
Fixed Order Implementation Method of Kernel
Adaptive Filters with Lower Computational

Complexity
Kiyoshi NISHIKAWA, and Koji MAKIZAKI

Dept. of Information and Communications Systems, Tokyo Metropolitan University
6-6 Asahigaoka, Hino-shi, Tokyo 191-0065 JAPAN

E-mail: knishikawa@m.ieice.org Tel: +81-42-585-8423

Abstract—In this paper, we propose an implementation method
of kernel adaptive filters by fixing the filter order with lower
computational complexity. Kernel adaptive filters are used for
adaptive learning of non-linear systems. Although they enable
us to estimate non-linear systems, computational load required
for implementing the kernel method becomes relatively high.
Moreover, the conventional methods require the order of the
adaptive filter to be incremented as time n increases. The
increment of the filter order results in variation of processing
time for updating the filter at each time. These features could
cause a problem when we implement them in a system with
limited computational resources, such as embedded systems like
mobile terminals. We propose, in this paper, a fixed order
implementation method of kernel adaptive filters. The proposed
method also includes a method to reduce the computational
complexity to calculate the Gaussian kernel function. Through
the simulation, we show that the proposed method could provide
almost same convergence characteristics with less than half of
the processing time under certain conditions.

I. INTRODUCTION

Kernel adaptive filters enable us to estimate non-linear
systems, and are expected to be used in applications such as
non-linear channel equalization[1].

Kernel adaptive filters are derived by applying the kernel
method to linear adaptive filters. Although, they are effective
for non-linear learning, required computational load for kernel
method is relatively high. Another problem of the conventional
kernel adaptive filters is that the order of the adaptive filter
increases as time n increases. The increment of the filter order
could cause problems in some environments where computa-
tional resources are limited such as mobile terminals. Besides,
the processing time for updating the filter coefficients will
also increase. This characteristics also might cause problems
in those environments.

In this paper, we propose an implementation method of
the kernel adaptive filters with fixing the filter order at lower
computation complexity. The proposed method is consisting of
two parts. The one is for reducing the number of calculation
required for obtaining the values of the inner products using
the kernel functions. We show that, by expanding the kernel
function, a part of the calculations could be omitted so that
the total number of calculation could be decreased. Then,
the second part is to fix the filter order. By combining these
two methods, we can implement the kernel adaptive filters

with lower computational complexity and the fixed order.
Through the computer simulations, we verified the validity
of the proposed method.

II. PREPARATION

Here, we briefly describe the conventional kernel method
and kernel adaptive filters[1], [2].

A. Kernel method

The input signal x(n) is transformed into a high-
dimensional feature space F . By denoting the transformation
to the space F as Φ(x), the output signal of the adaptive filter
is expressed as

f (xn) = ΦT (xn)w (1)

where w and xn are filter coefficient vector of the adaptive
filter, and tap-input vector at time n respectively. They are
given as

w = [w0, . . . , wM−1], (2)
xn = [x(n), . . . , x(n−M + 1)] (3)

where wi, x(n) and M show the i-th coefficient of the
filter at time n, the input sample at n and the length of the
filter respectively. Note that we drop the time index n in the
expressions for simplifying the notation.

Here, let us assume that the filter vector w can be expressed
as a linear combination of m training vectors Φ(yj) as

w =
m∑
j=1

αjΦ
(
yj

)
. (4)

The vectors yj are subset of x` (` = 0, 1, . . . , n − 1) and
the detail will be described in the next sub-section, and αj

is the weight corresponding to yj . Then, the output in (1) is
expressed[1] as

f (xn) =
m∑
j=1

(
ΦT (x)Φ

(
yj

))
αj . (5)

By defining α as α = [α1, . . . , αm]
T , we can regard α as the

coefficient vector of a filter, and the kernel adaptive algorithms
are derived[2], [3] to estimate the optimum α. For that, we
should calculate the inner product ΦT (x(n))Φ(yj) in Eq. (5).

APSIPA ASC 2011 Xi’an

The kernel adaptive filters use the kernel function to calcu-
late the inner product. A kernel function k (·, ·) is given as

∀a,b ∈ X k (a, b) = ΦT (a)Φ (b) (6)

and is used to calculate the inner product in the space F . This
method is referred to as the kernel trick[1]. Note that, we
do not need to know the transformed vectors Φ(a), or Φ(b)
themselves to calculate the inner product. For a kernel function
to be used in the kernel adaptive algorithm, the condition
k (a,a) = 1 must be satisfied[1].

As the kernel function, the Gaussian kernel defined as below
is used in conventional kernel adaptive filters[2], [3].

k (a, b) = exp
(
−‖a− b‖2

)
(7)

where ‖·‖ show the Euclidean norm. In this paper, we assume
that the Gaussian kernel is used as the kernel function.

B. Kernel adaptive filter

By applying the kernel method to the linear adaptive filters,
the concept of the kernel adaptive filter is derived[1], [2]. The
description below, and also our proposed method, are based
on the method for designing sparse kernel adaptive filters
proposed in [2].

First, we rewrite Eq. (5) as

f (xn) =

Φ (xn)

T
Φ (y1)

Φ (xn)
T
Φ (y2)

...
Φ(xn)

T
Φ(ym)

T

α =

k (xn,y1)
k (xn,y2)

...
k (xn,ym)

T

α (8)

= hnα (9)

where we set hn as hn = [k (xn,y1) , . . . , k (xn,ym)]
T．

Then, the filter α can be updated using a linear adaptive
algorithm by regarding hn as the input vectors to α[1].

Here, we define the matrix D which is consisting of the
vectors [y1, . . . ,ym] as

D =
[
y1 . . . ym

]
(10)

and D is called the dictionary. The vectors stored in the
dictionary D are m (m ≤ n) past input vectors x` where
m is a variable determined by the algorithm below, and, in
general, m increases as n.

Let us denote D at time n by Dn. Then, Dn and hn are

updated according to the following pseudo algorithm:

Initialization
D1 = y1 = x1

h1 = k (x1,y1)

α1 = 0 , m = 1

for n = 2, 3, · · ·
if max

j=1,...,m
|k
(
xn,yj

)
| > µ0 (11)

Dn = Dn−1

hn =
[
k (xn,y1) · · · k (xn,ym)

]T
(12)

else
m = m+ 1

Dn = Dn−1 ∪ {xn}

hn =
[
k (xn,y1) · · · k (xn,ym)

]T
(13)

end if
end for

In Eq. (11), µ0 is a threshold in the range 0 < µ0 < 1 and its
value is determined according to the sparseness of the filter.
The input vector xn will be compared with the vectors in Dn

by the condition shown in Eq. (11). If the condition met, xn

will be stored in Dn as a new training vector.
For updating the filter coefficients, the conventional linear

adaptive algorithm can be used, namely, NLMS[2], RLS[3],
ERLS-DCD[5] algorithms and so on.

III. PROPOSED METHOD

Here, we describe the proposed method. The proposed
method is consisting of two parts.

In kernel adaptive filter, the computational complexity to
implement the kernel method is relatively high. This could
pose a problem when we employ low complexity adaptive
algorithms such as the NLMS algorithm. Hence, we first
propose a method to implement the kernel function with
reduced computational complexity. Then, we consider another
problem, the increase of the filter order m. Increase of m in
the conventional methods would make it difficult to implement
kernel adaptive filters in embedded systems such as mobile
terminals. Hence, we propose an implementation method with
the fixed m.

We should note that the proposed method could be used
with any adaptive algorithm.

A. Reduction of Computational Complexity by Modification of
Gaussian Kernel

In the proposed method, we assume to use the Gaussian
kernel. Under this assumption, we show that we can reduce
the amount of calculation required to implement the kernel
function.

First, we expand the Gaussian kernel as below.

k (a, b) = exp
(
−‖a− b‖2

)
= exp

(
2aT b− aTa− bT b

)
(14)

By using this， hn in Eq. (12) could be rewritten as

hn = exp

2xT
ny1 − xT

nxn − yT
1 y1

2xT
ny2 − xT

nxn − yT
2 y2

...
2xT

nym − xT
nxn − yT

mym

 . (15)

It is shown that there are three columns in exp(·), namely
2xT

nyj , xT
nxn, and yT

j yj where j = 1, 2, . . . ,m. Of these,
the first and the second columns contain xn, and these two
columns should be updated at each time n.

We notice the following points.
a) For calculating the first column xT

nyj , we need to calcu-
late m inner products at each time.

b) For the second column, only one inner product xT
nxn is

required.
c) The third column contains the inner products of past input

vectors in the dictionary, namely, yT
j yj .

From c), we see that the inner products in the third column
were calculated in past time j (j = 1, 2, . . . ,m). Hence,
by saving these values in the dictionary Dn as additional
information, we could decrease the amount of calculation
required to calculate Eq. (14).

B. Construction of dictionary in the proposed method
As described in the previous subsection, we propose to store

the inner products at each time xT
nxn in the dictionary as

additional information. Then we can avoid the calculation of
the third term in Eq. (15).

The construction of the dictionary in the proposed method
is described as below.

Initialization

χ1 = xT
1 x1 (16)

D1 = y1 =

[
x1

χ1

]
(17)

h1 = 1 , α1 = 0 , m = 1

for n = 2, 3, · · ·
χn = xT

nxn (18)

hn = exp

(
DT

n−1

[
2x
−1

]
− χn1

)
(19)

if max
j=1,...,m

|hn (j)| > µ0

Dn = Dn−1

else
m = m+ 1

hn =

[
hn

1

]
(20)

Dn = Dn−1 ∪
{[

xn

χn

]}
(21)

end if
end for

where 1 shows a vector of length m whose components are
set as 1.

By comparing the direct calculation in Sec. II-B, we can
reduce the number of calculation. In TABLE I, we show the
comparison in terms of the number of calculation to implement
the kernel part. Note that, in the table, we assumed that the
multiplication and addition could be regarded as equal load.
This seems likely true for the recently used processors, or DSP
chips based on the pipeline processing.

From the table, we can see that the total amount of calcu-
lation of the proposed method become smaller than the direct
calculation when M > 2 and m � 1. Besides, the difference
becomes large as m, the filter length, increases as in the case
of the kernel adaptive filters.

TABLE I
COMPARISON OF NUMBER OF CALCULATION FOR KERNEL PART

Multiplication Addition Total

Proposed Mm+m+ 2 M + 2m+ 1 (M + 3)(m+ 1)
Direct calculation Mm 2Mm−m (3M − 1)m

C. Fixed order implementation of the kernel adaptive filters

Next, we propose a method to fix the filter order m. As
described in the above, m would be incremented when a
new training vector added to Dn, and this could cause a
problem when we implement it in the environments with
limited computational resources, such as mobile terminals.

We propose to fix the order by setting the allowable max-
imum order of the filter as mmax. Besides, the initial state of
the dictionary is set as the zero matrix of (M + 1) × mmax,
the filter coefficient vector as a zero-vector of mmax.

For enabling these fixed order matrix and vectors, we
slightly modify the update equation of filter, and that of Dn

as the following.

Initialization
D = 0(M+1)×mmax , α−1 = 0mmax , m = 1

for n = 0, 1, · · ·

χn = xT
nxn , hn = exp

(
DT

[
2xn

−1

]
− χn1

mmax

)
(22)

if
(

max
j=1,...,m

|hn (j)| ≤ µ0

)
∧ (m < mmax) (23)

m = m+ 1

D (m− 1) =

[
xn

χn

]
, hn (m− 1) = 1

αn−1 (0) = αn−1 (0) +αn−1 (m− 1) (24)
αn−1 (m− 1) = 0

end if
en = dn − hT

nαn−1 , αn = αn−1 +∆αn (25)
end for

In the proposed method, we compare m and mmax at Eq. (23)
so that the filter order is upper bounded by mmax. Besides,
when we insert an input vector as i-th training vector, we

set i-th filter coefficient αn−1 to be zero. Note that, even we
fix the order, the dictionary should be maintained to keep the
sufficient training by the methods such as proposed in [6].

IV. SIMULATION RESULTS

Here, we show simulation results of adaptive prediction
using the proposed method. The computer environments of
the simulations are shown in Table II.

In the simulations, we generated the input signal using the
equation

xn =
(
0.8− 0.5 exp

(
−x−2

n−1

))
xn−1

−
(
0.3 + 0.9 exp

(
−x2

n−1

))
xn−2 + 0.1 sin (xn−1π)

(26)

and the initial values of x−1 and x−2 were given as random
numbers of uniform distribution in the region (0, 1). The order
M of the input signal was set as four, and a white Gaussian
noise of SNR 40dB was added to the signal. The threshold
value µ0 was set as 0.8, the length of the signal was 10000. The
values of coefficients in Eq. (26) were changed at n = 4000 to
demonstrate the tracking ability of the method. We evaluated in
terms of mean squared error (MSE) and the ensemble average
of 1000 independent trials are shown. The KNLMS algorithm
was used as the learning algorithm, and compared with the
linear NLMS, and the conventional KNLMS algorithms. We
set mmax as mmax = 32 in the simulations and the value was
determined by trials.

The results are shown in Fig. 1. From the figure, we could
confirm that the proposed method provides almost identical
convergence characteristic as that of the conventional. In
TABLE III, we show the processing time required for updating
filter coefficients at each time. Note that, for conventional
KNLMS algorithm, the time for updating varies as the filter
order increases, and hence, the average time is shown in the
table. It is shown that the computational time of the proposed
method is almost a half of that of the conventional one.
We note that this reduction is largely due to the fact that
the conventional method requires higher filter order than the
proposed method. Hence, with the optimum selection of the
filter order, the proposed method could be implemented with
a lower computational complexity.

Moreover, filter order in the proposed method is fixed so that
the processing time for each time is also fixed. This feature
would be preferred when it is implemented in embedded
systems, or systems with limited computational resources.
Note that the difference become larger as M increases as
shown in Sec III-B.

V. CONCLUSION

In this paper, we proposed a method to implement the kernel
adaptive filters with the fixed order. The proposed method is
composed of two parts. The first part is to reduce the compu-
tational complexity to calculate the Gaussian kernel function
by re-arranging the inner product. The second part is a method
to fix the order of the adaptive filter. By fixing the order,
we could also fix the processing time for updating at each

0 2000 4000 6000 8000

−40

−30

−20

−10

0

Iteration

M
ea

n
S

qu
ar

e
E

rr
or

 (
dB

)

NLMS
KNLMS (Conventional)
KNLMS (Proposed)

Fig. 1. Comparison of convergence characteristics of the NLMS, conventional
KNLMS, and the proposed algorithms. The proposed algorithm provides
almost identical characteristics to that of the conventional KLMS although
its computational load is lower. At n = 4000, the values of the coefficients
in Eq. (26) was changed to show the tracking capabilities of the algorithms.

TABLE II
COMPUTER ENVIRONMENTS FOR SIMULATIONS

CPU Intel Core 2 Duo 3.33 GHz
RAM 4.0 GB

Software MATLAB 6.5.1 Release 13

TABLE III
COMPARISON OF COMPUTATIONAL TIME

Algorithm Time for an update of the filter
NLMS 26.0 µs

KNLMS (Conventional) 103.6 µs (average)
KNLMS (Proposed) 40.0 µs

time, and the amount of calculation required to implement
the method. These features are important in the systems with
limited computational resources. Also, the proposed method
has an advantage that it could be used with any adaptive
algorithms.

Through computational simulations, we confirmed that the
proposed method could maintaining the almost equivalent
convergence characteristics by appropriately selecting the filter
order. Besides, it was shown that the possibility of reducing
the processing time by fixing the order. The consideration on
the optimum selection of mmax will be one of our future works.

REFERENCES

[1] Weifeng Liu, José C. Prı́ncipe and Simon Haykin, “Kernel Adaptive
Filtering,” Wiley: 2010.

[2] Cédric Richard, José Carlos M. Bermudez and Paul Honeine, “Online
Prediction of Time Series Data With Kernels,” IEEE Transactions on
Signal Processing, Vol. 57, No. 3, pp.1058-1067, Mar., 2009

[3] Yaakov Engel, Shie Mannor and Ron Meir, “The Kernel Recursive Least-
Squares Alrorithm,” IEEE Transactions on Signal Processing, Vol. 52, No.
8, pp.2275-2285, Aug., 2004

[4] Puskal P. Pokharel, Weifeng Liu and Jose C. Principe, “Kernel LMS,”
IEEE International Conf. Acoustics, Speech and Signal Proc., 2007

[5] Yoshiki OGAWA, and Kiyoshi NISHIKAWA, “A Kernel Adaptive Filter
based on ERLS-DCD Algorithm,” Proc. of Intl Tech. Conf. Circuits
Systems, Computer, Communications 2011, June 2011.

[6] Weifeng Liu, Ii Park, and José C. Prı́ncipe, “An Information Theoretic
Approach of Designing Sparse Kernel Adaptive Filters,” IEEE Trans. on
Neural Networks, Vol. 20, No. 20, pp. 1950–1961, 2009

