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 The natural phenomena simulation in 
computer graphics is commonly achieved by the procedural 
methods or the physics model. However, these approaches are 
hard to directly approach the visual experience. On the other 
hand, the image reconstruction works can provide the 
outcome based on the real images but lack of interactivity and 
efficiency by using the image resource. In this paper we 
propose a novel method that enhances the fire simulation 
effect using the visual learning of image features and generates 
continuous animations by integrating with procedural 
methods. We first obtain the dynamics of fire contour by 
binarization and edge detection. The information extracted 
from images is gathered into a set of feature data called fire 
profile. To generate a long sequence of fire animation from a 
short clip of fire video, we propose two approaches of visual 
learning to utilize fire profile to produce continuous animation. 
One is to use the fire image to setup a color value lookup table 
which contains the average color value of the fire spatial 
divisions; the other is to design a state machine for describing 
fire wiggling movement that can generate effects based on 
user’s input. The proposed method can raise not only the 
visual reality but also the interactive ability compared with the 
existing work. 

 

  In the past few decades, developing a visually convincing 
model of fire, smoke, and other gaseous phenomena is 
always a challenging issue in computer graphics. Especially 
people have developed a variety of simulations to model 
fire. However, some of them have heuristic characteristics 
due to the parameters that are calculated and manipulated 
through some human defined procedural methods. For this 
reason, we believe that the contents of the video which 
contains the fire image can enhance the visual feelings of 
simulation. Meanwhile, some works [1][2] to reconstruct 
fire from image are only focus on recovering the 
appearance of fire by the governed images and impossible 
to use the production in some applications that need the 
demand of interactivity. 
  Therefore, we proposed a novel method that has two 
properties: One is to utilize visual information from video 
clips to generate fire animation, and the other is to combine 
visual effect with a particle system to continually generate 

fire simulation to overcome the short clip of video 
sequence. 
  In the paper, the proposed method including image 
processing is to extract major features from images and 
reconstruct a three dimensional effect based on the 
extracted features. Hence, users may get the effect without 
taking a complicated mathematical model or additional 
modeling method. The proposed method is implemented 
into a semi-automatic animation program. The system 
scenario is depicted in Fig. 1. The video can be transformed 
into image sequence files in advance, and stored into the 
system for preprocessing. The intermediate file of the 
system contains the feature data that are collected from the 
processing of the image sequence and further sent to the 3D 
rendering stage for visualization. 
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  While modeling fire phenomena in computer graphics, 
currently there is no overwhelming method among the 
existing approaches. Animators can choose the model 
according to their objective, such as accuracy or efficiency. 
For the online application, the procedural methods are 
commonly used in industry. Yet it is regularly called in 
question about the heuristic property, which means the 
procedural method is developed without the explicit visual 
definition. On the other hand, the fluid mechanics methods 
are precise in the numerical computation and good at 
presenting fine effect. However it is not suitable for 
real-time application due to its huge computing load. And 
these two types of simulations are totally relied on the 
simulating model so that ensuring the final production 
realistic is impossible. 
  In the proposed method, it first gathers necessary 
information from image processing techniques. Then the 
information will be collected into a set of data about the 
features of fire. For using limited images effectively, we 
developed a learning mechanism to make the short-time 
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image sequences to be used in long-time. The result 
generated by the learning mechanism is combined with 
procedural methods to render the fire animation. Then the 
production come out through the feature statistic learning 
module and the modified particle system is more realistic 
than the traditional fire simulation methods and have the 
ability of interaction relative to the reconstruction-style 
methods. 
  The rest of this paper is organized as follows. In Section 
II, we briefly describe the background materials and related 
work. Section III describes the proposed method for the fire 
scene simulation. Implementation and rendering results are 
given in Section IV. Finally, conclusion is given in Section 
V. 

II. R

  This section reviews certain modeling and rendering 
methods for simulating fire phenomena in computer 
graphics. The key impact on simulation result is the 
accuracy of modeling and resolution of whole portrait. 
Before starting to investigate the related work, one needs to 
understand that the work for fire phenomena can be 
categorized into modeling and rendering that have different 
ideas in improvement and development of algorithms. 

A.  Modeling Methods 
  Modeling realistic fire animation needs to define the 
motion of flame adequately. In previous approaches, the 
modeling methods for describing chaotic movement of 
flame are to combine the procedural components, solve 
fluid mechanics equations, and represent the integral 
statistics. However, those works are for modeling other 
natural phenomena, such as fog, smoke, and fluid will not 
be discussed here. This section mainly reviews the 
fire-related simulation approaches. 
  Procedural models for the simulation of fire are based on 
heuristics rules that govern the dynamics of simple 
primitives. These methods in [3][4][5] are not strictly based 
on physical principles, though tuned appropriately they can 
nonetheless generate interesting visual effects. Furthermore, 
procedural models often have the advantage of being 
computationally efficient. 
  The main drawback of these methods is that controlling 
the phenomena can be difficult, with many brittle 
parameters to tweak in order to achieve reasonable results. 
Moreover, extending the models to obtain new effects or to 
interact with other elements in the scene is often 
impossible. 
  The earliest computer graphics fire model was presented 
by Reeves [4]. The model uses a large number of particles 
to animate a fire engulfing a planet. Particles can easily 
represent fuzzy objects and the adjustment to attributes of 
particles can receive varieties of outcome. Chiba et al. 
developed a 2D model of fire based on a procedurally 
defined turbulence field [3]. 

  Takai et al. proposed another method for fire simulation 
by cellular automata [6], which is occupied by one fire 
particle and labeled with mass velocity and discrete velocity. 
The cellular automata can produce extremely complex 
structures from the evolution of rather simple local rules. 
Dobashi et al. [7] used a special cellular automata model to 
implement a realistic animation of clouds. For each particle, 
the movement is controlled by randomized transition rule. 
Wei et al. [8] adopted LBM (Lattice Boltzmann Model) to 
substitute cellular automata as the fire dynamic model. 
LBM was proposed by John Von Neumann as formal 
models of self-reproducing organisms. Several variables are 
defined at each cell to indicate whether there are 
microscopic packets moving in a certain direction. Balci et 
al. [9] modeled the kinematics of these phenomena by a 
mass-spring system, and used texture sequencing with 
variable speeds and transparencies that depend on the speed 
of the vaporized fuel to present turbulant visual dynamics. 
  For generating realistically visual effect of fire, the 
models adopted by most animators are based fluid 
mechanics rules. The developers can create visually 
plausible result without considering the implementing 
details. However, this method has some constraints on 
setting boundary conditions and keeping system stable. 
Furthermore, physics based model is also hard to achieve 
direct control for multiple purposes. 
  In particular, this method requires huge computation that 
is at least O(n3) with the resolution of the simulation. So far 
this innate problem only can be solved by hardware 
acceleration. In addition, the solver must take care of 
instability in a relatively sophisticated manner. To execute 
in real-time, models of fire typically retain the 
incompressibility assumption but account for the expansion 
of hot gases as the result of external forces [10]. Hong et al. 
[11] modeled fire by combining the Navier-Stokes 
equations with the level set method and jump conditions for 
simulating the reaction front. Asymptotic theory shows that 
one can obtain more entertaining vibration and fully 
hyperbolic equations for the evolvement of level set. 
Nevertheless, they also showed how to utilize the DSD 
(detonation shock dynamics) framework in the simulations 
of flames and fire to receive interesting visual experience 
such as wrinkles and cellular patterns. 

B.  Rendering Methods 
  Rendering fire demands some kind of volume rendering 
because of its visual characteristics such as opacity and 
transparency. However, we examine general volume 
rendering techniques via graphics hardware for rendering 
fire, and more complicated models that treat the fire as a 
source of illumination and capture mirage-like refraction 
effects. These rendering techniques [7][12] are described in 
the context of more general techniques for rendering smoke 
and other gases, even though certain effects like scattering 
are ignored by nearly all image formation models of fire. 
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  Scientific visualization methods [13][14] are mainly used 
to deliver information effectively, rather than to describe 
the phenomena that statistic in a rational way. The most 
important conditions for rendering fire by scientific 
visualization are to keep essential information for the 
domain, extract the information, and utilize acceptable 
rendering skills. 
  Direct volume rendering is frequently adopted as the 
approach for rendering fire. In some particularly cases that 
the volume of fire is represented as cylindrical rings [15] 
the integration along streams of light can be accelerated. If 
the primitives of density field are defined by some type of 
implicit expression such as Gaussian blobs, constructing 
lookup tables can help deliver additional speed [12]. 
  There are many sophisticated and quicker volume 
rendering methods have been developed in earlier works. 
One is to speed up ray tracing, the simple way is to end up 
before it decreases gradually to zero. Another is splatting 
[16], that prevents costly expense on 3D interpolation for 
volume rendering. Stam suggested another interesting 
approach to render turbulent volume fields [17]. Under his 
stochastic rendering framework, the scene to be rendered is 
represented as a random field with known statistics. These 
statistics are then shifted in a systematic fashion from the 
modeling phase to the rendering phase. This allows 
relatively simple primitives to be used in modeling, but 
more complex images to be obtained from the rendering. 
  Certain techniques that exploit fast graphics hardware 
enable the rendering of fire at interactive rates. Perhaps the 
simplest technique for rendering fire quickly involves 
applying movie loops as textures to billboards [18]. The set 
of textures can be generated using spectral turbulence 
methods, or by extracting pieces from real images of fire. 
King et al. combined this texture-based approach with 
traditional volume rendering using splatting [19]. They used 
a coarse voxel grid, where each voxel was assigned an 
index into the set of textures. By manipulating the texture 
indices as if they were particles, they gave the impression of 
smooth motion. When performing splatting, the kernels 
were modulated with the appropriate texture corresponding 
to that voxel. In contrast to the billboard method, their 
method is effective even when the viewpoint is inside or 
very close to the fire. For added realism, one would like the 
fires we are modelling to act as light sources and cast 
illumination into the scene. Takahashi et al. proposed 
splatting method that uses similar idea to modify volume 
rendering [20]. 

C.  Motivation 
  Based on the observation of the existing related work, we 
propose a method to overcome some shortcomings listed as 
follows: 

 Visual reality of fire simulation: Lacking of visual 
reference for convincing the viewers and cannot expect 
the correctness of result before the development. 

 Usage of fire simulation: Commonly concentrate on 
creating an accurate model or representation, and it is 
neglected to provide interactivity between users and the 
virtual environment. 

  Therefore, this paper utilizes the content of real world 
images and makes use of their features to enhance the 
reality of rendering. The major contributions of the 
proposed method are as follows: 

 To extract fire features from a real world video for 
enhancing reality of fire simulation. 
 To produce continuous result without a great deal of 
resources but also can be applied to real-time 
application easily. 
 To generate fire effect based on images instead of only 
adjusting the parameters of a particle system by artists, 
it can reduce the time on trial and error to speed up the 
fire simulation. 

III. P

  In this section, we propose a method that first extracts the 
image features using the image processing techniques from 
the real world image instead of computing from physics 
equations or mathematical models. Then we design a 
statistical learner to fully utilize the flame features in 
rendering efficiently. The learner governs the life of 
particles that is generated from a particle system. The 
system overview is illustrated in Fig. 2. It can be divided 
into two main stages. The first stage is preprocessing that 
focuses on acquiring the properties (such as shape and color) 
and gathering them into a fire profile. Because the 
processing time is too long for computing in real time, the 
preprocessing stage will be executed in offline. Once the 
fire profile is obtained, one can render animation online. 
During the execution of rendering stage, the feature 
statistics learner inside the rendering system governs how 
the particle system to use fire profile. The feature statistics 
learner will exploit the fire profile to build up a color 
lookup table and provide a state machine for changing the 
leaning state of fire. Then a user can input the external force 
to change the effect of wiggling movement. 
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A.  Preprocessing Stage 
  The flow diagram of preprocessing is given in Fig. 3. In 
this stage, the features including the burning fountainhead, 
color, and boundary are extracted. Then these features are 
gathered into a fire profile for the upcoming rendering step. 
The advantages of this approach not only can find 
promising fire trends for designers, but also can turn natural 
simulation into a new type rendering technique. The initial 
process of this stage applies a thresholding and Sobel edge 
detection. After the processing steps, the image will be 
transformed into a contour image of fire. Features and 
motions are further extracted for fetching the fire 
information in the image. All the steps mentioned above are 
the essential for acquiring the fire profile features. The fire 
profile is used in the rendering stage as the government of 
modeling the shape and luminance of flame. 
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Fig. 3 Processing flow of preprocessing stage 

 
  The bilevel thresholding is used to segment fire region 
from images. Fig. 4(a) is the color image which captured 
from general digital camera, and the corresponding 
outcome of binarization process is shown in Fig. 4(b). After 
thresholding, the Sobel edge detection is used to calculate 
the gradient of the intensity of every texel in an image. Fig. 
4(c) is the result after the Sobel operation. 
 

  
(a) (b) (c) 

Fig. 4 (a) A color picture of candle light, (b) The binarized image of source 
image, and (c) The image that applied the Sobel operation to Fig. 4(b) 

 
  Several researchers have studied this issue based on 
porous bed gas burners [21][22]. McCaffrey showed that 
the ”fire plume” above a 30 cm square burner consisted of 

three distinct regimes [22], precisely: (1)The near field, 
above the burner surface, where there is persistent flame 
and an accelerating flow of burning gases (the flame zone); 
(2)The intermittent zone, a region in which there is 
intermittent flaming and a near-constant flow velocity; 
(3)The buoyant plume is characterized by decreasing 
velocity and temperature with height.  
  The proposed algorithm uses these three regimes 
principle as in [22]. When the combustion reaction proceeds 
without involving any other factor, the movement of flame 
is upward direction that is created by the buoyant force. 
Even if there are some external forces existed in this 
burning system, the persistent flame regime will remain 
stable. In the feature point extraction, one needs to find six 
extreme points of fire in the current frame. Among these six 
points, five points are used for building up a curve-like 
emitting region, and the rest one is used for subscribing the 
fire peak point. Let I(x,y) represent a pixel at spatial 
location(x,y) on I, where I is the pixel set of fire contour 
which is formed by the processing steps in previous 
subsection. Left(I) and Right(I) as shown in Fig. 5 are found 
at the contour which is under the threshold of persistent 
regime, here we set it as one fifth of the flame height. The 
proposed method is to seek the maximum width of fire in 
the persistent regime, and take the two ending points of the 
maximum width as Left(I) and Right(I). To find Top(I) and 
Bottom(I) one can assign the highest point of flame to the 
extremely top point, and the lowest point to the extremely 
bottom point. Top(I) is used for assigning the fire peak 
point that it is the ending point of curving path of particles. 
However, the bottom area of flame may be formed with 
multiple inflection point. Then one can add two middle 
points MidLB(I) and MidRB(I) between Bottom(I) with 
Left(I)/ Right(I) in order to fit any possible shape. 
Depending on these six points one can formulate the fire 
shape and the dynamic path of all particles. 
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Fig. 5 Six extreme points of fire per frame 

 

B.  Feature Statistics Learner 
  If one wants to generate animation continually, this 
property may be an obstacle because of the limited time of 



  

source image. Therefore, to generate a sequence of fire 
animation based on fire profile and a particle system (a 
procedural process) can eliminate this drawback. 
  Generally speaking, the most two important factors about 
influencing the human visual experience is the color and the 
dynamics of an object, we will handle the two issues 
independently in our implementation. However, only the 
features come from images are available, it is essential to 
learn from the fire profile for simulating fire. We develop a 
learning mechanism consisting of a fire status state machine 
and a color lookup table based on the fire profile to 
approach the visual experience of fire as shown in Fig. 6. 
During of rendering stage, the feature statistics learner will 
be executed before go into the particle system. In the 
following subsection we will discuss how the learner works 
and what the outcome is generated. 
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Fig. 6 Mechanism of feature statistic learner. 

 
  A number of feature point data collecting from the fire 
image are gathered into the fire profile. Depending on the 
observation of the fire dynamics, the coordinate 
displacement of each feature point is found slightly and 
closely to neighboring timing interval. Therefore, we cut off 
a section of feature points in a fire profile by its leaning 
angle which is determined through the slope of the fire peak 
and the bottom point and stored it to another file called 
leaning state data. Then a state machine used for describing 
the fire transition state can receive the external force which 
is inputted by a user and is transformed to leaning degree of 
fire. The leaning angle is used to select the corresponding 
feature data set in the leaning state data. The advantage of 
this process not only can use resource efficiently but also 
change the fire status clearly. The relationship between 
input wind force and the leaning angle of fire can be found 
in [23]. 
  We roughly divide the leaning degree of fire into six sets 
from -30 to 30 angles with 10 as interval, otherwise 
manually extract and classify the data in fire profile by 
leaning degree and storing to the leaning state data. The 
leaning state data consist of 12 sets of feature points that 
each set is captured in one period of time and it needs to be 
prepared before the external force entered. Due to the 
locality of feature points, we could approximately generate 
new ones of the next frame by fetching the data from 

relating leaning state back and forth. That means if the input 
force transforms into -20 degree, the state machine will 
jump to the leaning state which contains the fire feature 
points extracted at the leaning angle is between -20 and -30. 
  Fig. 7(a) illustrates the processing steps from creating 
external force to produce the corresponding leaning state 
for rendering. The external force entered by a user will be 
converted into the leaning angle of fire and triggered off the 
state transition in fire status state machine. The input of 
wind speed is equally separated into six levels from zero to 
five, the speed is increased or decrease by adding the 
current input. Fig. 7(b) shows the state machine for 
controlling the fire status by input force. The fire status 
state machine is designed for describing the leaning state of 
fire: The larger force, the larger leaning angle. But if the 
force sustains in a consistent input amount, the fire will stay 
in a flickering situation until the input changes. 
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(b) The fire status state machine 

 As mentioned in [24], fire has unique visual signatures. 
Color, geometry, and motion of fire region are all essential 
information for fire recognition. A region of fire can be 
defined in terms of (1) spectral characteristics, and (2) the 
spatial structure defined by their spectral variation. 
  The pixels in a fire region have different color spectra 
depending on its spatial locations. For color image, we 
might see the bright white color in the core, and yellow, 
orange and red away from the core to outer region. For 
grayscale images, we notice that the brightness is gradually 
decreasing from core to the periphery. 
  Here we simply divide the fire height and width into five 
by five grids and record the color value in each grid into 
spatial fire color correlation table (SFCCT). After 
processing the image samples, the SFCCT that consists of 
statistic information of every length and width section of 
flame, is also ready. Then it can be used as a lookup table 
for the rendering stage. 

C.  Rendering with a Particle System 
  The objective of this phase is to continually produce an 
acceptable and plausible visual effect. Here we use the 



  

feature data and SFCCT that are created by interacting the 
fire status state machine with the external force and  
collocated with the particle system to generate fire 
simulation. This subsection focuses on describing how the 
particles vary from frame to frame. For describing fire 
effect by the particle system appropriately, appearance, 
color, shape, and behavior of diffusion are essential factors 
for rendering flame. These factors can be fulfilled well 
through the following two modules: region detector and 
path builder. 
  The processing flow of the rendering stage is shown in 
Fig. 8. First the external force is sent into the feature 
statistic learner, and the learner will select corresponding 
feature points from the leaning state data. And the particle 
system will calculate the position of each particle by path 
builder with the feature point set decided by fire status state 
machine and the dynamics the color of particles by region 
detector with SFCCT. 
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Fig. 8 The processing flow of the rendering stage 

 
  The objective of path builder is to arrange the path of 
particles inside the contour of fire. In the proposed method, 
we divide this work into two phases: The first phase is how 
the emitting area to be arranged; the second phase are how 
these particles to be shifted. On the other hand, the core 
idea of region detector is to change the color of particle 
depending on what grid of SFCCT it belongs. After 
generating results from two cross-section views 
independently, next step is to expand these isolated ones 
into a complete fire effect. 
  When implementing the particle system, all of the 
particles are supposed to be moved in one direction (e.g. 
upward). As illustrated in Fig. 9, all the newly born 
particles have assigned the lifespan parameter and the life 
will decrease gradually until back to zero. 
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Fig. 9 The dynamic mechanism of a typical particle system. 

 
  However, the actual flame has its own color with light 
and shade. In order to represent the phenomena, all the 
particles have to change its color according to the spatial 
relationship of the current image. As illustrated in Fig. 10, 
the coordinates of particles must be traced to see if it moves 
from one color section to another in each frame. As a result, 
the transition of particles smoothly grows not only the 
position but also the hue of flame, based on the actual 
flame. 
 

 
Fig. 10 Color of particles dynamic according to its region 

 
  The locus of particle is commonly shifted in a 
straight-line fashion. However, for the most part of fire 
generally corresponds with the crooked shape. Based on 
this feature, modeling the movement of a particle should be 
considered carefully. In the proposed method, the bottom 
area and the moving trace of particles are totally formed by 
the cubic spline to fit with the original image contour. The 
emitting position indicates the bottom boundary of fire 
which will be mapped out by the cubic curve form. Using 
the extremely points in previous processing step, one can 
formulate the bottom shape for particles to start off. 
  Since the emitting position is ready for the particle 
system, how these particles are shifted in the progression of 
fire simulation. It needs to provide the physical property for 
describing or controlling the velocity over time of an object 
moving from A to B. For example, an icon might follow a 



  

parabolic curve in moving from A to B, rather than simply 
moving in a straight line fashion. From this perspective, 
there are huge advantages to use parametric cubic curves 
because the required data are points that can be obtained 
and manipulated despite lacking of other information like 
derivations and outer control points [25]. Now particles can 
move along the curve from the bottom point to the top point 
as shown in Fig. 11. 
 

Top(I)

Left(I)

Right(I)

Bottom(I)  
Fig. 11 Schematic diagram of particles’ movement 

  So far we introduce the methods for extracting features 
from image and rendering 2D fire animation. For most 
applications, it is necessary to form a 3D fire animation. If 
two perpendicular views can be captured by two cameras 
that are perpendicular to each other, we can reconstruct 2D 
peripheral curve by connecting the feature points of these 
two planes by the cubic spline. Let the bottom point of 
these two planes be mapped onto the same world coordinate 
position. Therefore, when we look down the fire source, the 
peripheral curve will intersect the bottom point in a vertical 
fashion as shown in Fig. 12. F1 and F2 are used to denote 
the two sets of contour points in x-y plane and y-z plane 
respectively, and then Left(F1), Right(F1), and Bottom(F1) 
denote the extremely left, right, and bottom points in the 
image captured from x-y plane , respectively. In the 
proposed method, we don’t force to model the outer 
appearance but intersect several supplementing slices 
between two orthographical images. 
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Fig. 12 Using feature points to form a circular region by cubic-spline 

IV. I

  In this section, implementation of fire simulation and the 
rendering result are discussed. The experiments were run in 
the PC environment, PC with an AMD Phenom FX-5000 
and 4 Gigabytes main memory. The implementation is 
divided into two parts based on two main stages in the 
flowchart. The preprocessing stage is mainly to process the 
image data in offline. After preprocessing, one can obtain 
features from images and collect them into a fire profile. 
Based on the fire profile, one may generate realistic fire 
image. To use resource more efficient, the feature statistics 
learner is used to collect fire dynamics information through 
the fire profile. The procedures of the whole system are 
given as follows: 

 Using video editing tool to separate a video into image 
sequences.  
 Using thresholding and the Sobel detector to generate 

contour map.  
 Extracting and gathering image features into a fire 

profile for rendering.  
 Analyzing fire profile to build up the framework of fire 

dynamics.  
 Generating fire simulation. 

 
  We use Microsoft Visual Studio C# 2005 as the 
development tool and the JSEG method [18] to develop an 
image processing tool for users to easily accomplish the 
image processing work. Several image processing skills are 
integrated to the program that can be used by one-click 
interface as shown in Fig. 13. Image functions include 
“ColorInvert”, “Edge Detection”, and “Segmentation.” 
Users can press the option “MenuOn” of “JSEG” to open 
parameter panel “JSEGform.” “JSEGform” provides some 
control options, such as the threshold for quantization, 
display, and merge. 
 

 
Fig. 13 Screenshot of program interface 

   
  The 3D simulation result is through combining with the 
different 2D results of the proposed algorithm. Fig. 14 
shows the three dimensional distributions of particles. As 
the particles are independent objects, one can receive the 
outcome that can be calculated with virtual environment 
about the collision or the confliction. These particles are 
attached with a texture to formulate like a cluster of 
particles in the final representation.  

MPLEMENTATION 



  

Fig. 15 illustrates an example for showing how the particles 
to be rendered. A particle can be expanded into a 
quadrangle and regarded as a display primitive. Finally the 
display primitives seems like a spreading fire effect by 
attaching a texture on each of it and the blending effect can 
smooth the edge of these overlapping polygons. Fig. 16 
shows the FPS measurements for the different slice counts. 
These slices would be circularly placed inside the fire 
volume and the particle number is 100 in each slice. 
 

 
Fig. 14 Three dimensional distributions of particles 

Te xtu re  m a p p in g O u tco m e

 
Fig. 15 Example of billboarding 

 

 
Fig. 16 FPS measurements for the different slice counts 

  Fig. 17 is comparisons of real candle light video with the 
rendering result created by the proposed method and the 
one in [26]. In contrast to Fig. 17(a), the image result of our 
implementation Fig. 17(c) is more realistic than that of Fig. 
17(b). 
 
 

  
(a) (b) (c) 

Fig. 17 Comparisons of the simulation results : (a) real image (b) 
implemented by Bridault-Louchez et al. [26], and (c) the proposed method 

V. C

  In this paper, we have presented a visual learning method 
for simulating fire phenomenon through fire video. The 
proposed method provides visual reference for the 
expecting ability of simulating result and enhances the 
reality of rendering effect indeed. Nevertheless, the 
proposed method has the learning mechanism which can 
generate continuous animation without the restriction of a 
short clip of film and allow to receive input as external 
force to change the leaning status of fire.  
  Therefore, the proposed algorithm can not only eliminate 
the heuristic property of the procedural method but also 
provide a more flexible method than other reconstructing 
work. And the generated fire animation is not only realistic 
but also convenient for embedding to various existing 
virtual scenes. 
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