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Abstract—This paper proposes a new technique for speech
feature estimation under noise circumstances. This new approach
yields noise-robust continuous speech recognition (CSR). Noise-
robust techniques for isolated word speech recognition typically
employ the running spectrum analysis (RSA), the running spec-
trum filtering (RSF) and the dynamic range adjustment (DRA)
methods. Among them, only RSA has been applied into a CSR
system. However, we propose an enhanced DRA for a noise-robust
CSR system. Thus, in the speech recognition stage, the continuous
speech waveform is automatically divided into short blocks and
DRA is applied to these blocks. We find that the proposed method
improves recognition performance under several different noise
and SNR conditions.

I. I

There has been much effort devoted to improving recog-
nition rates for continuous speech recognition (CSR) systems
[1]. In recent years, CSR has made great progress to yield
high recognition rates in clean conditions. However, current
technology has not matured enough to yield high performance
in noisy environments.

There are several approaches to obtain continuous speech
feature vectors, namely mel-frequency cepstral coefficients
(MFCC), linear predictive cepstral coefficients (LPCC) [2],
and perceptually-based linear predictive coefficients (PLPs)
[3]. For this paper, we have selected the MFCC to extract
the speech feature vectors. Then, CSR is defined as the
process and related technology for converting signals into a
sequence of phones or words. Herein, we use cepstrum mean
substraction (CMS) and running spectrum analysis (RSA) [4]
to optimize the MFCC speech feature vectors. Finally, we use
dynamic range adjustment (DRA) to adjust the MFCC speech
feature vectors.

Although RASTA is a well known method focusing on
modulation spectrum domain (MSD), a primary RASTA em-
ploys IIR filtering and it may cause a problem such as phase
distortion [5]. RSF is based on a FIR filter. RSA is directly
used in the MSD. Compared with RASTA and RSF, RSA can
realize an ideal processing [6]. In this paper, we select RSA
to reduce any noise effects on the MSD.

Among the noise robust methods used in a CSR system,
the method of RSA and CMS has been developed in [7] and
it can show a little higher performance than others. The RSA
and CMS are used for the reduction of distortion embedded
into a training data set and the CMS is also used for the time

invariant noise reduction to an observed speech waveform in a
recognition stage. By using the above noise robust techniques,
the recognition accuracy can be improved. However, compared
with the results of isolated speech recognition accuracy, its
performance is insufficient for almost any actual application.

In this paper, we propose a new algorithm to adjust the
speech feature vectors for recognition. If we divide the con-
tinuous speech feature vectors into blocks according to some
conditions, we can use different maxima for normalization in
different blocks. Until now, little attention has been paid to
block-based adjustment of the speech feature vectors. There-
fore, this paper proposes a noise robust speech recognition
approach using RSA and DRA for modeling as well as block-
based DRA for recognition.

II. METHODS

A. CMS

CMS is a channel normalization approach to compensate for
the acoustic channel [8]. Time-invariant channel parameters in
a recording system and convolutional disturbance noise are
evaluated by CMS and reduced from the observed speech
waveform. CMS improves the distortion between training
speech data and observed speech data for recognition.

B. RSA

RSA is applied for both low and high frequency components
in the MSD. These components in MSD are then processed
using RSA [9]. Reduction of low frequency components has
the same effect as the CMS technique. In addition, reduction
of high frequency components results in the elimination on
time-varying noises which are not be created by human speech
production models.

C. DRA

The DRA strategy tends to decrease the variability of noise
feature vectors. DRA adjusts the dynamic range by normal-
izing the amplitude of speech feature vectors. In DRA, each
MFCC is adjusted in proportion to its maximum amplitude
after all RSA speech frames. If we define the i-th component
of the MFCC vector ck as ck,i after CMS, the DRA algorithm
calculates the following new value:

c′k,i =
ck,i

maxj=1,...,M |cj,i|
(1)
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where c′k,i denotes the i-th element of the post-DRA MFCC
feature vector.

III. NOISE CORRUPTION AND REMOVAL ALGORITHM

A. Noise Corruption

Although only a clean continuous speech can be observed,
the selection of each word and the dynamic rage adjustment
for the selected word are not difficult. However, under noisy
conditions, the selection of words may be difficult issue. In
this paper, the following two step processing is considered.

(1) From an observed noisy continuous speech waveform,
all short sentences are selected.

(2) A short sentence is divided into several blocks and then
each block is independently applied by DRA.

The above processing is applied to an observed unknown
continuous speech in recognition.

In the first step (1), Non-speech parts are eliminated. A
continuous speech has many Non-speech parts and only noises.
These parts effects DRA inappropriately. In the second step
(2), the unbalance of several dynamic ranges existed in a
continuous speech can be compensated.

B. First Step: Separating Blocks

In this paper, the proposed algorithm identifies a block
between the zero-crossings of cj,i in a short sentence. The
definition of the block is a part between the zero-crossing
points in the trajectory of cj,i. In a different block, we use
different maximum value to calculate the c′j,i from cj,i by
DRA.

In order to adjust cj,i, the trajectory of cj,i given in a
sentence is divided into some blocks according to the the zero-
crossing points. we search the zero-crossing points in cj,i by
the equation:

fj,i = cj,i−1/cj,i. (2)

If fj,i < 0, we consider there must be a zero-crossing point
between cj,i−1 and cj,i.

We define P j
0 as max |cj,i| in a short sentence. Then we

record P j
0 location as Lj(P0). We subtract and add Lm frames

from Lj(P0) backward and frontward, and record the location
as L̂j(P−1) = Lj(P0) − Lm and L̂j(P1) = Lj(P0) + Lm.
Next we search the zero-crossing points nearest to L̂j(P−1)
and L̂j(P1) by Eq. (2). Once we find the zero-crossing points
by Eq. (2), we define them as the Lj(P−1) and Lj(P1) as the
locations of the zero-crossing points in this block.

From Lj(P−1) to Lj(P1), we can get a block. The block
divides the trajectory of cj,i into three segments. The middle
segment is called the main block. The range of the main block
is from a start-point as Lj(P−1) to the end-point as Lj(P1).
There is no changes of relations among elements in the main
block whether we use block-based DRA or original DRA. We
focus on adjust the relations among elements on both left and
right sides of the main block.

There are numerous zero-crossing points in a short sentence
due to noise. Furthermore, the noise caused some abrupt
changes between zero-crossing points. We consider some
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Fig. 1: An example of cj,i(j = 3) for separating blocks and
determining maximum

limitations to select the zero-crossing points of blocks. The
limitations focus on preserving the continuity of the cj,i in
zero-crossing points.

If |cj,i−1| < 2 or |cj,i| < 2, it means a smooth variation near
the zero-crossing points. Otherwise, there is a discontinuity
between |cj,i−1| and |cj,i|. In a word, the zero-crossing points
used in a short sentence are selected under the limitations:
|cj,i−1| < 2 or |cj,i| < 2.

We continue to divide the other two segments into blocks.
The block shortest length is defined as Lj(Pi)− Lj(Pi+1) >
Lw. Nearest to Lj(Pi+1), we use Eq. (2) to search zero-
crossing points which satisfy the limitations. Then, we set
i = ±i± 1 to search next block boundary. Symbol ±i is the
±ith block whose boundary satisfies the above limitations.

From the above selection, we can get all zero-crossing
points which give the block boundaries. They are given as
Lj(P−N ), Lj(P1−N ), Lj(P2−N ), ... , Lj(P−1), Lj(P1), ... ,
Lj(PM ). The main block is given from Lj(P−1) to Lj(P1).
In the left hand side, the −ith block is given from Lj(P−i−1)
to Lj(P−i). In the right hand side, the ith block is given from
Lj(Pi) to Lj(Pi+1).

C. Second Step: Determining Maximum

There are many peaks in the trajectory of cj,i within a short
sentence. From the first step, we have found that each block
includes one or more peaks. All the peak parts of cj,i exhibit
stronger speech features than those around zero parts of cj,i
in noisy conditions.

In the above step, P j
0 is defined as the maximum of main

block. The main block divides cj,i into right-hand side and left-
hand side. Then, we define P j

±i as the max |cj,i| within ±ith
block in each right-hand side block and each left-hand side
block, respectively. By using different P j

±i, we can normalize
±ith block. Thus, all the peaks (P j

±i) are enhanced in each
block. These enhanced peaks can improve the recognition rate.

Fig. 1 shows an example of block diagram, for j = 3, for
separating blocks and determining the maxima. Therein, two
longer vertical dot-lines show the boundary of the main block.
Further, S1, S2 and S3 indicate the main block, left-hand side
block and right-hand side blocks, respectively. The shorter
vertical dot-lines show the boundary of a block in S3. The



maxima in different blocks are given by P−1, P0, P1, P2 and
P3. We can use these peak values to improve the recognition
rate.

D. Third Step: Noise Coefficient Addition

Different noise level cause different corruption degree for
cj,i. We define SSNR as the noise level coefficient. S10, S15

and S20 correspond to 10 dB, 15 dB and 20 dB respectively.
By simulations, we set S10 = 0.1, S15 = −0.1 and S20 =
−0.8.

E. Final Step: Using Block-based DRA

We have obtained blocks and determined maxima and noise
level coefficients. In each identified block, we substitute is
corresponding maximum and noise level coefficient in (1),
which can be represented by Eq. (3).

c′k,i =
ck,i

P j
±i + SSNR

, (3)

IV. EXPERIMENTS

In the training of HMM [10] [11], all sentences are assumed
to be recorded under clean or low noise situation. In other
words, any time varying noises and high level noises are
not considered in this training stage. From these reasons,
conventional CMS, RSA and DRA are applied to all given
training speech data set.

A. Model Building

Even when the speech data sets for the training are recorded
under low noise circumstances, the effect of convolution
disturbance, i.e., microphone, may influence speech features.
During the training stage for HMMs, CMS, RSA and DRA
should be used where conventional systems have employed
only CMS and CMS/RSA.

As the merit of RSA, the un-speech feature over 15 Hz on
MSD can be more accurately reduced than RSF method. In
addition, using RSA with CMS, the high accurate noise and
disturbance components can be eliminated effectively.

The effects of CMS and RSF are not small for the dynamic
range of speech feature trajectory mentioned in the previous
section. The conventional DRA is applied to them for the
dynamic rage normalization of their estimated and processed
speech features.

The benefits of normalizing the feature vectors by DRA in
the entire sentence are two-fold: it significantly reduces noise
corruption and it preserves important speech characteristics.
The speech sound condition for model building is shown in
Table I.

B. Blocks in Recognition

In training, in order to get noise-robust model, we use CMS,
RSA and DRA to process the speech feature vectors. For
recognition, we use only block-based DRA algorithm without
the RSA method. The condition is showed as Table II.

In the speech recognition stage, the block-based DRA is
applied. In the speech recognition, we do not know any time

TABLE I: Acoustic analysis conditions

Sampling frequency 16 kHz
Frame shift 10.0 ms
Frame length 25.0 ms
Window type Hanning
Training data 23651 sentences from 153 people
Emphasizing of High Frequency 1− 0.97z−1

HMM state number 5 states (include start and end states)
Number of Gaussian Mixtures 16
Clustering about 2000 states

TABLE II: Recognition conditions

Known data for testing 50 sentences from 12 people
Unknown data for testing 180 sentences from 6 people
Sampling and frame conditions the same with Table I

range for observed speech and thus it is impossible to known
the length of speech waveform as a prior information. In
addition, during the speech recording, some different noises
and disturbances may happen. For the accurate noise and dis-
turbance reduction, the proposed block-based DRA is applied.

In addition, CMS is also applied to the estimate of speech
features. However, RSA by which the speech features over 15
Hz in MSD are reduced is not applied to the speech recognition
stage. In order to improve the speech recognition performance
more, the detail speech features of observed waveform are
used in its stage.

In Table III, the mean lengths of all long vowels are less
than 15. We can calculate out the main block width more than
2Lm from Section III-B. If we set Lm = 15, the main block
width includes at least one long vowel.

Block width is determined by Lw, which also changes re-
lations among elements. Small Lw causes substantial changes
of relations among elements and leads to an abrupt decrease
is recognition rate. On the other hand, large Lw causes
no changes of relations among elements and leads to the
recognition rates near those of conventional DRA. We set
Lw = 80 in simulations.

The cepstral variance normalization (CVN) technique nor-
malizes the feature variance to a same scale. The cepstral mean
normalization (CMN) and CVN are usually used in cascade
to form the mean and variance normalization (MVN) to
normalize the features. We show all the results for comparison
in the Table V and Table VI.

TABLE III: Long vowel phoneme frame average length [%]

Phoneme Means Variance Appear Times
a: 13.35 13.50 2054
e: 14.46 15.59 12688
i: 14.93 20.97 1724
o: 13.83 19.01 37657
u: 10.64 17.50 4831



TABLE IV: Noise Kinds

Noise Name Noise Name Noise Name
babble buccaneer1 buccaneer2
destroyerenginer destroyerops f16
factory1 factory2 hfchannel
leopard m109 machinegun
pink volvo white

TABLE V: Recognition rates for clean conditions [%]

Proposed RSA MVN
Corr Acc Corr Acc Corr Acc

known data 92.55 91.49 91.89 90.69 91.26 90.49
unknown data 82.99 81.56 80.58 79.00 82.88 81.60

V. RESULTS

In this experiments, all HMM have been trained by using
JNAS database [12]. It is produced by 153 males’ native
Japanese speakers.

We use two measures for the performance of speech recog-
nition:

RC =
N − S −D

N
× 100 [%], (4)

RA =
N − S −D − I

N
× 100 [%], (5)

where N is the total number of words in the set of speech
sentences, S is the number of misrecognized words, D denotes
the number of words which are not selected as words by the
system, I denotes the number of words which are misrecog-
nized as words, i.e., noise components and non-speech sounds.
Above, RC shows the correct word recognition rate for the
entire set of speech words, and RA shows the accuracy of the
total CSR performance.

We simulated all data not only in clean conditions but also
for various noise types for several SNR values. We have added
15 kinds of noise for testing shown by Table IV. In all result
tables, the ‘Proposed’ column denotes the method that used
CMS, RSA and DRA for modeling, and both CMS and block-
based DRA algorithm for testing. The ‘RSA’ column denotes
the method that used CMS and RSA for modeling, and CMS
for testing. The ‘MVN’ column denotes the case when RSA
and MVN was used for modeling, and MVN for testing.
Table V shows the results in the clean conditions. Table VI
shows the average results in different SNR conditions.

VI. C

A new block-based DRA algorithm has been implemented
for unspecific speaker recognition. The proposed method has
enhanced the recognition rate under lower SNR noise envi-
ronments. The DRA normalizes the maximum amplitudes of
MFCC in each selected block. The proposed CSR system
yields higher accuracy than conventional systems under 20,
15 and 10 dB noise environments.

TABLE VI: Average recognition rates in noisy conditions [%]

SNR Proposed RSA MVN
Corr Acc Corr Acc Corr Acc

known 20 dB 80.08 77.72 77.80 75.82 78.25 76.05
data for 15 dB 68.06 64.81 61.10 58.40 63.32 59.82

recognition 10 dB 49.85 46.27 39.23 36.98 46.15 41.86
unknown 20 dB 73.76 71.31 72.46 70.23 73.08 70.63
data for 15 dB 63.01 60.14 58.18 55.95 59.60 56.64

recognition 10 dB 47.85 44.75 37.06 35.19 42.87 40.18
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