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Abstract—This paper proposes to integrate probabilistic latent
semantic analysis (PLSA) and Laplacian Eigenmaps (LE) for
broadcast news story segmentation. PLSA can address synonymy
and polysemy problems by exploring underlying semantic rela-
tions beneath the actual occurrences of words. LE can provide a
data transformation with the advantage of preserving the original
temporal structure of sentence cohesive relations. We adopt PLSA
statistics to replace term frequency as the representation of
sentences and measure their connective strength. LE analysis
is then performed on the connective strength matrix so that the
sentence relations becomes geometrically evident for discriminat-
ing different stories. A dynamic programming (DP) algorithm
is used for story boundary identification. Experiments show
that the proposed method achieves superior story segmentation
performances with the highest F1-measure of 0.7536 on TDT2
Mandarin BN corpus.

I. INTRODUCTION

Story segmentation is the task of dividing a multimedia
stream into homogenous segments each addressing a main
topic. With the ever increasing of Internet bandwidth and rapid
decline of storage cost, multimedia contents such as broadcast
news, lecture clips, and meeting records are explosively avail-
able on the web. Meanwhile, Internet users require efficient
retrieval systems, which can provide the access to their desired
components rather than a whole document. Specifically for
a broadcast news retrieval task, it is useful to segment self-
contained stories from the complete program. Thus automatic
story segmentation is highly demanded to avoid the tedious
and labor-intensive manual annotation work.

Since a story usually consists of semantically analogous
words, the indicator of lexical cohesion is more intuitive than
audio or video cues and has been successfully adopted in
many classic segmentation methods [1], [2], [3], [4]. Lexical
cohesion refers to the phenomenon that words in a story
hang together by semantic relations and different stories tend
to employ different set of words. Therefore, inter-sentence
connective strength is measured in text and story boundary
detection is performed through local comparison [1], [2] or
global optimization [3], [4].

In the lexical cohesion based methods mentioned above,
term frequency within a sentence is used to calculate cohesive
strength. It is based on the assumption that word occurrences
can reflect meaning of text and sentences belonging to the
same story tend to deploy the same set of words. This
rigid word count comparison takes only word repetition into
consideration while word choices may be of randomness in
real-world due to the polysemy and synonymy phenomena.
A word in different contexts may convey irrelevant meanings
related to different stories and the main topic may be expressed
by different words throughout the story. Strictly matching sen-
tences depending on the actual appearances of words provides
unreliable cues for lexical cohesion in both cases. Hence,
the strategies which provide conceptual matching should be
considered. Probabilistic Latent Semantic Analysis (PLSA)
aims to explore the underlying semantic relations in text and
has been proven to provide better performance than standard
Latent Semantic Analysis (LSA) [5]. Recently we introduced
PLSA to story segmentation task and achieved substantial
improvement compared to LSA [6].

Our previous work proposed an effective lexical cohesion
based approach using Laplacian Eigenmaps (LE) for story seg-
mentation on broadcast news (BN) LVCSR transcripts [7]. LE
is a geometrically motivated algorithm recently proposed for
data representation [8]. We carry LE analysis on the sentence
connective strength matrix and construct a Euclidean space in
which each sentence is mapped to a vector. As a result, the
cohesive relations between sentences become geometrically
evident in the Euclidean space for discriminating different
stories. The LE based approaches significantly outperform
several state-of-the-art methods.

In this paper, we adopt PLSA statistics to replace term
frequencies as the representation of sentences, and use LE
technique to reinforce story boundaries. Further analysis of the
LE mapping leads to a straightforward criterion for dynamic
programming (DP) to seek the optimal segmentation. Exper-
iment results show that the proposed approach can achieve
good performances for BN story segmentation.
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II. PLSA BASED SENTENCE CONNECTION

A. Sentence Construction

Since sentence delimiters are not available in BN LVCSR
transcripts for implying sentence boundaries, a sentence here
refers to a fixed number of consecutive terms in the input
stream. The starting point of each sentence is a story boundary
candidate. The word overlap between sentences is allowed in
order to obtain adequate boundary candidates without severely
restricting the length of sentence.

B. The PLSA Model

PLSA is a generative model which was first introduced in
information retrieval [5] and developed for semantic matching
between documents and queries. As for story segmentation, we
measure sentence connective strength using PLSA statistics.
In PLSA, each co-occurrence observation, i.e., the occurrence
of a word w ∈ W = {w1 , . . . ,wM } in a particular story
d ∈ D = {d1 , . . . , dN }, is associated with an unobserved
variable z ∈ Z = {z1 , . . . , zT}, which can be considered as
a class label or topic. Given the assumption that d and w are
independently conditioned on the state of the associated latent
variable z , a joint probability model of story d and word w
can be defined by:

P (d,w) = P (d)
∑
z∈Z

P (w|z)P (z|d) (1)

P (w|z) and P (z|d) are two parameters to be learnt in the
PLSA model. An iterative Expectation Maximization (EM)
algorithm is adopted for the maximum likelihood estimation
by maximizing:

L =
∑
d∈D

∑
w∈W

f(d,w) logP (d,w) (2)

where f (d ,w) denotes the frequency of word w in story d .
Starting from random initial values, EM procedure alternates
two steps: i) E-step where P (z|d,w), the posterior probabil-
ities of latent variables given the observations are computed
based on the current estimates of model parameters and ii) M-
step, where Eq.(2) is maximized by re-estimating parameters
P (w |z ) and P (z |d) with the new expected values P (z|d,w).

After the parameters are learnt using the stories in a training
corpus, the estimated P (w |z ) are used to compute P (z |s) for
a sentence s constructed in Section II-A through a folding-in
process [5]. The process consists of maximizing the likelihood
of s with a partial version of EM algorithm described above:
the E-step is identical while in the M-step P (w |z ) are kept
fixed and only P (z |s) are updated. P (z |s) is lated used to
calculate sentence connective strength.

C. Sentence Connective Strength Matrix

For a lexical cohesion based story segmentation method,
a lexical similarity indicator is used to represent semantic
cohesiveness between sentences. We adopt cosine measure
between pairwise sentences to depict their lexical similarity.
Term frequency in each sentence is commonly used in the co-
sine similarity measure [1], [4]. In this paper, PLSA statistics

are employed as a substitute for term frequencies to reveal
the underlying semantic relations between sentences and the
lexical similarity between sentences si and sj is defined as:

cos(si, sj) =

∑
z P (z|si)P (z|sj)√∑

z P (z|si)2
∑

z P (z|sj)2
(3)

where P (z|si) is the topic specific distribution and z ranges
over the latent topic space.

Considering the fact that sentences are less likely to pertain
to one story as the distance between sentences extends the
regular length of a story, we integrate this distance into the
cosine similarity and the sentence connective strength finally
becomes:

Co(si, sj) = cos(si, sj) · α|i−j| (4)

The first part of Eq.(4) is the cosine similarity measure in
Eq.(3) and the second part serves as a penalty factor where α
is a constant parameter slightly lower than 1.0. If the distance
between sentences si and sj is much larger than the ordinary
length of a story, Co(si, sj) will dramatically decrease by
multiplying α|i−j|.

After measuring connective strength for all sentence pairs,
the connective strength matrix C is defined as:

C =


Co(s1, s1) Co(s1, s2) · · · Co(s1, sn)
Co(s2, s1) Co(s2, s2) · · · Co(s2, sn)

...
...

. . .
...

Co(sn, s1) Co(sn, s2) · · · Co(sn, sn)

 , (5)

where n is the number of sentences. It is easy to prove
that C is symmetric and non-negative. Figure 1 (a) and (b)
compare the dotplots using different vector representations
(term frequencies versus PLSA statistics) for a broadcast news
program. The intensity of pixels corresponds to the value
of the entry, i.e. a higher connective strength is represented
by a darker pixel. Each dotplot figure contains dark square
regions along the diagonal and these regions indicate cohesive
story segments with high sentence connective strength. We can
see that the introduction of PLSA in measuring connective
strength, as shown in Figure (b), makes the segmentation
easier in two aspects: (1) the intensity of intra-story area
gets higher, which means sentences within a story are more
closely connected and (2) noisy dark dots in inter-story areas
are significantly reduced, and this makes the story boundaries
clear to differentiate.

III. LAPLACIAN EIGENMAPS FOR STORY BOUNDARY
IDENTIFICATION

In our previous work on lexical cohesion based story
segmentation, we introduced a data transformation procedure
known as Laplacian Eigenmaps (LE) to project data into a
Euclidean space in which the natural clusters in the data
are implicitly emphasized. Specifically, the locality preserving
characteristic makes the LE algorithm relatively robust to
noises in data. Take advantage of this characteristic, the LE
approaches can reinforce the story boundary positions more



(a) (b) (c)
Fig. 1. Dotplots for a one-hour program in the TDT2 Mandarin corpus: (a) connective strength measured using term frequency; (b) connective strength
measured using PLSA statistics; (c) cosine similarities between sentences (i.e., yi) after LE mapping.

effectively [7]. In this paper, we applied the LE procedure to
the vectors of PLSA statistics.

Given the connective strength matrix C := (cij)(i,j=1,··· ,n),
we define the unnormalized graph Laplacian matrix as:

L = D − C. (6)

where D is the diagonal matrix with di =
∑n

j=1 cij .
Consider the problem of mapping the sentence si to a lower

dimensional vector yi so that the sentences in the same story
stay as close together as possible. Let

f : si 7→ yi (7)

be such a mapping to the target space. A reasonable criterion
for choosing an optimal mapping is to minimize the objective
function: ∑

i,j

∥yi − yj∥2cij (8)

under appropriate constraints. We can see that if two sentences
yi and yj are connected closely, a large value of cij between
the two sentences will prevent them from being mapped far
away from each other.

Assume the result of the mapping is an n×k matrix Y,
where k is the dimension of the target space and the i-th row
of Y is the vector yi that si is mapped to. In our work, k is
the actual number of stories in an LVCSR transcript and is
preset. Using Laplacian matrix L, the objective function (8)
can be rewritten as:∑

i,j

∥yi − yj∥2cij = tr(YT LY). (9)

To prevent Y from degenerating to a zero matrix or other
matrices with its rank less than k, the constraint below is
attached:

YT DY = I, (10)

where I is an identity matrix.

Altogether, the problem of finding the optimal mapping can
be written as below:

argmin
Y

tr(YT LY)

subject to YT DY = I.
(11)

By the Rayleigh-Ritz theorem [9], the solution of this
problem can be provided by the eigenvectors corresponding
to the smallest k eigenvalues of the generalized eigenvalue
problem:

Lv = λDv or D−1L = λv. (12)

The n×k matrix Y, which is supposed to contain y1, · · · , yn as
its rows, can be formed with the first k eigenvectors v1, · · · , vk
as its columns. After the mapping, the relation between the
sentences and stories is well revealed.

Dotplot in Figure 1 (c) shows the cosine similarities between
sentences after LE mapping. Compared to Figure 1 (b), it is
much easier to differentiate the intra-story area and inter-story
area after mapping and story boundaries are clearly revealed.

We adopt a dynamic programming (DP) solution for story
boundary identification. Specifically, we formalize the process
as minimizing:

Ns∑
t=1

 ∑
i,j∈Segt

∥yi − yj∥2
 , (13)

where ||yi−yj∥2 is the inter-sentence Euclidean distance in a
story segment Segt and Ns is the number of stories. Due to
the linear constraint of the story segmentation task [4], we can
obtain the global minimization of Eq. (13) using DP algorithm
in polynomial time [7].

IV. EXPERIMENTS

A. Experimental Setup

To evaluate the proposed approach, story segmentation
is performed on TDT2 Mandarin broadcast news corpus 1

1http://www.ldc.upenn.edu/Projects/TDT2



TABLE I
Story segmentation results (F1-measure) of experimented methods on the TDT2 Mandarin BN corpus

Approach
Word Subword

Unigram Unigram Bigram Trigram Quadgram
Char. Syl. Char. Syl. Char. Syl. Char. Syl. Char. Syl.

TF-LE-DP 0.6200 0.6232 0.6820 0.7011 0.7409 0.7281 0.6963 0.6932 0.6645 0.6693
PLSA-LE-DP 0.7138 0.7440 0.7536 0.7202 0.7202 0.7472 0.6518 0.6693 0.5469 0.5866

PLSA-DP 0.6407 0.6502 0.6836 0.6550 0.6550 0.6661 0.5866 0.6121 0.5405 0.5485

TABLE II
Statistics of the OOV terms, i.e., terms appearing in the development and test sets but not the training set.

Word Subword
Unigram Unigram Bigram Trigram Quadgram

Char. Syl. Char. Syl. Char. Syl. Char. Syl. Char. Syl.
No. of OOV terms 4128 4159 380 74 50766 40702 127952 125048 270661 264607

No. of tokens 209919 209919 364801 364801 364714 364714 364627 364627 364540 364540
ratio 1.97% 1.98% 0.10% 0.02% 13.92% 11.16% 35.09% 34.29% 74.25% 72.59%

which contains about 53 hours of VOA Mandarin broadcast
news audio. Manually annotated story boundaries and LVCSR
transcripts are provided. The 177 news programs of the corpus
are separated to three non-overlapping sets: a training set of
90 files for PLSA model estimation, a development set of 43
files for empirical parameters tuning and a test set of 44 files
for performance evaluation.

We carried out story segmentation experiments with three
methods, namely:

• TF-LE-DP, which uses term frequencies to compute
sentence connective strength and applies DP after LE
mapping;

• PLSA-LE-DP, which uses PLSA statistics to compute
sentence connective strength and applies DP after LE
mapping;

• PLSA-DP, which uses PLSA statistics to compute sen-
tence connective strength and directly applies DP without
LE mapping.

Due to the robustness of subword to deal with certain speech
recognition errors and out-of-vocabulary words by partial
matching [10], we experimented the segmentation approaches
using both word unigram and character/syllable n-gram. The
syllable sequences were obtained from the word transcripts
using an in-house Mandarin word-to-syllable lexicon. Both
character and syllable were chosen as the subword unit in
the experiments since they do not always correspond to
each other in pairs. For example, the two different words
“负荷” (burden) and “附和” (chime in with) have
the same syllable sequence “fu4 he4” while the same
character“会”pronounces differently in “会议”(meeting,
“hui4”) and “会计”(accountant, “kuai4”). The eval-
uation criterion used is F1-measure, i.e., the harmonic mean
of recall and precision. According to the TDT2 standard, a
detected boundary is considered correct if it lies within a 15-
seconds tolerant window on each side of a reference boundary.

For each method under evaluation, empirical tuning was
first performed on the development set to pick up the optimal
parameter settings that achieve the highest F1-measure. Then

we applied the best-tuned parameters on the test set for
segmentation experiments. The number of topics in the PLSA
model was preset to 64 according to empirical results on
character word. Other parameters include sentence length,
sentence overlap shift and α in Eq.(4).

B. Results and Analysis

The story segmentation results on the test set in term of
F1-measure are summarized in Table I. We can observe that
the introduction of PLSA significantly improves LE based
segmentation performance when using word unigram and
character/syllable unigram. The highest F1-measure of 0.7536
is obtained on the character level unigram and the highest
relative improvement compared to TF-LE-DP, 19.38% (from
0.6232 to 0.7440) is achieved on syllable-word. These results
can be explained by the superiority of PLSA to deal with the
synonymy and polysemy problems: different words reflecting
a similar concept are considered to be matched despite of
their actual appearances and thus contribute to the intra-story
connective strength; on the other hand, the meaning of a word
may vary in different contexts, therefore the relativeness of
two sentences may fall when taking the latent semantic into
account although they employ several similar word usage.

We also notice the considerably different performances of
PLSA when using different word/subword levels of n-gram.
PLSA-LE-DP achieves superior results on word unigram and
subword unigram/bigram while the performances of subword
trigram/quadgram are inferior. This can be attributed by the
fact that the most frequently used words in Chinese are one
or two characters long and their semantic perspective can
be exploited by PLSA. When the subword terms of higher
order are deployed, the majority of the units are merely
meaningless combinations of subwords rather than meaningful
words, which makes PLSA fail to take advantage of latent
semantic relations. Moreover, the OOV problem also draws
our attention and could be another cause of the performance
degradation. The vocabulary constructed by the training data
for PLSA model estimation may not match with the data in the
development and test sets. This produces incorrect statistics



and affects the PLSA utilization. This OOV phenomenon
becomes extremely serious when increasing the order of n-
gram. Table II shows the statistics of OOV terms, i.e., terms
appearing in the development and test sets but not the training
set. OOV terms have taken up notable portion of the whole
token set on bigram and higher order n-grams. Especially on
character quadgram, 74.25% of the tokens are made up by
OOV terms. According to this observation, we believe that
the OOV problem hinders latent semantic analysis based on
the estimated PLSA model and accounts for the drop of PLSA
based segmentation performance.

The performance differences between the two PLSA based
methods (PLSA-DP and PLSA-LE-DP) demonstrate the effec-
tiveness of LE technique for story segmentation. We can see
that with the LE mapping, the story segmentation performance
improves on all word and subword levels of n-gram. For
instance, PLSA-LE-DP notably outperforms PLSA-DP with
a relative gain of 18.08% (from 0.6121 to 0.7472) on syllable
bigram.

V. CONCLUSIONS

This paper integrates PLSA into our previous work on
Laplacian Eigenmaps for broadcast news story segmentation.
PLSA statistics are adopted as the representation of sentences
and to measure sentence connective strength. Then we perform
LE analysis on the connective strength matrix so that the
sentence relations are evident in temporal structure for discrim-
inating different stories. Taking advantages of PLSA and LE,
the proposed method achieves the highest story segmentation
performance of 0.7536 on character unigram. Additionally, we
observe that the OOV problem seriously hinders the PLSA
utilization, and this leads to an F1-measure degradation on
higher order n-grams.
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