xB is a known parameter. This quadratic
equation has no real answer if its discriminant is negative. Thus,
any value of ξ, for which there is no breakaway point on (ξ, 1)
in the FwFxLMS root locus, holds

(ξ + xB)
2 − 4ξ < 0 (49)

This inequality can be expanded as follows.

2− xB − 2
√

1− xB < ξ < 2− xB + 2
√

1− xB (50)

It can be shown that for xB > 0,

2− xB + 2
√

1− xB > 1 (51)

Therefore, considering that 0 < ξ < 1, the inequality given in
Eq. (50) is simplified to the one given in Eq. (36).

C. Typical Trajectories of FwFxLMS Root Locus

From the rules described above, it can be deduced that, B̃1

always starts at z = 1 and moves towards the origin on the
real axis, similar to the FxLMS root locus. However, in the
FwFxLMS root locus, this branch may end at z = ξ on the
real axis without reaching a breakaway point.

Also, it can be deduced that B̃2 starts at z = 0 and moves
towards the unit circle with a non-zero departure angle. This
is while the departure angle of this branch in the FxLMS root
locus is always zero. Other branches (B̃3, B̃4, . . . , and B̃Q+1)
always start at z = 0 (with different departure angles) and
moves towards the unit circle in order to end at the zeros of
H̃ (z) or approach the asymptotes.

Based on the typical trajectories in the FwFxLMS root
locus, described above, it is expected that the nearest root to
the unit circle locates on B̃1. Therefore, this branch contains
the dominant root of the FwFxLMS characteristic equation,
similar B1 to the FxLMS characteristic equation. In the FxLMS
root locus B1 detours towards the unit circle after reaching
the breakaway point; therefore, the maximum distance of the
dominant root from the unit circle corresponds to the case
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Figure 3. FwFxLMS root locus when s0 = s1 = s2 = 0, s3 = s4 = 1 and
s5 = 0.8 and ξ = 0.7

that the root locates on the breakaway point. However, in
the FwFxLMS root locus there is no breakaway point and,
therefore, the root moving on B̃1 can getting closer to the
origin (until it reaches the branch end point at z = ξ). As a
result, the dominant root of the characteristic equation (which
id the dominant pool of the process) can be pushed towards the
origin so that the dynamic of the FwFxLMS adaptation process
becomes faster than that of the FxLMS.

D. Examples

Figure 3 shows the FwFxLMS root locus for the system
described in Section 2 when ξ is set to 0.7. As can be seen,
there is no breakaway point on the trajectory of the dominant
root (branch B1) and, therefore, this root can becomes closer to
the origin (compared to the FxLMS root locus shown in Figure
2).

Figure 4 shows another example of the FwFxLMS root locus
when ξ is set to 0.2. This is while the minimum level for ξ can
be obtained from Eq. (36) as 0.25. In this case, since the open
loop zero locating at ξ is too close the origin, it attracts two of
branches departing from the origin. In this case, the existence
of two breakaway points on the real interval between ξ and 1 is
essential. Consequently, the general shape of the root locus is
more similar to that of the FxLMS. As a conclusion, setting ξ
to a number smaller than 1 causes the dominant root to become
closer to the origin (leading to faster dynamics), compared to
the FxLMS root locus; however, this parameter should not be
set smaller that the proposed minimum level because it causes
a breakaway point close to z = 1 on the root locus.

IV. COMPUTER SIMULATION

In order to verify the performance of the FwFxLMS algo-
rithm in ANC systems, several simulation experiments have
been conducted in MATLAB® environment. In all of these ex-
periments, environmental noise is a computer-generated white
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Figure 4. FwFxLMS root locus when s0 = s1 = s2 = 0, s3 = s4 = 1 and
s5 = 0.8 and ξ = 0.2

noise with a variance of σ2
x = 1. The secondary path, used

in the computer simulation, is similar to the one introduced in
the example of Sections 2 and 3. A low-pass filter of length
18 is used as the primary path; and the ANC controller is
implemented using a transversal filter of length L = 15. The
results are obtained by averaging over 100 different simulation
runs with independent sequences of noise.

Figure ?? shows the mean square of the error signal e (n)
(referred to as the MSE), obtained by averaging over all
simulation runs results. As can be seen in this figure, the
MSE function obtained by FxLMS algorithm has the slowest
convergence, compared to those obtained by the FwFxLMS
algorithm. According to this figure, When ξ is set to 0.7, then
the convergence speed of the MSE significantly becomes faster.
In this case, the dynamic of the adaptation process corresponds
to the root locus plot shown in Figure 3. When ξ is set to
still smaller number, then the convergence speed of the MSE
function becomes even faster. For example, the MSE function
obtained by settoing ξ = 0.6, shown in Figure 3. However, it
is expected from Eq. (36) that setting ξ bellow 0.25 causes the
MSE function becomes slower. For example, the MSE function
obtained by setting ξ = 0.2 is shown in Figure ??. As can be
seen, the convergence speed is still faster than the FxLMS;
however, the improvment, caused by reducing ξ, cannot be
seen any more. In this case, the dynamic of the adaptation
process corresponds to the root locus plot shown in Figure 4.
This behaviour is in an excellent agreement with the theoretical
results obtained in Section 3.2.

V. CONCLUSION

The root locus analysis of the adaptation process, performed
by the FxLMS algorithm in ANC systems, leads to obtain
interesting ideas for the dynamic control of this process. The
FxLMS algorithm has no control mechanism over the locations
of its poles. However, the proposed FwFxLMS algorithm
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Figure 5. Variatins of MSE function obtained by using FxLMS and FwFxLMS algorithms

provide with a parameter which enable us to localize the
dominant pole of the adaptation process. The results shows that
if this parameter adjusts properly, then the dominant root of the
adaptation process can get closer to the origin and, thereby, the
MSE function can converges to its steady-state level faster.
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