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Abstract—We address an adaptive filtering problem for sparse
linear systems excited by highly colored input signals. A propor-
tionate approach is known to accelerate the convergence speed
by exploiting the sparseness of the systems, while a transform-
domain approach is known to alleviate the decay of the conver-
gence rate for highly colored inputs. We highlight the improved
proportionate NLMS (IPNLMS) and transform-domain NLMS
(TD-NLMS) algorithms. The present experimental results show
that the gain of IPNLMS against TD-NLMS changes from
positive to negative as the input auto-correlation becomes strong.
We propose a hybrid approach of IPNLMS and TD-NLMS,
taking the advantages of both algorithms by means of a time-
variant convex combination of the two matrices employed by
those algorithms. Numerical examples show the efficacy of the
proposed algorithm.

I. INTRODUCTION

This paper addresses an adaptive filtering problem in which
the linear unknown system tends to be sparse (i.e., many of
the coefficients tend to be nearly zero) and it is excited by
colored inputs. Indeed, adaptive filters exploiting the expected
sparseness of the system have received considerable attention
[1–10]. One of the major line of researches regarding this topic
is proportionate-type adaptive filtering proposed originally by
Duttweiler [1]. In particular, optimal diagonal matrices (or
optimal individual step size for each filter tap) in certain senses
have been presented in [4, 5]. Both works however are based
on the assumption of white input signals, thus the algorithms
are no longer optimal when applied to colored inputs.
On the other hand, the transform-domain least mean square

(TD-LMS) algorithm has been proposed to ameliorate the
convergence behavior of the LMS algorithm for colored inputs
[11–13]. It is known that the TD-LMS algorithm offers a
constant rate of convergence even for highly correlated input
signals by operating a predetermined orthogonal transforma-
tion followed by power normalization. It is of great interests
to investigate which of the two families (proportionate and
transform-domain) of algorithms performs better for sparse
linear systems excited by highly colored inputs.
In this paper, we consider the following particular algo-

rithms from each family: the improved proportionate nor-
malized LMS (IPNLMS) algorithm [3] and the transform-
domain normalized LMS (TD-NLMS) algorithm, which is
a normalized version of TD-LMS. To present a fair com-
parison between the algorithms, we introduce a measure of
performance gain based on the geometric mean of the ratio
between the mean squared errors (MSEs) of the algorithms.
Our simulations clarify the tendency that, whereas IPNLMS

has a significant gain against TD-NLMS for uncorrelated or
weakly-correlated input signals, the gain decreases as the
correlation becomes strong and eventually TD-NLMS defeats
IPNLMS when the correlation reaches a certain level. Focusing
on a particular plot of MSE learning curves for a highly
colored input, it is shown that, although IPNLMS exhibits
faster initial convergence than TD-NLMS, its speed of con-
vergence slows down before reaching the steady state and it is
overtaken by TD-NLMS. Through an error surface analysis,
the phenomenon of the performance degradation of IPNLMS
is clearly explained. Based on the above observations, we
propose a hybrid approach taking the advantages of both algo-
rithms. The way of the hybrid follows the simple but effective
idea of the IPNLMS algorithm; essentially IPNLMS is a hy-
brid approach of the standard NLMS algorithm and PNLMS.
The proposed algorithm is a hybrid of IPNLMS and TD-
NLMS (With an abuse of notation, PROPOSED = IPNLMS
+ TD-NLMS = NLMS + PNLMS + TD-NLMS). Three
positive-definite matrices associated respectively with NLMS,
PNLMS, and TD-NLMS are convexly combined with time-
variant coefficients, thereby exploiting the positive features of
IPNLMS and TD-NLMS. The coefficients are controlled based
on detection of the performance degradation point of IPNLMS,
which relies on a smoothed squared error of the proposed
algorithm. The algorithm enjoys fast initial convergence and
keeps a nearly-constant rate of convergence even though the
input signal has high auto-correlation. Numerical examples
clearly show the great advantages of the proposed algorithm.

II. A STUDY OF IPNLMS AND TD-NLMS UNDER HIGHLY
COLORED INPUT

Throughout the paper, we let R and N denote the sets of
all real numbers and non-negative integers, respectively. We
denote by (·)T the transpose of a vector/matrix. Also we denote
by ‖ · ‖1 and ‖ · ‖2 the !1 and !2 norms, respectively.

A. System Model and Conventional Algorithms

We consider the following linear system model (see Fig. 1):

dk := zk + nk = uT
kh∗ + nk, k ∈ N (1)

where uk := [uk, uk−1, · · · , uk−N+1]T ∈ RN is the in-
put vector of length N at time k with the input process
(uk)k∈N, h∗ ∈ RN the unknown system (assumed sparse),
zk := uT

kh∗ ∈ R, and (nk)k∈N ⊂ R the noise process. The
residual-error function for each sample data (uk, dk) is given
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Fig. 1. A linear system model with an adaptive filter.
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Fig. 2. Impulse response used in the simulations.

by ek(h) := uT
kh − dk, h ∈ RN . The adaptive filter at time

k is denoted by hk := [h(1)
k , h(2)

k , · · · , h(N)
k ]T ∈ RN .

The update equations of the IPNLMS and TD-NLMS algo-
rithms share the following form:

hk+1 := hk − µ
ek(hk)

uT
kAkuk

Akuk, (2)

whereAk ∈ RN×N is a positive-definite matrix to be designed
adequately according to some information on uk and/or h∗

for performance amelioration. The IPNLMS and TD-NLMS
algorithms are obtained by designing Ak respectively as
follows.
i) IPNLMS: Ak := (1 − η)A(1)

k + ηA
(2)
k , η ∈ [0, 1], with

A
(1)
k =

1

N
I, (3)

A
(2)
k =

Gk

||hk||1
, (4)

where I denotes the identity matrix, and Gk :=
diag(|h(1)

k |, |h(2)
k |, · · · , |h(N)

k |).
ii) TD-NLMS: Ak := A

(3)
k := QT

Λ
−1
k Q. Here Q ∈

RN×N is an orthogonal transformation matrix (e.g. the
DCT matrix), and Λk := diag

(
λ(1)

k ,λ(2)
k , · · · ,λ(N)

k

)
,

where λ(i)
k , (i = 1, 2, · · · , N) is updated recursively for

some λ(i)
0 ≥ 0 and ν ∈ (0, 1) as λ(i)

k+1 := νλ(i)
k + (1 −

ν)|ǔ(i)
k |2 with [ǔ(1)

k , ǔ(2)
k , · · · , ǔ(N)

k ]T := Quk.

B. Comparison of IPNLMS and TD-NLMS

We compare the performance of the IPNLMS and TD-
NLMS algorithms by simulations in an echo cancellation
problem. We employ h∗ shown in Fig. 2; the sparsity of the
h∗ is ξ(h∗) = 0.6796, where we adopt the sparsity measure

[14]: ξ(h) := N
N−

√
N

(
1 − ‖h‖1√

N‖h‖2

)
∈ [0, 1], h ∈ RN .

The input signals are generated by passing a white Gaussian
noise through a filter whose transfer function is given as
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Fig. 3. MSE learning curves of IPNLMS and TD-NLMS under SNR = 30

dB for colored inputs.

follows:

Hα(z) :=
1 − αz−2

1 − 1.70223 αz−1 + 0.71902 αz−2
, z ∈ C

where α ≥ 0 controls the coloredness (α = 0 gives the all
pass filter, i.e., H0(z) = 1, producing white inputs). At the
moment, we set α = 1 which gives the USASI signal known
to be highly colored. The other conditions are as follows: N =
256, nk is additive white Gaussian noise with SNR = 30 dB.
An MSE value is computed by taking an arithmetic average
over 200 independent trials. For both algorithms, we set µ =
0.1. For IPNLMS, we set η = 0.5. For TD-NLMS, we set
ν = 0.99 and λ(i)

0 = 0. Figure 3 depicts the results. It is
seen that IPNLMS exhibits faster initial convergence than TD-
NLMS, but becomes slow down when it achieves the MSE
value around −20 dB. On the other hand, TD-NLMS keeps a
constant rate of convergence over a large number of iterations,
reaching the steady state in a smaller number of iterations than
IPNLMS.
The performance deterioration of IPNLMS is caused by

the high auto-correlation of the input signal. To verify this,
we perform additional simulations under different conditions
of auto-correlation. By increasing the α value from 0 to 1,
the eigenvalue spread *1 of R increases as shown in Fig. 4,
where R := E{ukuT

k}. We would like to define the gain of
IPNLMS (against TD-NLMS) to illustrate its dependency on
the eigenvalue spread. If we simply take an average difference
over iterations between the MSEs of the two algorithms, the
effect of the initial phase becomes dominant. For instance,
let us take a fresh look at the curves of IPNLMS and TD-
NLMS in Fig. 3. Although IPNLMS performs better in the
initial phase, TD-NLMS performs even better after the middle
phase. Nevertheless, an average difference between the MSEs
would imply that IPNLMS would outperform TD-NLMS. This
clearly shows that the average difference is an inappropriate
indicator for a performance gain. Therefore, we consider
the geometric mean of the ratios between the MSEs of the
two algorithms. Specifically, the gain of Algorithm A against
Algorithm B is defined as follows:

γ(A, B) :=
K∏

k=1

(
MSEB

k

MSEA
k

)1/K

*1The eigenvalue spread is the condition number defined with the spectral
norm.
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Fig. 4. Eigenvalue spread versus α.
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Fig. 5. Gain of IPNLMS against TD-NLMS.

where

MSEk :=
1

T

T∑

i=1

e2
k,i

with ek,i denoting the output error at the kth iteration in the
ith trial (T stands for the number of trials).
Figure 5 plots the gain of IPNLMS against the variation of

the eigenvalue spread (which reflects the coloredness of the
inputs). When the eigenvalue spread is close to unity (which
means that an input signal is white), the gain of IPNLMS
seems to be high. In contrast, when the eigenvalue spread
becomes large, the gain drops down to minus values. We will
present in the following subsection an intuitive explanation to
this observed degradation phenomenon.

C. Error Surface Analysis
The cause of the phenomena can be understood through the

error surface analysis presented below (cf. [15]). Consider the
contours of the surface of the MSE function

fu(h) := hTRh − 2hTp + E{d2
k},

where p := E{ukdk}. The shape of the contours depends on
the second-order term hTRh.
For a while, let us consider the case of white inputs. In this

case,R = σ2
uI with σ2

u := E{u2
k}, yielding spherical contours

(see Fig. 6(a)). We now make a coordinate transformation and
see how the shape of the contours is changed. For simplicity
we drop the time index k from Ak (one can regard A as
an ’ideal’ matrix that each of TD-NLMS/IPNLMS tries to
approximate). Left-multiplying both-sides of (2) by A−1/2

yields
wk+1 = wk − µ

ẽk(wk)

vT
kvk

vk (5)

where wk := A−1/2hk, vk := A1/2uk, and ẽk(w) :=

vT
kw − dk, w ∈ RN . Note that (5) expresses the same update
equation as (2) in the w-coordinate, and it is the standard
NLMS algorithm for the input-output pair (vk, dk). The MSE
function in the w-coordinate is defined as

fv(w) := wTRvw − 2wTpv + E{d2
k},

where Rv := E{vkvT
k} = A1/2RA1/2 and pv := E{vkdk}.

The contours in the w-coordinate are therefore determined by
wTRvw.
Let us consider the specific case of IPNLMS for N = 2

and |h∗
1| & |h∗

2|. We assume that A = 1
||h∗||1 diag(|h

∗
1|, |h

∗
2|),

which is obtained when η = 1, h(1)
k = h∗

1, and
h(2)

k = h∗
2 (the ideal case). In the w-coordinate, the

minimizer of fv is given by w∗ := A−1/2h∗ =
||h∗||1/2

1 [sgn(h∗
1)|h

∗
1|

1/2, sgn(h∗
2)|h

∗
2|

1/2]T. Meanwhile, the
contours of fv in the w-coordinate are ellipsoids and the ratio
of the larger to shorter radii is given by |h∗

2|
1/2/|h∗

1|
1/2. This

implies that the contours are compressed in the direction from
the origin toward h∗ due to the A matrix, which makes the
slope from the origin (which is typically the initial filter h0)
steep. This is an interpretation of the mechanism of the faster
convergence of IPNLMS compared to the standard NLMS
algorithm.
Now we turn our attention to the case of colored inputs.

In this case, the shape of the contours is distorted due to the
large eigenvalue spread of R (see Fig. 6(b)). Thus, there is no
guarantee that IPNLMS reshapes the contours desirably. This
clearly explains the performance degradation phenomenon
of IPNLMS observed in Section II-B. On the other hand,
it is known that, for some types of inputs, the transform-
domain algorithm with an adequate orthogonal transform has
the property of whitening [12, 13]. This implies that the Ak

matrix employed by TD-NLMS reshapes ellipsoidal contours
into nearly-spherical ones (see Fig. 6(d)) [12]. This agrees
with the constant rate of convergence of TD-NLMS. It should
be mentioned that the transformed w∗ := (A(3)

k )−1/2h∗ is no
longer sparse in general.

III. PROPOSED ADAPTIVE ALGORITHM

Below are observations obtained from the simulation results
presented in the previous section.

• IPNLMS is more effective for fast initial convergence.
• TD-NLMS converges faster from the middle phase.

This leads to the idea of a hybrid approach for taking the
advantages of the two algorithms. To construct such a hybrid
algorithm, we exploit the simple but effective idea of using a
convex combination of positive definite matrices, as used in
IPNLMS.
The proposed algorithm employs the following matrix:

Ak :=
3∑

i=1

ω(i)
k A

(i)
k (6)

where ω(i)
k ≥ 0, i = 1, 2, 3, satisfies

∑3
i=1 ω(i)

k = 1.
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Fig. 6. The contours of MSE in the h- and w- coordinates.

Specifically, the proposed algorithm controls ω(i)
k from the

following aspects:
i) According to the aforementioned observation, large
weights should be assigned to A

(1)
k and A

(2)
k in the

initial phase, while the large weights should be shifting
to A

(3)
k when the convergence speed slows down.

ii) The analysis in [16] tells us that the fluctuations of the
metric Ak should be sufficiently small for the algorithm
to converge.

The second aspect suggests that the ω(i)
k should be changing

slowly. To detect the timing of the convergence deterioration,
an average amount of the squared output-error is exploited.
The criterion for the detection is given as follows:

qk :=
1

m

m∑

i=1

p̃k−i+1 (7)

where

p̃k :=
pk

max{p1, p2, · · · , pk}
(8)

pk+1 :=(1 − τ)pk + τe2
k (9)

with p0 = 0 and 0 < τ ≤ 1. The denominator in (8) is
introduced for the sake of normalization. Since the graphs of
p̃k still have many spikes, we further take a time average of
p̃k. The ω(i)

k s are controlled as follows:

ω(1)
k :=

{
ω(1) if qk ≥ δ

max{ω(1)
k−1 − ω(1)

0 /n1, 0}, otherwise

ω(2)
k :=

{
ω(2) if qk ≥ δ

max{ω(2)
k−1 − ω(2)

0 /n2, 0}, otherwise

ω(3)
k :=1 − ω(1)

k − ω(2)
k , (10)
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Fig. 8. MSE learning curves of the NLMS, IPNLMS, TD-NLMS, and
proposed algorithms under SNR = 30 dB.

where ω(1),ω(2) ∈ (0, 1), and n1, n2 > 0 determines the
period of weight transition.

IV. NUMERICAL EXAMPLES
This section shows the advantages of the proposed algo-

rithm over NLMS, IPNLMS, and TD-NLMS. The simulation
settings are exactly the same as in Fig. 3 (SNR = 30 dB).
For the proposed algorithm, the step size is set to µ = 0.1.
Figure 7 plots the change of each ω(i)

k , where we set τ = 0.01,
m = 100, ω(1) = 0.2, ω(2) = 0.8, ω(3)

0 = 0, n1 = n2 = 500
and δ = 0.5 (This gave the best performance in our extensive
experiments).
The transition behavior of the ω(i)

k s is depicted in Fig. 7.
Figure 8 illustrates the simulation results under α = 1
and SNR = 30 dB. It seen that the proposed algorithm
achieves the initial convergence as fast as IPNLMS and its rate
of convergence does not severely degraded unlike IPNLMS
due to the successful control of ω(i)

k . We plot the gains
of the proposed algorithm in Fig. 9. We can see that the
proposed algorithm attains positive gains against IPNLMS for
the eigenvalue spread larger than 103.32. The gain grows as
the eigenvalue spread increases. On the other hand, the gain
against TD-NLMS is approximately 2 dB over the whole range
of the eigenvalue spread.

V. CONCLUSION
This paper has shown that the gain of IPNLMS against TD-

NLMS changes from positive to negative as the eigenvalue
spread of input covariance matrix increases. We have proposed
a hybrid approach of IPNLMS and TD-NLMS, taking the
advantages of both algorithms by means of a time-variant
convex combination of the two matrices. We have presented a
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technique to control the coefficients of the convex combination
for exploiting the positive feature of IPNLMS in the initial
phase and, at the same time, the positive feature of TD-NLMS
from the middle phase. Numerical examples have shown that
the proposed algorithm attains the initial convergence as fast
as IPNLMS and keeps the same speed until it reaches the
steady state even for highly colored input signals. We finally
stress that the present work differs from the previous studies
on sparse adaptive filters, as coloredness of input signals is
taken into account in the algorithm construction.

ACKNOWLEDGMENT
This work was conducted under a contract of research and

development for radio resource enhancement, organized by the
Ministry of Internal Affairs and Communications, Japan.

REFERENCES
[1] D. L. Duttweiler. Proportionate normalized least-mean-squares adapta-

tion in echo cancelers. IEEE Trans. Speech Audio Processing, 8(5):508–
518, Sept. 2000.

[2] S. L. Gay. An efficient fast converging adaptive filter for network echo
cancellation. In Proc. Asilomar Conf. Signals, Syst., Comput., pages
394–398, 1998.

[3] J. Benesty and S. L. Gay. An improved PNLMS algorithm. In
Proc. IEEE ICASSP, pages 1881–1884, 2002.
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