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Abstract—We recover the shape of a moving object, repre-
sented by the occupancy of grid voxels in the physical space,
from the consistency of its foreground occupancy in multiple
camera views. To deal with the noise due to loose temporal
synchronization, lighting variation and calibration errors, we
integrate the foreground occupancy of each grid voxel over its
local neighborhood. Especially, we design a way to decouple
each integral direction, so that the accumulation along this
direction can be efficiently computed by integrating pixels along
a row/column in the transformed foreground masks, which also
enables the access to the intermediate physical positions between
two neighboring voxels. We further accelerate this integration by
using the technique of integral images. The performance of the
proposed method has been investigated experimentally.

I. INTRODUCTION

Shape reconstruction is not only meaningful in shape mea-
surement, but also useful in providing clues (e.g. skeleton) to
activity detection in various entertainment/surveillance appli-
cations. Many methods have been proposed for shape recon-
struction from multiple photographies[1], including volumetric
reconstruction using voxels[2], polyhedral visual hull using
tangent surfaces [3], and space carving via photo consistency.
Volumetric reconstruction is popular due to its simple and
flexible presentation of 3D shapes, but is usually compu-
tationally heavy. Although less computationally expensive,
visual hull-based methods require more cameras to make a
surface accurate and are more sensitive to noisy foregrounds,
which limits their potential applications. Furthermore, we
avoid adding extra restrictions to camera placement, lighting
conditions, or grayscale/color cameras. Hence, methods based
on color consistency, e.g. [2], are not considered here.

A simple but efficient way of volumetric reconstruction
is to accumulate the foreground occupancies, following the
homographic occupancy constraint in [4], which explores
that only occupied voxels can be correctly warpped into the
foreground of all camera views. However, this consistency
is usually biased in real applications, due to loose temporal
sychronization and inaccurate calibration. Furthermore, the
foreground occupancy mask usually contains noise due to
the inefficiency of automatic background removal methods. In
Fig.1, we present some sample noises in the foreground oc-
cupancy mask obtained using the state-of-the-art background
extractor, under different tolerance thresholds, including

• Noise due to varying light conditions (e.g., the horizontal

noise band due to the strobe lamps here) or camera CCD
noises (, which is not obvious here, but is severe, e.g., on
a surveillance video taken in early morning or evening,
or in night view mode). This kind of noise could be
even more significant if the background template were
not dynamically updated. However, this kind of noise is
less consistent in different camera views;

• Noise due to foreground/background texture patterns.
This pattern could either be the original pattern, e.g., the
zebra patterning of the sweater, or a pattern generated
by the movement of body parts, e.g., the wrinkles of
the cloths. Except for the case that the object intends
to hide himself by taking a very similar pattern to the
background, this kind of noise will not cause a large area
of data missing in the foreground occupancy mask;

• Noise due to shadows. This is not really a noise, because
the shadow is something that does exist in the environ-
ment, with well consistency in multiple camera views;

• Noise due to an over-high tolerance threshold or a similar
pattern between the foreground and background. This
kind of noise usually results in large area data missing
of foreground occupancy masks, e.g., the legs here.
Source Video Frame Tolerance Threshold=10 Tolerance Threshold=20 Tolerance Threshold=30 

Fig. 1. Some sample noises in the foreground occupancy mask obtained using
the state-of-the-art background extractor, under different tolerance thresholds.

For object tracking, it could be better to raise the tolerant
threshold for a neat foreground mask, so as to suppress the
noises from shadows and varying lighting conditions [6].
For recovering the body shape, it is safer to preserve more
potential foreground pixels, than taking the risk of losing
important body parts. Furthermore, background noises under
a low threshold are usually inconsistent in different camera
views, which thus could be filtered out via validating the
homographic occupancy constraint. Hence, we prefer more to
reconstruct a shape from a noisy foreground mask.
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Robust reconstruction against this noise is further improved
by considering its neighboring points in the physical 3D space.
Due to projective transformation and lens distortion, it is
inefficient to apply the mean filter directly on foreground
masks. [5] corrects the vanishing point in Z-direction to ensure
that people are always standing vertically in the image plane,
so as to easily apply a rectangle bounding-box on the images
for people tracking. In the present paper, we extend this
correction to all three directions and design an efficient spatial
integration around each grid voxel, based on which we propose
a more robust volumetric shape reconstruction method.

In the following parts, we first explain how we could
achieve efficient spatial integration around each grid voxel in
Section II, and then introduce the overall method for shape
reconstruction in Section III. We then provide experimental
results in Section IV and conclude the paper in Section V.

II. EFFICIENT SPATIAL INTEGRATION

Spatial integration over a voxel’s neighbourhood improves
both the robustness against noisy foregrounds, and the effi-
ciency of utilizing the foreground information. We achieve the
spatial integration by decoupling each integral direction, which
is a process to transform the integral direction into an efficient
scanning order in the foreground occupancy masks. As shown
in Fig.2, this process includes two major steps: 1) We con-
vert spatial integration into row/column-wise accumulation of
foreground occupancy; 2) We perform row/columnwise equal-
ization of integral length, so as to determine the integral range
in the foreground masks. Here, we only explain the processing
of the X-direction integration. Derivation of transformations in
other directions is similar.

Lens 
Undistortion

Correction of Vanishing Points

X Direction Y Direction Z Direction

X Direction Y Direction Z Direction
Row/Column-wise Equalization of Integral Length

Fig. 2. Diagram for decoupling the X , Y , and Z integral directions in the
original camera view via vanishing point correction and image shearing.

A. Correction of vanishing points

Given a camera where the lens distortion has been corrected,
projection matrix P projects a physical point p = [XY Z1]T

into an image point i = [uv1]T , i.e., i = Pp. We correct
the vanishing point, so that all paralleled lines along the X-
direction are projected into paralleled vertical lines in the

camera view. This is achieved by multiplying P with a 3× 3
matrix B, i.e., the corrected projection matrix P̂ = BP, and

B =

⎡
⎣ 1 -P11/P21 0

0 1 0
0 -P31/P21 1

⎤
⎦ . (1)

Qij denotes the element in the ith row jth column of Matrix
Q. It is easy to verify that both P̂11 and P̂31 are zero, and
thus any changing in the X-th direction will only be reflected
by the vertical direction in the modified camera view.

B. Row/column-wise equalization of integral length
We further left multiply P̂ with matrix S, which reads

S =

⎡
⎣ 1 0 0

s 1 0
0 0 1

⎤
⎦ , (2)

with s = (P̂23P̂32−P̂22P̂33)/(P̂12P̂33−P̂13P̂32). Projection
matrix SP̂ projects p = [XY Z1]T into î = [ûv̂1]T , where

û =
P̂12Y + P̂13Z + P̂14

P̂32Y + P̂33Z + P̂34

, (3)

v̂ =
P̂21X + Const1

P̂32Y + P̂33Z + P̂34

+ Const2. (4)

In the integral image whose X direction has been corrected
using the process in Fig.2, the integral length lX(p1,p2)
between two points p1 = [X1Y Z1],p2 = [X2Y Z1] is
linearly proportional to X1 −X2, i.e.,

lX(p1,p2) =
P̂21(X1 −X2)

P̂32Y + P̂33Z + P̂34

, (5)

which enables us to easily compute the integral range.
From Eq.(4), any points in the YZ homography plane that

are projected into the same row of the image, have the same
unit integral length. (Here, the unit integral length at a voxel
is defined as the pixel distance corresponding to a unit length
from this voxel in the physical space.) This property can be
used to improve the computational efficiency.

III. ROBUST SHAPE RECONSTRUCTION

As shown in Fig.3, our reconstruction method with spatial
integration consists of two major steps:

Step 1) We prepare integral images of foreground occupancy
masks, by extracting foreground masks, correcting vanishing
points and computing integral images;

Step 2) We determine the integral range in each integral
image for the current voxel. The integral origin can be com-
puted from its distance to a referential plane, while the unit
integral length only depends on its projected position in this
referential plane (Eq.5).

We then calculate the confidence C([XY Z1]T ) of voxel
occupancy by accumulating the foreground occupancy masks
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Fig. 3. The block diagram of the proposed method of shape reconstruction.

in the three space directions from all camera views, i.e.,

C([XY Z1]T ) =
∑
c

{
∫ X+ΔX

X−ΔX

Fc([xY Z1]T )dx

+

∫ Y +ΔY

Y −ΔY

Fc([XyZ1]T )dy

+

∫ Z+ΔZ

Z−ΔZ

Fc([XY z1]T )dz}, (6)

where Fc([XY Z1]T ) is the corresponding value of point
[XY Z1]T in the foreground occupancy mask. ΔX ,ΔY ,ΔZ

are prespecified neighbourhood size of spatial integration
in the X,Y, Z direction respectively. Note that we perform
integration along three lines rather than over the whole cubic
neighbourhood, so as to reach a balance between computa-
tional burden and robustness. ΔX ,ΔY ,ΔZ should be small
with respect to the thickness of the object, so as to avoid
losing details. We then compare this confidence value to a
prespecified threshold to determine the voxel occupancy.

In order to improve the computational efficiency, we or-
ganize all pre-computable parts together, including the Look-
Up Tables (LUT) for projecting the lens-distorted foreground
masks to the integral image, LUTs for projecting three ho-
mography planes to their corresponding integral images, and
LUTS for saving the origin position and unit integral length
for each point in those referential homography planes.

IV. EXPERIMENTAL RESULTS

We investigate the performance by using both the Muhavi
database[7] and our own video database. Some sample images
are shown in Fig.4. We first present some quantitative exper-
imental results on artificial noises in Section IV-A, and then
give some results on real noisy foreground masks.

Fig. 4. Samples images of the MuHavi Database.

A. Results on robustness against artificial noises
Since the real noise is difficult to evaluate, we apply artificial

noises to manually annotated silhouettes to simulate the noisy
foreground masks, where the noise level is defined as the
probability of flipping a foreground occupancy. We compare
our method, which in fact applies adaptive mean-filtering on
the image plane, to both reconstruction without smoothing
and reconstruction from pre-smoothed foreground masks after
applying fixed-size mean-filtering.
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Fig. 5. Reconstruction results are shown for seven cases, under different noise
levels. The proposed method not only has less false positive alarms, but also
has lower false negative alarms as shown in Fig.6.

In Fig.5, we compare seven cases, namely no integration,
two cases on pre-smoothed foreground masks with their half
window size being 5px and 10px, four with spatial integration
at length ΔX = ΔY = ΔZ = 5mm, ΔX = ΔY = ΔZ =
25mm, ΔX = ΔY = ΔZ = 50mm, and a very large length
ΔX = ΔY = ΔZ = 200mm,, under five different noise
levels from no noise to 40%. In the left column, we show
the sample noisy foreground, while in the next columns, we
display the resultant images of the reconstructed shapes. We
have the following major observations:

1) With the increasing of integration length, the shape is
better preserved under a higher noise level.

2) Spatial integration is useful in reducing the false positive
alarms caused by isolated voxels, as a result of performing the
adaptive mean filtering.

3) Under a high noise level, legs are missing in the results
from fixed-size mean-filtering. In all camera views of the
current database, legs are further than the upper body, which
thus are thinner in the foreground masks. Under the fixed
size mean-filtering, legs receive a stronger smoothing than the
upper body, which made them closer to the background area
and caused them disappearing after applying the threshold.
This is not simply solvable by changing globally the window
size of the filter. To the contrary, the legs are well preserved



in the proposed methods, which is considered to be an ad-
vantage of using adaptive window size in the pixel domain
(to perform constant length integration in the physical world).
This improvement is essential in some applications, e.g., when
the recovered voxels are used later to skeletonize the body.

4) A proper integral length improves the robustness against
strong noises, while an overlarge integral length loses details
(e.g., the case of 200mm), where a balance need to be found.

Fig. 6. Percentage of missing voxels over all positive grid voxels in the noise-
free case has been plotted for four cases, which shows that reconstruction with
space integration has less missing voxels under the same noise level.

Lacking of the ground-truth, it is difficult to check the
amount of missing voxels due to the noise. For each case with
a different integral length, we approximate its ground-truth by
the shape obtained from the noise-free foreground masks, and
plot the percentage of missing voxels WRT the ground-truth in
Fig.6. It shows that reconstruction with spatial integration has
also a lower number of missing voxels under the same noise
level. For the case of 5mm, it is close to the case without
integration, because 5mm is relatively small in pixel sizes due
to the low resolution (720px × 576px) of the camera view,
while integral length 50mm is already quite large and thus
achieves little improvement over that of 25mm.

B. Results on robustness against real noises
We are validating the performance against real noises, on

our own video dataset. In Fig.7, we compare two cases,
i.e., reconstruction with and without spatial integration, under
different thresholds of voxel filtering, and present the results
on five typical frames. Here, the integral length is set to 50mm.
We make the following observations:

• In order to preserve the body parts, we adopt a sensitive
foreground extractor, which results in noisy foreground
masks. Since the noise is in general less consistent than
body parts in different camera views, most of noisy voxels
are removable by setting a proper threshold.

• A very high threshold as 0.9 is risky in losing key body
parts. Spatial integration enlarges the difference between
isolated noises and those noisy body parts, which further
suppresses noises and separates objects better under low
filtering thresholds. As a result, spatial integration pro-
vides a wider range of working thresholds, which could
improve the overall quality and stability of reconstruction
over a large set of frames.
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Fig. 7. Some results on real noises. Spatial integration helps to reduce the
noisy voxels in the final results, and thus makes the result more robust under
different threshold setup of voxel filtering.

V. CONCLUSION
We propose a robust method for recovering volumetric

shapes from multi-view videos, where the occupancy of grid
voxels in the 3D space is determined by accumulating its
neighboring points in all foreground occupancy masks. There
are two major contributions: firstly, we designed an efficient
way to perform this spatial integration; secondly, we develop a
reconstruction method using this integration technique. From
experimental results, we confirm that the proposed method is
efficient in both filling missing voxels and removing isolated
false voxels, which thus has a higher robustness against noisy
foreground occupancy masks. The possibility of applying
adaptive processing regarding the boundary of objects for
maintaining local details during smoothing will be discussed
in our future work. Although the trend was evaluated in this
paper, we lacks of ground truth of shape data for precision
evaluation, which will be investigated in our future work, along
with body skeletonization and action recognition.
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