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Abstract—In this paper, we propose the use of the flexible
independent component analysis (ICA) algorithm for the acoustic
echo cancellation (AEC). The flexible ICA algorithm has a
parametric score function which is controlled by the Gaussianity
of the source signal (speech in our case). The probability density
function of the speech signal is not always the super Gaussian,
hence the inflexible score function used in the existing ICA-
based AEC system is not always suitable. On the other hand,
the proposed method is able to always provide the suitable
score function depending on the present Gaussianity of the
speech signal. The experimental results indicate that the proposed
method significantly outperforms the existing ICA-based AEC
algorithm and the variable step-size (VSS)-NLMS algorithm.

I. INTRODUCTION

The face-to-face video calls feature of the latest handheld
communication devices has changed our communication style.
Instead of putting our phone next to our ear, we would
set the loudspeaker on. However, the echo generated by
reflection from the walls disrupts our conversation, therefore
acoustic echo cancellers are necessary. The basic acoustic echo
canceller (AEC) system originated from the network echo
cancellation system where echo is caused by the unbalanced
impedance matching between the two-wire loop and the four-
wire loop in the telephone network [1]. In this case, adaptive
filters of 32 ms in length are usually sufficient to give an
adequate echo cancellation. On the other hand, the acoustic
echo path is extremely long (can be in order of 125 ms) [1],
and it may change at any time due to any movement of the
phone user (for example, walking), therefore a fast-adapting
AEC algorithm is required.

The simple normalized least mean square (NLMS) algo-
rithm is commonly used to update the adaptive filter coef-
ficients in the echo-cancellation system. In the presence of
double-talk, the NLMS algorithm may become unstable and
diverge [1]. To handle this problem, the filter adaptation should
be halt when the double-talk is detected, and hence the double-
talk detector (DTD) is needed. There are several DTD algo-
rithms for AEC: Geigel algorithm, cross-correlation method,
and coherence method (see [1] and references therein). Never-
theless, there is some delay in the decision of a DTD; during
this small delay, a few undetected large amplitude samples
can perturb the echo path estimate considerably [2]. In order
to avoid this perturbation of echo path model, several DTD-
free AEC methods have recently been reported [2]-[5].

There are mainly two types of DTD-free AEC methods: one
method uses a variable step-size (VSS) [2], [3], and the other
method is based on the independent component analysis (ICA)
[4], [5]. The first method is a generalization of the NLMS
algorithm which estimates the power of the near-end signal,
and hence its performance depends on the estimation accuracy.
However, its performance is limited because it is using only
up to second-order statistics (correlation-based method). On
the other hand, the second method is based on independence
(stronger statistics than correlation). It employs a semi-blind
structure of the time-domain (TD) ICA (feedback network).
However, the basic TD-ICA system has a slow convergence
problem, therefore this method also has the same problem.

In this paper, we attempt to improve the existing ICA-based
AEC system by employing flexible ICA [6]. The probability
density function of the speech signal is not always the super
Gaussian [7]. Therefore, the inflexible score function (i.e.,
tanh(·)) is not always suitable. On the other hand, the flexible
ICA has a parametric score function which is controlled by the
Gaussianity of the source signal. In the original formulation
of the flexible ICA algorithm, the score function is derived
from the generalized Gaussian distribution (GGD) function.
In [8], we have proposed generalized Cauchy distribution
(GCD)-based score-function for flexible ICA. The GCD has
the property of having heavy tails which makes it suitable for
modelling a temporal signal such as speech. In the simulations,
we evaluate both the GGD-based and the GCD-based flexible
ICA algorithms and compare their performance with the
original ICA-based AEC algorithm [4]. [5] and the VSS-
NLMS algorithm [2], [3].

The rest of the paper is organized as follows. Section
2 describes the basic AEC model and gives an overview
of several AEC methods. In Section 3, the flexible ICA-
based AEC methods are proposed. The simulation results are
presented in Section 4 followed by the concluding remarks
presented in Section 5.

II. AEC MODEL AND EXISTING METHODS

The basic system model for echo cancellation is shown in
Fig. 1, where v(n) and x(n) denote the near-end signal (NES)
and far-end signal (FES), respectively, and H(z) denotes
transfer function of acoustic room impulse response (RIR).
Assuming that H(z) is modeled as an FIR filter of length L,
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Fig. 1. Basic system model for echo cancellation.

the echo signal y(n) is given as

y(n) = hTx(n), (1)

where h = [h0 h1 · · · hL−1] is the coefficient vector for
H(z) and x(n) = [x(n) x(n − 1) · · · x(n − L + 1)]T

is the input vector comprising L recent samples of recorded
FES x(n). With η(n) denoting the ambient noise, the output
of the near-end microphone is given as

d(n) = v(n) + y(n) + η(n), (2)

which acts as a desired response for the adaptive filter Ĥ(z),
modelling echo path filter H(z). Taking FES x(n) as its input,
the error signal for Ĥ(z) is generated as

e(n) = d(n)− ŷ(n), (3)

where

ŷ(n) = ĥT (n)x(n), (4)

is the replica of far-end echo, and ĥ(n) =
[ĥ0(n) ĥ1(n) · · · ĥL−1(n)]T is the tap weight vector
for Ĥ(z). The coefficients of Ĥ(z) are adapted using NLMS
algorithm as

ĥ(n+ 1) = ĥ(n) + µ(n)x(n)e(n), (5)

where

µ(n) ≡ µNLMS(n) =
µ̃

xT (n)x(n) + δ
(6)

is the time-varying step-size for NLMS algorithm, µ̃ is a
fixed step-size chosen experimentally, and δ is a small positive
constant to avoid division by zero.

The NLMS algorithm holds a single-talk scenario assump-
tion, i.e., v(n) = 0. In the presence of NES, this assumption is
not valid, therefore during a double-talk condition the NLMS
algorithm diverges. In order to solve this problem, Paleologu,
et al. [2], [3], proposed a variable step-size NLMS (VSS-
NLMS) algorithm. The practical learning algorithm of the

VSS-NLMS is given as,

µVSS(n) =
µ̃

δ + xT (n)x(n)

∣∣∣∣∣∣1−
√
|σ̂2
d(n)− σ̂2

ŷ(n)|

ζ + σ̂2
e(n)

∣∣∣∣∣∣ , (7)

where ζ is a small positive constant to prevent division by
zero. The σ̂2

d(n), σ̂2
ŷ(n), and σ̂2

e(n) are the power estimates
of near-end microphone output d(n), echo replica ŷ(n), and
error signal e(n), respectively, and are computed as

σ̂2
d(n+ 1) = λσ̂2

d(n) + (1− λ)d2(n), (8)

σ̂2
ŷ(n+ 1) = λσ̂2

ŷ(n) + (1− λ)ŷ2(n), (9)

σ̂2
e(n+ 1) = λσ̂2

e(n) + (1− λ)e2(n). (10)

where λ is a weighting factor chosen as λ = 1 − 1/(KL),
with K > 1.

Another interesting approach is described in [4], [5] where
the basic idea is to put system identification in the frame-
work of ICA. In this approach, instead of (3), error signal is
generated as

e(n) = a(n)d(n)− ŷ(n), (11)

where a(n) is a nonzero scalar quantity which in the usual
adaptive filtering problem is set to 1. Then, instead of (5), a
new natural gradient-based update rules are given as

ĥ(n+ 1) =ĥ(n) + µ1 [ϕ(e(n))x(n)

+ {1− ϕ(e(n))e(n)} ĥ(n)
]
, (12)

a(n+ 1) =a(n) + µ2[1− ϕ(e(n))e(n)]a(n), (13)

where ϕ(·) is called the score function and is calculated as

ϕ(e(n)) = −∂ log p(e(n))

∂e(n)
, (14)

and in [4], [5] the tanh(·) function is used. Hereafter, natural
gradient ICA-based AEC algorithm is referred as NG ICA-
AEC.

III. FLEXIBLE ICA-BASED AEC

In ICA, the choice of the score function ϕ(·) plays a crucial
role in determining the performance of the algorithm [9]. Due
to this, we put our focus on finding the best score function
to improve the ICA-based AEC system. We consider that
the commonly used tanh(·) function does not give a good
enough solution to the problem. The function tanh(·) is a
common choice for super Gaussian source signals. however the
probability density function of the speech signal is not always
the super Gaussian [7]. Hence, in this paper, we propose the
use of the flexible ICA to solve the AEC problem.

The idea of the flexible ICA is to provide a parametric score
function which is controlled by the Gaussianity of the source
signal. To measure the Gaussianity of the source signal, the
following online kurtosis estimation is adopted.

κ(n) =
M̂4(n)

M̂2
2 (n)

− 3, (15)



where M̂2 and M̂4 are the estimation of the second- and
forth-order moments, respectively. These estimates can be
recursively computed as

M̂2(n+ 1) = λM̂2(n) + (1− λ)e2(n) (16)

M̂4(n+ 1) = λM̂4(n) + (1− λ)e4(n). (17)

There are two parametric score-functions which are dis-
cussed in this paper. One is the generalized Gaussian dis-
tribution (GGD)-based score-function, which is provided in
the original flexible ICA algorithm [6]. The other one is the
generalized Cauchy distribution (GCD)-based score-function
which we had already proposed [8].

A. GGD-Based Score Function

The probability density function (PDF) for the generalized
Gaussian distribution is given as [6]

p(e(n); γ(n)) =
γ(n)

2σ̂e(n)Γ( 1
γ(n) )

exp

(
−
∣∣∣∣ e(n)

σ̂e(n)

∣∣∣∣γ(n)
)

(18)

where Γ(·) is Gamma function given by

Γ(x) =

∫ ∞
0

tx−1 exp(−t)dt. (19)

Inserting (18) into the score-function formula (14), we obtain
the GGD-based score-function formula [6]

ϕ(e(n)) = |e(n)|γ(n)−1sgn(e(n)) (20)

Note that, for γ(n) = 1, (20) becomes a sgn(·) function,
and thus ϕ(e(n)) = sgn(e(n)), which can be derived from
the Laplacian density model for sources. For γ(n) = 2, (20)
becomes a linear function, and thus ϕ(e(n)) = e(n), which
can be derived from the Gaussian density model for sources.
For γ(n) = 4, (20) becomes a cubic function which is known
to be a good choice for sub Gaussian signals [6]. Depending
upon kurtosis κ(n) estimation in (15), the shape parameter
γ(n) is chosen as

γ(n) =

{
1; κ(n) ≥ 0 (super Gaussian)
4; κ(n) < 0 (sub Gaussian). (21)

Hereafter, GGD-based algorithm is referred as Flexible ICA-
AEC1.

B. GCD-Based Score Function

Instead of the generalized Gaussian distribution given in
(18), we proposed the use of a generalized Cauchy distribution
to derive a new score-function [8]. The GCD has a PDF given
by,

p(e(n), σ̂e, q(n), n) = g(n)σ̂e(σ̂
q(n)
e + |e(n)|q(n))−

2
q(n) (22)

where σ̂e denotes the standard deviation of error signal, q(n)
is the shape parameter, and g(n) is given as

g(n) =
q(n)Γ

(
2

q(n)

)
2
(

Γ
(

1
q(n)

))2 , (23)

TABLE I
SUMMARY OF PROPOSED FLEXIBLE ICA-BASED ALGORITHMS

FOR DTD-FREE AEC

Initialize: a(n), K, M̂2(0), M̂4(0), and ĥ(0).

while {x(n),v(n)} is available do
1. ŷ(n) = ĥT (n)x(n),
2. e(n) = a(n)d(n)− ŷ(n),

3. M̂2(n+ 1) = λM̂2(n) + (1− λ)e2(n),

M̂4(n+ 1) = λM̂4(n) + (1− λ)e4(n),

κ(n) =
M̂4(n)

M̂2
2 (n)

4. γ∗(n) =

{
1; κ(n) ≥ 0 (super Gaussian)
4; κ(n) < 0 (sub Gaussian).

q+(n) =

{
1; κ(n) ≥ 0 (super Gaussian)
5; κ(n) < 0 (sub Gaussian),

5. Compute score-function ϕ(e(n))
- (20) for Flexible ICA-AEC 1,
- (24) for Flexible ICA-AEC 2.

6. Update Ĥ(z): ĥ(n+ 1) = ĥ(n) + µx(n)ϕ(e(n)).

end while

* : shape parameter for GGD,
+ : shape parameter for GCD.

where Γ(·) is the gamma function (given in (19)). Substituting
(22) in (14), the GCD-based score-function is obtained as

ϕ(e(n)) = 2(σ̂q(n)e + |e(n)|q(n))−1|e(n)|q(n)−1sgn(e(n))
(24)

Depending upon kurtosis κ(n) estimation in (15), the shape
parameter q(n) is chosen as

q(n) =

{
1; κ(n) ≥ 0 (super Gaussian)
5; κ(n) < 0 (sub Gaussian), (25)

where values assigned for this cases are decided empirically.
Hereafter, GCD-based algorithm is referred as Flexible ICA-
AEC2.

We found that the natural gradient given in (12) causes the
convergence rate to be slow. We also set the scalar quantity
a(n) to 1 (fixed) as in the usual adaptive filtering, therefore
the learning rule for a(n) given in (13) can be eliminated.,
Based on these, we apply the following usual gradient ICA
algorithm instead.

ĥ(n+ 1) = ĥ(n) + µϕ(e(n))x(n). (26)

Hereafter, usual gradient ICA-based AEC algorithm is referred
as UG ICA-AEC. As a reference, Table I gives summary of
proposed flexible ICA-based methods for DTD-free AEC.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Simulations are carried out in MATLAB. For the FES
signal, two kinds of signals are used: speech signal and
Gaussian signal of the same variance, and for the NES signal
only speech signal is used. The length of each signal is 60
seconds (sampling frequency is 8 kHz) and the waveplots
are given in Fig. 2. An echo path of length L = 512 (64
ms) is generated using MATLAB’s room impulse response
(RIR) generator [11] and is shown in Fig. 3. An independent



TABLE II
SUMMARY OF SIMULATION PARAMETERS FOR VARIOUS ALGORITHMS STUDIED IN THIS PAPER

Gradient Parameters

NLMS usual (5) ĥ(0) = 0, µ(n) = µNLMS(n) (6), µ̃ = 1, δ = 30σ2
x

VSS-NLMS [3] usual (5) ĥ(0) = 0, K = 2, λ = 1− 1/(KL), µ(n) = µVSS(n) (7), µ̃ = 4× 10−1, δ = 30σ2
x,

σ̂2
d(0) = 0, σ̂2

ŷ(0) = 0, σ̂2
e(0) = 0, η = 10−8.

NG ICA-AEC [4] natural (12) ĥ(0) = 0, a(0) = 1, ϕ(e(n)) = tanh(e(n)), µ1 = 10−2, µ2 = 10−2

UG ICA-AEC usual (26) ĥ(0) = 0, a(n) = 1, ϕ(e(n)) = tanh(e(n)), µ = 10−2

usual (26) ĥ(0) = 0, a(n) = 1, ϕ(e(n)) = sgn(e(n)), µ = 10−3

Flexible ICA-AEC1 usual (26) ĥ(0) = 0, a(n) = 1, K = 2, λ = 1− 1/(KL), M̂2(0) = 10−2, M̂4(0) = 10−4, ϕ(e(n)): GGD (20),

µ = 10−3.

Flexible ICA-AEC2 usual (26) ĥ(0) = 0, a(n) = 1, K = 2, λ = 1− 1/(KL), M̂2(0) = 10−2, M̂4(0) = 10−4, ϕ(e(n)): GCD (24),

µ = 4× 10−5

Fig. 2. Waveplots for various signals used in computer simulations: [a] FES
(speech), [b] FES (Gaussian), and [c] NES (speech)

Fig. 3. Impulse response of echo path H(z) used in simulations

Gaussian signal η(n) is added to the echo signal y(n) with
20 dB signal-to-noise ratio (SNR) for all the experiments.
Table II details simulation parameters for various algorithms
investigated in this paper.

After an AEC system has converged, the condition

ĥ ≈ ah

should be fulfilled. Hence, as a performance measure, the

following normalized filter misalignment (NFM) is used.

NFM(n) = 20 log

(
‖a(n)h− ĥ(n)‖2
‖a(n)h‖2

)
[dB], (27)

where ‖·‖2 denotes the l2 (Euclidean) norm.

A. Case 1

In this case, the influence of natural gradient and the adap-
tive scale parameter a(n) given in (12) and (13) is evaluated.
Simulations are conducted using speech FES for the NG ICA-
AEC and the UG ICA-AEC algorithms. The NFM(n) are
calculated for both methods at each iteration and the results are
shown in Fig. 4. The natural gradient (NG) method is relatively
a more stable algorithm compared to the usual gradient (UG)
method: its obtained NFM(n) shows less striking changes
than what obtained by the usual gradient. However, it also
has a drawback of having slower convergence than the usual
gradient. Therefore, based on this result, the choice of using
the usual gradient in our proposed flexible ICA-based AEC
method is made.

The probability density function of the speech signal is not
always super Gaussian [7]. To demonstrate this, simulations
are conducted using speech FES and speech NES signals
for both our proposed flexible ICA-AEC1 method and the
UG ICA-AEC method employing sgn(·) score function. From
(20), it can be seen that when γ(n) = 1 the GGD-based
score function is equal to sgn(·) score function. Hence, if a
speech signal was always super Gaussian, flexible ICA-AEC1
method and the UG ICA-AEC method employing sgn(·) score
function should give exactly the same performance measured
by the NFM(n). However, the evolution of NFM(n) obtained
by the two methods are different as shown in Fig. 5, which
implies that speech signal is not always super Gaussian. It can
also be observed from the figure that for most of the time, the
flexible ICA-AEC1 method gives smaller error than the UG
ICA-AEC employing sgn(·) score function. This is because the
flexible ICA has an on-line Gaussianity measure and chooses



Fig. 4. Evolution of NFMs(n) obtained under Case 1 scenario by NG ICA-
AEC [4], [5] and UG ICA-AEC algorithms versus the number of iterations

Fig. 5. Evolution of NFMs(n) obtained under Case 1 scenario by UG ICA-
AEC with sgn(·) score-function and Flexible ICA-AEC1 algorithms versus
the number of iterations.

a suitable score-function based on the measurement. Since
the performance of gradient-based ICA algorithm depends on
the score function selection based on source distribution, the
flexible ICA-AEC with its adaptive score functions gives a
better performance than the UG ICA-AEC.

B. Case 2

In this case, Gaussian FES is used (FES is speech) and
the evolution of NFMs(n) obtained by NLMS, VSS-NLMS,
NG ICA-AEC, Flexible ICA-AEC1 and Flexible ICA-AEC2
algorithms are shown in Fig. 6. The NLMS algorithm, despite
of having the fastest convergence, becomes unstable and
diverges in the presence of NES (double-talk condition). The
NG ICA-AEC algorithm [4], [5], on the other hand, has
the slowest convergence and in the steady-state condition, it
has a fluctuating performance shown by drastic changes in
its NFM(n) along the iteration axis. The proposed Flexible
ICA-AEC1 and Flexible ICA-AEC2 methods have a faster
convergence and are more stable than the NG ICA-AEC [4],
[5] method. Nevertheless, the best performance is obtained
by the VSS-NLMS algorithm [2], [3] as it gives the lowest

Fig. 6. Evolution of NFMs(n) obtained under Case 2 scenario by NLMS,
VSS-NLMS [2], [3], NG ICA-AEC [4], [5], Flexible ICA-AEC1, and Flexible
ICA-AEC2 algorithms versus the number of iterations

Fig. 7. Evolution of NFMs(n) obtained under Case 3 scenario by NLMS,
VSS-NLMS [2], [3], NG ICA-AEC [4], [5], Flexible ICA-AEC1, and Flexible
ICA-AEC2 algorithms versus the number of iterations

error and a convergence rate almost as fast as the NLMS
algorithm. However, in the presence of NES, it shows drastic
changes along the iteration axis as can be seen in Fig. 6.
This superior performance of VSS-NLMS algorithm can be
explained by the ICA point of view. According to (20), when
γ(n) = 2, it follows that ϕ(e(n)) = e(n) and it is a linear
function which can be derived from the Gaussian density
model for sources. The VSS-NLMS algorithm, just like the
other LMS-type algorithms, are using this score-function and
hence are good for applications involving Gaussian signals.
The VSS-NLMS even has a variable step-size which has a
role of controlling its convergence speed, therefore it has fast
convergence. However, in practical AEC scenarios, FES and
NES are speech signals and are rarely Gaussian as studied in
next experiment.

C. Case 3

In this case, both FES and NES are speech and the evolution
of NFMs(n) obtained by NLMS, VSS-NLMS, NG ICA-AEC,
Flexible ICA-AEC1 and Flexible ICA-AEC2 algorithms are



TABLE III
SUMMARY OF THE COMPUTATIONAL COMPLEXITY OF EACH AEC METHODS USED IN THE COMPARISON

Step of Algorithm Eq. Number No. of Multipliers No. of Adders Another Function Total Cost

NLMS error calculation (3) & (4) L L - 3L+ 2

step size (6) L+ 1 1 - multipliers

score function - - - - and 2L+ 1

filter update (5) L+ 1 L - adders

VSS-NLMS [3] error calculation (3) & (4) L L - 3L+ 16

step size (7)-(10) L+ 15 10 sqrt(·) multipliers,

score function - - - - 2L+ 10 adders,

filter update (5) L+ 1 L - and a sqrt(n)

NG ICA-AEC [4] error calculation (11) & (4) L+ 1 L - 4L+ 5

step size constant - - - multipliers

score function tanh() - - tanh(·) and 3L+ 3

filter update (12) & (13) 3L+ 4 2L+ 3 - adders

Flexible ICA-AEC1 error calculation (3) & (4) L L - 2L+ 10 or

step size constant - - - 2L+ 13

score function (15)-(17),(20), γ(n) = 1 9 5 - multipliers

(15)-(17),(20), γ(n) = 4 12 5 - and 2L+ 10

filter update (26) L+ 1 L - adders

Flexible ICA-AEC2 error calculation (3) & (4) L L - 2L+ 12 or

step size constant - - - 2L+ 17

score function (15)-(17),(24), q(n) = 1 11 6 sqrt(·) multipliers,

(15)-(17),(24), q(n) = 5 16 6 sqrt(·) 2L+ 12 adders

filter update (26) L+ 1 L - and a sqrt(·).
a In the table, L denotes the length of the input buffer,
b There are many methods to compute tanh(·) and sqrt(·) and the complexity depends on the method used.

shown in Fig. 7. Even on this case, the NLMS algorithm
has the fastest convergence and diverges in the presence of
NES (double-talk situation). The NG ICA-AEC method [4],
[5] has the slowest convergence but it has minor fluctuations on
its error performance. The VSS-NLMS [2], [3], on the other
hand, has a better performance compared to the NG ICA-
AEC method explained by having lower error rate and faster
convergence. Nevertheless, the best performance are given by
our proposed Flexible ICA-AEC1 and Flexible ICA-AEC2
methods. The proposed methods, have faster convergence and
lower error rate compared to both the NG ICA-AEC and the
VSS-NLMS algorithms. Moreover, the Flexible ICA-AEC2 is
relatively more stable than the Flexible ICA-AEC1 as it gives
less fluctuations on the NFM(n). This is because the GCD
has a characteristic of having heavy-tails, thus it matches the
distribution of impulsive signal (speech in our case) better
than GGD. However, concerning the convergence rate, our
proposed method is still slower than the NLMS algorithm
(before the presence of NES) and hence we would like address
this issue in our future work.

D. Computational Complexity

Table III shows the summary of the computational com-
plexity of each AEC methods used in the comparison. We
can see from the table that the VSS-NLMS has the highest
computational complexity among the five methods because it
includes the computation of the step size of NLMS algorithm
and three moving averages given in (8), (9), and (10). The
second highest computational cost is given by the NG ICA-
AEC algorithm because its natural gradient ICA-based filter
update rule has a more complex equation. It also has an
update rule for the scalar quantity a(n) and the score function
formula tanh(·) which computational complexity depends on
the computational method used. The third highest computa-
tional complexity is given by the NLMS algorithm because
at every iteration this algorithm calculates xTx + δ which
requires L multipliers and L adders. The proposed Flexible
ICA-AEC1 and Flexible ICA-AEC2 on the other hand has
the lowest computational cost among the five algorithms. The
score function formula of both methods are indeed complex



but each of them only applies to the scalar quantity e(n).
Moreover among the two proposed methods, the Flexible ICA-
AEC2 method has a slightly higher computational cost than the
Flexible ICA-AEC1 method for it has a more complex score
function equation which requires more multipliers, adders and
the sqrt(·) function.

V. CONCLUDING REMARKS

In this paper, we have proposed Flexible ICA-based AEC
algorithms. In simulations involving Gaussian far-end signal
(FES), our proposed Flexible ICA-AEC1 and Flexible ICA-
AEC2 methods outperform the NG ICA-AEC method [4], [5]
but underperform the VSS-NLMS algorithm [2], [3]. This is
because the VSS-NLMS and the other LMS-type algorithms
are good for applications involving Gaussian signals (see
Case 2 in Section IV). However, in practical AEC scenarios,
where FES is speech signal and rarely Gaussian, our proposed
methods outperform both the NG ICA-AEC and the VSS-
NLMS algorithms. Moreover, the Flexible ICA2 is more stable
than the Flexible ICA1 as it shows less fluctuations on its
NFM(n) (see Case 3 in Section IV). In the future, we would
like to improve the convergence rate of our proposed methods.
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