

Three Dimensional Fire Simulation Based on Visual
Learning of Image Features

 Department of Computer Science and Engineering, National Sun Yat-Sen University

E-mail:cnlee@mail.nsysu.edu.tw, weilun424@gmail.com, salmoner.tw@yahoo.com.tw, and t49102@gmail.com

 The natural phenomena simulation in
computer graphics is commonly achieved by the procedural
methods or the physics model. However, these approaches are
hard to directly approach the visual experience. On the other
hand, the image reconstruction works can provide the
outcome based on the real images but lack of interactivity and
efficiency by using the image resource. In this paper we
propose a novel method that enhances the fire simulation
effect using the visual learning of image features and generates
continuous animations by integrating with procedural
methods. We first obtain the dynamics of fire contour by
binarization and edge detection. The information extracted
from images is gathered into a set of feature data called fire
profile. To generate a long sequence of fire animation from a
short clip of fire video, we propose two approaches of visual
learning to utilize fire profile to produce continuous animation.
One is to use the fire image to setup a color value lookup table
which contains the average color value of the fire spatial
divisions; the other is to design a state machine for describing
fire wiggling movement that can generate effects based on
user’s input. The proposed method can raise not only the
visual reality but also the interactive ability compared with the
existing work.

 In the past few decades, developing a visually convincing
model of fire, smoke, and other gaseous phenomena is
always a challenging issue in computer graphics. Especially
people have developed a variety of simulations to model
fire. However, some of them have heuristic characteristics
due to the parameters that are calculated and manipulated
through some human defined procedural methods. For this
reason, we believe that the contents of the video which
contains the fire image can enhance the visual feelings of
simulation. Meanwhile, some works [1][2] to reconstruct
fire from image are only focus on recovering the
appearance of fire by the governed images and impossible
to use the production in some applications that need the
demand of interactivity.
 Therefore, we proposed a novel method that has two
properties: One is to utilize visual information from video
clips to generate fire animation, and the other is to combine
visual effect with a particle system to continually generate

fire simulation to overcome the short clip of video
sequence.
 In the paper, the proposed method including image
processing is to extract major features from images and
reconstruct a three dimensional effect based on the
extracted features. Hence, users may get the effect without
taking a complicated mathematical model or additional
modeling method. The proposed method is implemented
into a semi-automatic animation program. The system
scenario is depicted in Fig. 1. The video can be transformed
into image sequence files in advance, and stored into the
system for preprocessing. The intermediate file of the
system contains the feature data that are collected from the
processing of the image sequence and further sent to the 3D
rendering stage for visualization.

Video Pre-
processing

3D
Rendering Display

…
Intermediate

File
Image

Sequence
Fig. 1 System scenario

 While modeling fire phenomena in computer graphics,
currently there is no overwhelming method among the
existing approaches. Animators can choose the model
according to their objective, such as accuracy or efficiency.
For the online application, the procedural methods are
commonly used in industry. Yet it is regularly called in
question about the heuristic property, which means the
procedural method is developed without the explicit visual
definition. On the other hand, the fluid mechanics methods
are precise in the numerical computation and good at
presenting fine effect. However it is not suitable for
real-time application due to its huge computing load. And
these two types of simulations are totally relied on the
simulating model so that ensuring the final production
realistic is impossible.
 In the proposed method, it first gathers necessary
information from image processing techniques. Then the
information will be collected into a set of data about the
features of fire. For using limited images effectively, we
developed a learning mechanism to make the short-time

Chungnan Lee, Weilun Tai, Dajing Zhang-Jian, and Wenchieh Hsieh

Abstract — —

I. INTRODUCTION

APSIPA ASC 2011 Xi’an

image sequences to be used in long-time. The result
generated by the learning mechanism is combined with
procedural methods to render the fire animation. Then the
production come out through the feature statistic learning
module and the modified particle system is more realistic
than the traditional fire simulation methods and have the
ability of interaction relative to the reconstruction-style
methods.
 The rest of this paper is organized as follows. In Section
II, we briefly describe the background materials and related
work. Section III describes the proposed method for the fire
scene simulation. Implementation and rendering results are
given in Section IV. Finally, conclusion is given in Section
V.

II. R

 This section reviews certain modeling and rendering
methods for simulating fire phenomena in computer
graphics. The key impact on simulation result is the
accuracy of modeling and resolution of whole portrait.
Before starting to investigate the related work, one needs to
understand that the work for fire phenomena can be
categorized into modeling and rendering that have different
ideas in improvement and development of algorithms.

A. Modeling Methods
 Modeling realistic fire animation needs to define the
motion of flame adequately. In previous approaches, the
modeling methods for describing chaotic movement of
flame are to combine the procedural components, solve
fluid mechanics equations, and represent the integral
statistics. However, those works are for modeling other
natural phenomena, such as fog, smoke, and fluid will not
be discussed here. This section mainly reviews the
fire-related simulation approaches.
 Procedural models for the simulation of fire are based on
heuristics rules that govern the dynamics of simple
primitives. These methods in [3][4][5] are not strictly based
on physical principles, though tuned appropriately they can
nonetheless generate interesting visual effects. Furthermore,
procedural models often have the advantage of being
computationally efficient.
 The main drawback of these methods is that controlling
the phenomena can be difficult, with many brittle
parameters to tweak in order to achieve reasonable results.
Moreover, extending the models to obtain new effects or to
interact with other elements in the scene is often
impossible.
 The earliest computer graphics fire model was presented
by Reeves [4]. The model uses a large number of particles
to animate a fire engulfing a planet. Particles can easily
represent fuzzy objects and the adjustment to attributes of
particles can receive varieties of outcome. Chiba et al.
developed a 2D model of fire based on a procedurally
defined turbulence field [3].

 Takai et al. proposed another method for fire simulation
by cellular automata [6], which is occupied by one fire
particle and labeled with mass velocity and discrete velocity.
The cellular automata can produce extremely complex
structures from the evolution of rather simple local rules.
Dobashi et al. [7] used a special cellular automata model to
implement a realistic animation of clouds. For each particle,
the movement is controlled by randomized transition rule.
Wei et al. [8] adopted LBM (Lattice Boltzmann Model) to
substitute cellular automata as the fire dynamic model.
LBM was proposed by John Von Neumann as formal
models of self-reproducing organisms. Several variables are
defined at each cell to indicate whether there are
microscopic packets moving in a certain direction. Balci et
al. [9] modeled the kinematics of these phenomena by a
mass-spring system, and used texture sequencing with
variable speeds and transparencies that depend on the speed
of the vaporized fuel to present turbulant visual dynamics.
 For generating realistically visual effect of fire, the
models adopted by most animators are based fluid
mechanics rules. The developers can create visually
plausible result without considering the implementing
details. However, this method has some constraints on
setting boundary conditions and keeping system stable.
Furthermore, physics based model is also hard to achieve
direct control for multiple purposes.
 In particular, this method requires huge computation that
is at least O(n3) with the resolution of the simulation. So far
this innate problem only can be solved by hardware
acceleration. In addition, the solver must take care of
instability in a relatively sophisticated manner. To execute
in real-time, models of fire typically retain the
incompressibility assumption but account for the expansion
of hot gases as the result of external forces [10]. Hong et al.
[11] modeled fire by combining the Navier-Stokes
equations with the level set method and jump conditions for
simulating the reaction front. Asymptotic theory shows that
one can obtain more entertaining vibration and fully
hyperbolic equations for the evolvement of level set.
Nevertheless, they also showed how to utilize the DSD
(detonation shock dynamics) framework in the simulations
of flames and fire to receive interesting visual experience
such as wrinkles and cellular patterns.

B. Rendering Methods
 Rendering fire demands some kind of volume rendering
because of its visual characteristics such as opacity and
transparency. However, we examine general volume
rendering techniques via graphics hardware for rendering
fire, and more complicated models that treat the fire as a
source of illumination and capture mirage-like refraction
effects. These rendering techniques [7][12] are described in
the context of more general techniques for rendering smoke
and other gases, even though certain effects like scattering
are ignored by nearly all image formation models of fire.

ELATED ORK W

 Scientific visualization methods [13][14] are mainly used
to deliver information effectively, rather than to describe
the phenomena that statistic in a rational way. The most
important conditions for rendering fire by scientific
visualization are to keep essential information for the
domain, extract the information, and utilize acceptable
rendering skills.
 Direct volume rendering is frequently adopted as the
approach for rendering fire. In some particularly cases that
the volume of fire is represented as cylindrical rings [15]
the integration along streams of light can be accelerated. If
the primitives of density field are defined by some type of
implicit expression such as Gaussian blobs, constructing
lookup tables can help deliver additional speed [12].
 There are many sophisticated and quicker volume
rendering methods have been developed in earlier works.
One is to speed up ray tracing, the simple way is to end up
before it decreases gradually to zero. Another is splatting
[16], that prevents costly expense on 3D interpolation for
volume rendering. Stam suggested another interesting
approach to render turbulent volume fields [17]. Under his
stochastic rendering framework, the scene to be rendered is
represented as a random field with known statistics. These
statistics are then shifted in a systematic fashion from the
modeling phase to the rendering phase. This allows
relatively simple primitives to be used in modeling, but
more complex images to be obtained from the rendering.
 Certain techniques that exploit fast graphics hardware
enable the rendering of fire at interactive rates. Perhaps the
simplest technique for rendering fire quickly involves
applying movie loops as textures to billboards [18]. The set
of textures can be generated using spectral turbulence
methods, or by extracting pieces from real images of fire.
King et al. combined this texture-based approach with
traditional volume rendering using splatting [19]. They used
a coarse voxel grid, where each voxel was assigned an
index into the set of textures. By manipulating the texture
indices as if they were particles, they gave the impression of
smooth motion. When performing splatting, the kernels
were modulated with the appropriate texture corresponding
to that voxel. In contrast to the billboard method, their
method is effective even when the viewpoint is inside or
very close to the fire. For added realism, one would like the
fires we are modelling to act as light sources and cast
illumination into the scene. Takahashi et al. proposed
splatting method that uses similar idea to modify volume
rendering [20].

C. Motivation
 Based on the observation of the existing related work, we
propose a method to overcome some shortcomings listed as
follows:

 Visual reality of fire simulation: Lacking of visual
reference for convincing the viewers and cannot expect
the correctness of result before the development.

 Usage of fire simulation: Commonly concentrate on
creating an accurate model or representation, and it is
neglected to provide interactivity between users and the
virtual environment.

 Therefore, this paper utilizes the content of real world
images and makes use of their features to enhance the
reality of rendering. The major contributions of the
proposed method are as follows:

 To extract fire features from a real world video for
enhancing reality of fire simulation.
 To produce continuous result without a great deal of
resources but also can be applied to real-time
application easily.
 To generate fire effect based on images instead of only
adjusting the parameters of a particle system by artists,
it can reduce the time on trial and error to speed up the
fire simulation.

III. P

 In this section, we propose a method that first extracts the
image features using the image processing techniques from
the real world image instead of computing from physics
equations or mathematical models. Then we design a
statistical learner to fully utilize the flame features in
rendering efficiently. The learner governs the life of
particles that is generated from a particle system. The
system overview is illustrated in Fig. 2. It can be divided
into two main stages. The first stage is preprocessing that
focuses on acquiring the properties (such as shape and color)
and gathering them into a fire profile. Because the
processing time is too long for computing in real time, the
preprocessing stage will be executed in offline. Once the
fire profile is obtained, one can render animation online.
During the execution of rendering stage, the feature
statistics learner inside the rendering system governs how
the particle system to use fire profile. The feature statistics
learner will exploit the fire profile to build up a color
lookup table and provide a state machine for changing the
leaning state of fire. Then a user can input the external force
to change the effect of wiggling movement.

Preprocessing
Stage

Fire
Profiles

1. Feature Points

2. Motion Vectors

3. Source Images

Image
sequences

Rendering
Stage

Fire
Statistics
Learner

Result

O fflin e p ro ce ss O n lin e p ro ce ss

External
Force

Particle
System

 Fig. 2 System overview

ETHOD ROPOSED M

A. Preprocessing Stage
 The flow diagram of preprocessing is given in Fig. 3. In
this stage, the features including the burning fountainhead,
color, and boundary are extracted. Then these features are
gathered into a fire profile for the upcoming rendering step.
The advantages of this approach not only can find
promising fire trends for designers, but also can turn natural
simulation into a new type rendering technique. The initial
process of this stage applies a thresholding and Sobel edge
detection. After the processing steps, the image will be
transformed into a contour image of fire. Features and
motions are further extracted for fetching the fire
information in the image. All the steps mentioned above are
the essential for acquiring the fire profile features. The fire
profile is used in the rendering stage as the government of
modeling the shape and luminance of flame.

Feature
Extraction

Motion
Extraction

Source
Image

sequence

Feature
Points

Motion
Vector Fire

Profile

Threshold

Edge Detection

Contour
Image

Fig. 3 Processing flow of preprocessing stage

 The bilevel thresholding is used to segment fire region
from images. Fig. 4(a) is the color image which captured
from general digital camera, and the corresponding
outcome of binarization process is shown in Fig. 4(b). After
thresholding, the Sobel edge detection is used to calculate
the gradient of the intensity of every texel in an image. Fig.
4(c) is the result after the Sobel operation.

(a) (b) (c)

Fig. 4 (a) A color picture of candle light, (b) The binarized image of source
image, and (c) The image that applied the Sobel operation to Fig. 4(b)

 Several researchers have studied this issue based on
porous bed gas burners [21][22]. McCaffrey showed that
the ”fire plume” above a 30 cm square burner consisted of

three distinct regimes [22], precisely: (1)The near field,
above the burner surface, where there is persistent flame
and an accelerating flow of burning gases (the flame zone);
(2)The intermittent zone, a region in which there is
intermittent flaming and a near-constant flow velocity;
(3)The buoyant plume is characterized by decreasing
velocity and temperature with height.
 The proposed algorithm uses these three regimes
principle as in [22]. When the combustion reaction proceeds
without involving any other factor, the movement of flame
is upward direction that is created by the buoyant force.
Even if there are some external forces existed in this
burning system, the persistent flame regime will remain
stable. In the feature point extraction, one needs to find six
extreme points of fire in the current frame. Among these six
points, five points are used for building up a curve-like
emitting region, and the rest one is used for subscribing the
fire peak point. Let I(x,y) represent a pixel at spatial
location(x,y) on I, where I is the pixel set of fire contour
which is formed by the processing steps in previous
subsection. Left(I) and Right(I) as shown in Fig. 5 are found
at the contour which is under the threshold of persistent
regime, here we set it as one fifth of the flame height. The
proposed method is to seek the maximum width of fire in
the persistent regime, and take the two ending points of the
maximum width as Left(I) and Right(I). To find Top(I) and
Bottom(I) one can assign the highest point of flame to the
extremely top point, and the lowest point to the extremely
bottom point. Top(I) is used for assigning the fire peak
point that it is the ending point of curving path of particles.
However, the bottom area of flame may be formed with
multiple inflection point. Then one can add two middle
points MidLB(I) and MidRB(I) between Bottom(I) with
Left(I)/ Right(I) in order to fit any possible shape.
Depending on these six points one can formulate the fire
shape and the dynamic path of all particles.

Persistent

Flame

Left(I)
Right(I)

Bottom(I)

Top(I)

MidLB(I)

MidRB(I)

Fig. 5 Six extreme points of fire per frame

B. Feature Statistics Learner
 If one wants to generate animation continually, this
property may be an obstacle because of the limited time of

source image. Therefore, to generate a sequence of fire
animation based on fire profile and a particle system (a
procedural process) can eliminate this drawback.
 Generally speaking, the most two important factors about
influencing the human visual experience is the color and the
dynamics of an object, we will handle the two issues
independently in our implementation. However, only the
features come from images are available, it is essential to
learn from the fire profile for simulating fire. We develop a
learning mechanism consisting of a fire status state machine
and a color lookup table based on the fire profile to
approach the visual experience of fire as shown in Fig. 6.
During of rendering stage, the feature statistics learner will
be executed before go into the particle system. In the
following subsection we will discuss how the learner works
and what the outcome is generated.

Fire
Profile

SFCCT
(Spatial Fire Color
Correlation Table)

Leaning
State Data

Fire Status
State Machine

Feature

Points

Source

Images

Manually Classify
the Feature Data

Average the
Color Value

Shape

Color

Switching
the leaning
state

Feature Point
Data

External Force

Feature Statistic Learner

Send to
the
particle
system

Refered by
the particle
system

Fig. 6 Mechanism of feature statistic learner.

 A number of feature point data collecting from the fire
image are gathered into the fire profile. Depending on the
observation of the fire dynamics, the coordinate
displacement of each feature point is found slightly and
closely to neighboring timing interval. Therefore, we cut off
a section of feature points in a fire profile by its leaning
angle which is determined through the slope of the fire peak
and the bottom point and stored it to another file called
leaning state data. Then a state machine used for describing
the fire transition state can receive the external force which
is inputted by a user and is transformed to leaning degree of
fire. The leaning angle is used to select the corresponding
feature data set in the leaning state data. The advantage of
this process not only can use resource efficiently but also
change the fire status clearly. The relationship between
input wind force and the leaning angle of fire can be found
in [23].
 We roughly divide the leaning degree of fire into six sets
from -30 to 30 angles with 10 as interval, otherwise
manually extract and classify the data in fire profile by
leaning degree and storing to the leaning state data. The
leaning state data consist of 12 sets of feature points that
each set is captured in one period of time and it needs to be
prepared before the external force entered. Due to the
locality of feature points, we could approximately generate
new ones of the next frame by fetching the data from

relating leaning state back and forth. That means if the input
force transforms into -20 degree, the state machine will
jump to the leaning state which contains the fire feature
points extracted at the leaning angle is between -20 and -30.
 Fig. 7(a) illustrates the processing steps from creating
external force to produce the corresponding leaning state
for rendering. The external force entered by a user will be
converted into the leaning angle of fire and triggered off the
state transition in fire status state machine. The input of
wind speed is equally separated into six levels from zero to
five, the speed is increased or decrease by adding the
current input. Fig. 7(b) shows the state machine for
controlling the fire status by input force. The fire status
state machine is designed for describing the leaning state of
fire: The larger force, the larger leaning angle. But if the
force sustains in a consistent input amount, the fire will stay
in a flickering situation until the input changes.

Converting Into
Leaning Angle of Fire

Fire Status
State Machine

Fetch Corresponding
Leaning State Data

External Force

Loading into
Rendering Stage

Straighten

External Force Below
Threshold

Leaning

Adding Continuous
Forces

Returning

Sustaining

External Force
Increases

External Force
Decreases

External Force Below
Threshold

External Force
Sustains

External Force
Decreases

(a) (b)
Fig. 7 Schematic diagrams of fire shape learning: (a) Working process, and

(b) The fire status state machine

 As mentioned in [24], fire has unique visual signatures.
Color, geometry, and motion of fire region are all essential
information for fire recognition. A region of fire can be
defined in terms of (1) spectral characteristics, and (2) the
spatial structure defined by their spectral variation.
 The pixels in a fire region have different color spectra
depending on its spatial locations. For color image, we
might see the bright white color in the core, and yellow,
orange and red away from the core to outer region. For
grayscale images, we notice that the brightness is gradually
decreasing from core to the periphery.
 Here we simply divide the fire height and width into five
by five grids and record the color value in each grid into
spatial fire color correlation table (SFCCT). After
processing the image samples, the SFCCT that consists of
statistic information of every length and width section of
flame, is also ready. Then it can be used as a lookup table
for the rendering stage.

C. Rendering with a Particle System
 The objective of this phase is to continually produce an
acceptable and plausible visual effect. Here we use the

feature data and SFCCT that are created by interacting the
fire status state machine with the external force and
collocated with the particle system to generate fire
simulation. This subsection focuses on describing how the
particles vary from frame to frame. For describing fire
effect by the particle system appropriately, appearance,
color, shape, and behavior of diffusion are essential factors
for rendering flame. These factors can be fulfilled well
through the following two modules: region detector and
path builder.
 The processing flow of the rendering stage is shown in
Fig. 8. First the external force is sent into the feature
statistic learner, and the learner will select corresponding
feature points from the leaning state data. And the particle
system will calculate the position of each particle by path
builder with the feature point set decided by fire status state
machine and the dynamics the color of particles by region
detector with SFCCT.

Fire Statistics
Learner

Leaning
State
Data

SFCCT

E
xe

cu
tin

g
flo

w

Particle
System

Management

Region
Detector

Path
Builder

Rendering Stage

Storage

Rendering

External Force

Feature
Points

Process Sequence

Dataflow

Reference

Fig. 8 The processing flow of the rendering stage

 The objective of path builder is to arrange the path of
particles inside the contour of fire. In the proposed method,
we divide this work into two phases: The first phase is how
the emitting area to be arranged; the second phase are how
these particles to be shifted. On the other hand, the core
idea of region detector is to change the color of particle
depending on what grid of SFCCT it belongs. After
generating results from two cross-section views
independently, next step is to expand these isolated ones
into a complete fire effect.
 When implementing the particle system, all of the
particles are supposed to be moved in one direction (e.g.
upward). As illustrated in Fig. 9, all the newly born
particles have assigned the lifespan parameter and the life
will decrease gradually until back to zero.

X axis

Y axis
Z axis

A typical particle’s
generating location

Maximum
Boundary of
particle

Minimum
Boundary of
particle

particles’ initial speed &
direction

Fig. 9 The dynamic mechanism of a typical particle system.

 However, the actual flame has its own color with light
and shade. In order to represent the phenomena, all the
particles have to change its color according to the spatial
relationship of the current image. As illustrated in Fig. 10,
the coordinates of particles must be traced to see if it moves
from one color section to another in each frame. As a result,
the transition of particles smoothly grows not only the
position but also the hue of flame, based on the actual
flame.

Fig. 10 Color of particles dynamic according to its region

 The locus of particle is commonly shifted in a
straight-line fashion. However, for the most part of fire
generally corresponds with the crooked shape. Based on
this feature, modeling the movement of a particle should be
considered carefully. In the proposed method, the bottom
area and the moving trace of particles are totally formed by
the cubic spline to fit with the original image contour. The
emitting position indicates the bottom boundary of fire
which will be mapped out by the cubic curve form. Using
the extremely points in previous processing step, one can
formulate the bottom shape for particles to start off.
 Since the emitting position is ready for the particle
system, how these particles are shifted in the progression of
fire simulation. It needs to provide the physical property for
describing or controlling the velocity over time of an object
moving from A to B. For example, an icon might follow a

parabolic curve in moving from A to B, rather than simply
moving in a straight line fashion. From this perspective,
there are huge advantages to use parametric cubic curves
because the required data are points that can be obtained
and manipulated despite lacking of other information like
derivations and outer control points [25]. Now particles can
move along the curve from the bottom point to the top point
as shown in Fig. 11.

Top(I)

Left(I)

Right(I)

Bottom(I)
Fig. 11 Schematic diagram of particles’ movement

 So far we introduce the methods for extracting features
from image and rendering 2D fire animation. For most
applications, it is necessary to form a 3D fire animation. If
two perpendicular views can be captured by two cameras
that are perpendicular to each other, we can reconstruct 2D
peripheral curve by connecting the feature points of these
two planes by the cubic spline. Let the bottom point of
these two planes be mapped onto the same world coordinate
position. Therefore, when we look down the fire source, the
peripheral curve will intersect the bottom point in a vertical
fashion as shown in Fig. 12. F1 and F2 are used to denote
the two sets of contour points in x-y plane and y-z plane
respectively, and then Left(F1), Right(F1), and Bottom(F1)
denote the extremely left, right, and bottom points in the
image captured from x-y plane , respectively. In the
proposed method, we don’t force to model the outer
appearance but intersect several supplementing slices
between two orthographical images.

Rig h t (F1
)

Bo t to m (F1
)

Le ft (F2)

Bo t to m (F2
)

Rig h t(F2
)

X-Z p la n e
C1

C2

Le ft (F1
)

Fig. 12 Using feature points to form a circular region by cubic-spline

IV. I

 In this section, implementation of fire simulation and the
rendering result are discussed. The experiments were run in
the PC environment, PC with an AMD Phenom FX-5000
and 4 Gigabytes main memory. The implementation is
divided into two parts based on two main stages in the
flowchart. The preprocessing stage is mainly to process the
image data in offline. After preprocessing, one can obtain
features from images and collect them into a fire profile.
Based on the fire profile, one may generate realistic fire
image. To use resource more efficient, the feature statistics
learner is used to collect fire dynamics information through
the fire profile. The procedures of the whole system are
given as follows:

 Using video editing tool to separate a video into image
sequences.
 Using thresholding and the Sobel detector to generate

contour map.
 Extracting and gathering image features into a fire

profile for rendering.
 Analyzing fire profile to build up the framework of fire

dynamics.
 Generating fire simulation.

 We use Microsoft Visual Studio C# 2005 as the
development tool and the JSEG method [18] to develop an
image processing tool for users to easily accomplish the
image processing work. Several image processing skills are
integrated to the program that can be used by one-click
interface as shown in Fig. 13. Image functions include
“ColorInvert”, “Edge Detection”, and “Segmentation.”
Users can press the option “MenuOn” of “JSEG” to open
parameter panel “JSEGform.” “JSEGform” provides some
control options, such as the threshold for quantization,
display, and merge.

Fig. 13 Screenshot of program interface

 The 3D simulation result is through combining with the
different 2D results of the proposed algorithm. Fig. 14
shows the three dimensional distributions of particles. As
the particles are independent objects, one can receive the
outcome that can be calculated with virtual environment
about the collision or the confliction. These particles are
attached with a texture to formulate like a cluster of
particles in the final representation.

MPLEMENTATION

Fig. 15 illustrates an example for showing how the particles
to be rendered. A particle can be expanded into a
quadrangle and regarded as a display primitive. Finally the
display primitives seems like a spreading fire effect by
attaching a texture on each of it and the blending effect can
smooth the edge of these overlapping polygons. Fig. 16
shows the FPS measurements for the different slice counts.
These slices would be circularly placed inside the fire
volume and the particle number is 100 in each slice.

Fig. 14 Three dimensional distributions of particles

Te xtu re m a p p in g O u tco m e

Fig. 15 Example of billboarding

Fig. 16 FPS measurements for the different slice counts

 Fig. 17 is comparisons of real candle light video with the
rendering result created by the proposed method and the
one in [26]. In contrast to Fig. 17(a), the image result of our
implementation Fig. 17(c) is more realistic than that of Fig.
17(b).

(a) (b) (c)

Fig. 17 Comparisons of the simulation results : (a) real image (b)
implemented by Bridault-Louchez et al. [26], and (c) the proposed method

V. C

 In this paper, we have presented a visual learning method
for simulating fire phenomenon through fire video. The
proposed method provides visual reference for the
expecting ability of simulating result and enhances the
reality of rendering effect indeed. Nevertheless, the
proposed method has the learning mechanism which can
generate continuous animation without the restriction of a
short clip of film and allow to receive input as external
force to change the leaning status of fire.
 Therefore, the proposed algorithm can not only eliminate
the heuristic property of the procedural method but also
provide a more flexible method than other reconstructing
work. And the generated fire animation is not only realistic
but also convenient for embedding to various existing
virtual scenes.

R

[1] S. Hasinoff and K. Kutulakos, “Photo-consistent
reconstruction of semi-transparent scenes by density sheet
decomposition.” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 29, No. 5, pp. 870–885, 2007.

[2] I. Ihrke and M. Magnor, “Adaptive grid optical tomography,”
Graphical Models, Vol. 68, No. 5, pp. 484–495, 2006.

[3] N. Chiba, K. Muraoka, H. Takahashi, and M. Miura,
“Two-dimensional visual simulation of flames, smoke and the
spread of fire,” The Journal of Visualization and Computer
Animation, Vol. 5, No. 1, pp. 37–54, Jan.–Mar, 1994.

[4] W. T. Reeves, “Particle Systems – A technique for modeling
a class of fuzzy objects,” ACM Transactions on Graphics,
Vol. 2, No. 2, pp. 91-108, April 1983.

[5] A. R. Fuller, H. Krishnan, K. Mahrous, B. Hamann, and K. I.
Joy, “Real-time procedural volumetric fire,” In Proceedings
of the 2007 symposium on Interactive 3D graphics and
games , pp.: 175 – 180, 2007.

[6] Y. Takai, K. Ecchu, and N. K. Takai, “A cellular automaton
model of particle motions and its applications,” The Visual
Computer, Vol. 11, No. 5, pp. 240–252, 1995.

[7] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T.
Nishita, “A simple, efficient method for realistic animation of
clouds,” In Proc. ACM SIGGRAPH 2000, pp. 19–28, 2000.

[8] X. Wei, W. Li, K. Mueller, and A. Kaufman, ”Simulating fire
with texture splats,” In Proc. IEEE Visualization, pp. 227-237,
Nov. 2002.

[9] M. Balci, M. Alnasser, and H. Foroosh, "Image-based
simulation of gaseous material," Image Processing, 2006
IEEE International Conference on, pp. 489-492, Oct. 2006.

[10] D. Nguyen, R. Fedkiw, and H. Jensen, “Physically based
modeling and animation of fire,” In Proc. ACM SIGGRAPH
2002, pp. 721–728, 2002.

[11] J. Hong, T. Shinar, R. Fedkiw, “Wrinkled flames and cellular
patterns,” ACM Transactions on Graphics, Vol. 26, No. 3,
Article 47, July 2007.

[12] J. Stam and E. Fiume, “Depicting fire and other gaseous
phenomena using diffusion processes,” In Proc. ACM
SIGGRAPH 1995, pp. 129–136, 1995.

[13] P. S. McCormick and J. P. Ahrens, “Visualization of wildfire
simulations,” IEEE Computer Graphics and Applications, Vol.
18, No. 2, pp. 17–19, Mar.–Apr. 1998.

ONCLUSIONS

EFERENCES

[14] R. W. Bukowski and C. H. Séquin, “Interactive simulation of
fire in virtual building environments,” In Proc. ACM
SIGGRAPH 1997, pp. 35–44, 1997.

[15] H. Rushmeier, A. Hamins, and M. Y. Choi, “Volume
rendering of pool fire data,” IEEE Computer Graphics and
Applications, Vol. 15, No. 4, pp. 62–66, July 1995.

[16] D. Laur and P. Hanarahan, “Hierarchical splatting: a
progressive refinement algorithm for volume rendering,” In
Proc. ACM SIGGRAPH 1991, pp. 285–288, 1991.

[17] J. Stam, “Stochastic rendering of density fields,” In Proc.
Graphics Interface 1994, pp. 51–58, 1994.

[18] T. McReynolds and D. Blythe, “Advanced Graphics
Programming Techniques Using OpenGL,” Course presented
at ACM SIGGRAPH 1999, available at
http://www.opengl.org/developers/code/sig99.

[19] S. A. King, R. A. Crawfis, and W. Reid, “Fast volume
rendering and animation of amorphous phenomena,” In Proc.
International Workshop on Volume Graphics 1999, pp.
229–242, 1999.

[20] J. Takahashi, H. Takahashi, and N. Chiba, “Image synthesis
of flickering scenes including simulated flames,” IEICE
Transactions on Information and Systems, E80-
D(11):1102–1108, Nov. 1997.

[21] G. Cox and R. Chitty, “Some source-dependent effects of
unbounded fires,” Combustion and Flame, Vol. 60, No. 3, pp.
219-232, 1985.

[22] B J. McCaffrey, “Purely buoyant diffusion flames: some
experimental results,” National Bureau of Standards, NBSIR
79-1910, 1979.

[23] P. P. K. Raj, A. N. Moussa, and K. Aravamudan,
“Experiments involving pool and vapour fires from spills of
liquefied natural gas on water,” US Coast Guard Report, No.
CG-D-55-79, 1979.

[24] C. B. Liu and N. Ahuja, “Vision Based Fire Detection,” In
Proc. of Int. Conf. on Pattern Recognition, Vol. 4, 2004.

[25] Edward Angel, “Interactive Computer Graphics: A
Top-Down Approach Using OpenGL,” Addison-Wesley,
Fifth Edition, 2009.

[26] F. Bridault-Louchez, M. Leblond, F. Rouselle, and C. Renaud,
“Real-time rendering and animation of plentiful flames,” In
Proc. of the 3rd Eurographics Workshop on Natural
Phenomena, 2007.

