
Comparison and Combination of Multilayer
Perceptrons and Deep Belief Networks in Hybrid

Automatic Speech Recognition Systems
Van Hai Do∗†, Xiong Xiao†, Eng Siong Chng∗†

∗ School of Computer Engineering, Nanyang Technological University, Singapore
† Temasek Laboratories@NTU, Nanyang Technological University, Singapore

{dova0001, xiaoxiong, aseschng}@ntu.edu.sg

Abstract—To improve the speech recognition performance,
many ways to augment or combine HMMs (Hidden Markov
Models) with other models to build hybrid architectures have
been proposed. The hybrid HMM/ANN (Hidden Markov Model
/ Artificial Neural Network) architecture is one of the most
successful approaches. In this hybrid model, ANNs (which
are often multilayer perceptron neural networks - MLPs) are
used as an HMM-state posterior estimator. Recently, Deep
Belief Networks (DBNs) were introduced as a newly powerful
machine learning technique. Generally, DBNs are MLPs with
many hidden layers, however, while weights of MLPs are often
initialized randomly, DBNs use a greedy layer-by-layer pre-
training algorithm to initialize the network weights. This pre-
training initialization step has resulted in successful realizations
of DBNs for various applications such as handwriting recognition,
3-D object recognition, dimensionality reduction and automatic
speech recognition (ASR) tasks. To evaluate the effectiveness of
the pre-initialization steps that characterize DBNs from MLPs
for ASR tasks, we conduct a comparative evaluation between
the two systems on phone recognition for the TIMIT database.
The effectiveness, advantages and computational cost of each
method will be investigated and analyzed. We also show that the
information generated by DBNs and MLPs are complementary,
where a consistent improvement is observed when the two systems
are combined. In addition, we investigate the ability of the hybrid
HMM/DBN system in the case only a limited amount of labeled
training data is available.

I. INTRODUCTION

Many researchers have been trying to augment or com-
bine HMMs (Hidden Markov Model) with other models
to build hybrid architectures to improve performance over
the HMM/GMM (Hidden Markov Model / Gaussian Mix-
ture Model) approach for acoustic modelling. The hybrid
HMM/ANN (Hidden Markov Model / Artificial Neural Net-
work) architecture proposed by Bourlard and Morgan [1] is
one of the most successful approaches. In this hybrid model,
ANNs (which are often multilayer perceptron neural networks
- MLPs) are used to estimate HMM-state posterior probabil-
ities instead of using GMMs in the traditional HMM/GMM
approach. This hybrid model offers several advantages over the
HMM/GMM approach such as: ANNs are discriminative as
compared to GMMs. In addition, there is no required detailed
assumption about input distribution. And they are very flexible
in terms of merging multiple input streams. Normally, they
use several frames surrounding the current frame as the input

instead of using only one frame in the HMM/GMM systems.
Recently, Deep Belief Networks (DBNs) were introduced as

a newly powerful machine learning technique [2]. Generally,
DBNs are MLPs with many hidden layers, however, while
weights of MLPs are initialized randomly, DBNs use a greedy
layer-by-layer pre-training algorithm to initialize the network
weights. Note that this process is totally unsupervised. DBNs
have been applied effectively for many applications, including
handwriting recognition [2], 3-D object recognition [3], di-
mensionality reduction [4]. They show significant advantages
over the conventional MLPs. In [5], [6], [7], DBNs were used
for speech recognition. However, there is no clear comparison
between DBNs and MLPs in ASR tasks. In this paper, we
conduct a comparative evaluation of hybrid HMM/DBN and
HMM/MLP systems on the TIMIT speech database to show
the effectiveness, advantages and computational cost of each
method. We also show that the information generated by
DBNs and MLPs are complementary, in that a consistent
improvement is observed when the two systems are combined.
In addition, we investigate the ability of the hybrid HMM/DBN
system in the case where only a limited amount of labeled
training data is available.

The rest of this paper is organized as follows. Section
II briefly introduces Deep Belief Networks. The system ar-
chitecture of hybrid HMM/DBN and HMM/MLP systems is
described in Section III. The experimental setup and results
are reported in Section IV and Section V, respectively, and
Section VI concludes the paper.

II. DEEP BELIEF NETWORKS

Why do we need deep architectures with many layers?
Complexity theory of circuits strongly suggests that deep
architectures are much more efficient in terms of required
computational elements than shallow architectures, including
hidden Markov models, neural networks with only one hidden
layer, conditional random fields, kernel regression, support
vector machines, and many others [8]. Unfortunately, such
deep networks are very hard to train. To overcome this prob-
lem, in 2006, Hinton et al. [2] introduced a moderately fast,
unsupervised learning algorithm for deep generative models
called Deep Belief Networks (DBNs). The greedy layer-by-
layer training is the key feature of this algorithm in order to

APSIPA ASC 2011 Xi’an

efficiently learn a deep, hierarchical probabilistic model. A
DBN is created as a stack of its main building blocks which
are bipartite undirected graphical models called restricted
Boltzmann machines (RBMs).

An RBM is a particular type of Markov random field that
has a two-layer architecture, in which the visible stochastic
units v (typically Bernoulli or Gaussian) are connected to the
hidden stochastic units h (typically Bernoulli). Normally, all
visible units are connected to all hidden units and there is no
visible to visible or hidden to hidden unit connection. The
weights of the connections and the biases of the individual
units form a joint probability distribution P (v,h|θ) over the
visible units v and hidden units h given the model parameters
θ. This distribution is computed based on an energy function
E(v, h|θ) [9]:

P (v, h|θ) =
exp(−E(v, h|θ))

Z(θ)
(1)

where Z(θ) is known as the normalizing constant.

Z(θ) =
∑

v

∑

h

exp(−E(v, h|θ)) (2)

The marginal probability P (v|θ) is computed as

P (v|θ) =

∑
h

exp(−E(v, h|θ))
Z(θ)

(3)

With different types of visible and hidden units, different
energy functions are defined. In the case for the visible and
the hidden units which are Bernoulli, the energy function is
defined [9].

E(v, h|θ) = −
V∑

i=1

H∑

j=1

wijvihj −
V∑

i=1

bivi −
H∑

j=1

ajhj (4)

where model parameters θ = {w, b, a}, wij is the weight
between visible unit i and hidden unit j, bi and aj are biases
for visible unit i and hidden unit j, respectively. V , H are the
numbers of visible units and hidden units, respectively.

Since there is no visible-visible connection, all of the
visible units become independent given the hidden units, and
vice versa. The conditional distributions can be effectively
derived [9] as

P (hj = 1|v, θ) = σ

(
V∑

i=1

wijvi + aj

)
(5)

P (vi = 1|h, θ) = σ




H∑

j=1

wijhj + bi


 (6)

where σ(x) = 1/(1 + exp(−x)) is the sigmoidal function.
Similarly, in the case for the visible and hidden units which

are Gaussian and Bernoulli, respectively, the energy function
is defined as

E(v, h|θ) = −
V∑

i=1

H∑

j=1

wijvihj +
1
2

V∑

i=1

(vi − bi)2 −
H∑

j=1

ajhj

(7)
and the conditional probabilities

P (hj = 1|v, θ) = σ

(
V∑

i=1

wijvi + aj

)
(8)

P (vi|h, θ) = N



H∑

j=1

wijhj + bi, 1


 (9)

where vi is a real number which follows a Gaussian

distribution with the mean
H∑

j=1

wijhj + bi and unit variance.

Equations 5 and 8 allow us to use the weights of an
RBM after pre-training to initialize an MLP with sigmoidal
activation functions. Since the inference for RBM hidden units
can be equated with the forward phase in an MLP.

The goal of learning in an RBM is to maximize the marginal
probability of the data P (v|θ). It can be done very effectively
by a procedure called “Contrastive Divergence” [10].

III. SYSTEM ARCHITECTURE

In this research, we examine two hybrid ASR systems:
HMM/MLP and HMM/DBN as illustrated in figure 1, where
MLPs and DBNs are used as HMM-state posterior estimators.
Given a feature vector xt, MLPs and DBNs estimate the
HMM-state posterior P (si|xt) of state si. The posterior is
then converted to the likelihood probability using the Bayes’
formula.

P (xt| si) =
P (si|xt)

P (si)
P (xt) (10)

In practice, we use P (si|xt)
P (si)

as the scaled likelihood since
the scaling factor P (xt) is a constant for all states and does
not affect the classification decision. This approach has been
applied successfully in hybrid HMM/ANN systems [1].

.

Fig. 1. DBNs or MLPs are used as HMM-state estimators in hybrid ASR
systems.

Originally, DBNs were built by stacking RBMs with binary
units. However, features used in speech recognition (e.g.,
MFCCs, PLPs) are continuous. Hinton et al. [2] indicated that
we can handle continuous-valued inputs by scaling them to
the [0, 1] interval, so that each continuous valued input can be
considered as the probability for a binary random variable to
take the value 1. This approach worked well for handwritten
image recognition [2] where pixel gray levels were used as
the input. However, when applying to speech recognition, we

realized that the recognition accuracy was much worse than
the state-of-the-art ASR systems on the TIMIT corpus. It can
be explained that, this coding approach may be inappropriate
for complicated kinds of input variables which have a wide
dynamic range such as speech signal. In this research, we use
Gaussian visible units for the first RBM, to represent the con-
tinuous speech features, and Bernoulli hidden units, whereas
all upper RBMs are Bernoulli-Bernoulli. This approach has
been applied successfully in speech recognition [5], [6], [7].

Fig. 2. Four steps in training a DBN for speech recognition.

Figure 2 illustrates four basic steps in training a DBN for
speech recognition. After unsupervised training the first RBM,
the activation probabilities of its hidden units are used as the
visible data for the second RBM, and so on. When applying
the DBN for speech recognition, the final layer of variables
is added to represent the desired outputs (HMM-states). Next,
a discriminative learning procedure, such as backpropagation,
is used to fine-tune all of the network weights using labeled
training data. In our experiments, the activation function at the
output layer is softmax to approximate posterior probabilities
of states appearing at the current frame. In the decoding pro-
cess, the DBN is treated as an MLP with the same architecture.
The input features are processed layer by layer from the input
layer to the final layer.

IV. EXPERIMENTAL SETUP

Database: The TIMIT database1 is used in our experiments.
The SA part of the TIMIT database is not used since it contains
identical utterances for all speakers in the corpus, hence it can
bias the result. The training set consists of 3696 utterances
from 462 speakers. A small part extracted from the training

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1

set (50 speakers) is used as the development set. The complete
test data set contains 1344 utterances from 168 speakers.

Phone set: The original 64 phonetic labels on TIMIT are
mapped into the 45 phones as described in [11]. Phones “cl”,
“vcl”, and “epi” are merged into the phone “sil”. For phone
recognition evaluation, after decoding, the phone accuracies
are computed by down mapping the recognition output from
45 phones to 39 phones [11].

Features: The features used in all experiments are 12th-
order Mel frequency cepstral coefficients (MFCCs) and energy,
along with their first and second temporal derivatives. The
frame length is 25ms and the frame shift is 10ms. The features
are normalized to zero mean and unit variance over the
entire training set. All experiments use a context window to
concatenate the 11 frames which surround the current frame.
Hence we have 39x11=429 dimensional feature vectors. We
use 135 state labels (i.e., 3 states for each phone of 45 phones).
These labels are generated by a conventional HMM/GMM
system.

Language model: No language model is used in all exper-
iments.

Software: The Matlab scripts for DBN and MLP training
are retrieved from Hinton’s website2. The Viterbi algorithm
used to produce the recognized phone strings is implemented
by HVite, and HResults in the HTK speech toolkit3 is used to
evaluate the phone recognition results.

Parameter selection:
- Weight initialization: Both MLP and RBM weights are

initialized randomly with a normal distribution with mean 0
and standard deviation 0.1.

- Learning paremeters: In the pre-training process, all
RBMs are trained using stochastic gradient decent. In the first
RBM (Gaussian-Bernoulli), the learning rate is 0.01 when the
number of hidden units is 256. It reduces to 0.005 for the cases
512, 768, 1024, and 1536 hidden units. When the number
of hidden units reaches 2048, the learning rate is selected as
0.002. For other RBMs (Bernoulli-Bernoulli), the learning rate
is fixed at 0.1. For the first five epochs, the momentum is
initialized to 0.5, and set to be 0.9 for subsequent epochs. All
RBMs are trained for 50 epochs. A weight decay of 0.0002
is used to penalize large weights. A detailed explanation of
learning parameter selection for DBNs can be found in [12].

- Decoding paremeters: In the decoding process, for each
experiment, the phone insertion penalty is tuned based on the
development data.

- Transition probabilities: In all experiments, we simply
set all transition probabilities which include the self loop
probability and the probability from the current state to the
next state to be equal to 0.5. Further improvements can be
obtained if they are borrowed from an existing ASR model
and tuned carefully.

Computer: All experiments are conducted in computers
which have following specifications:

2http://www.cs.toronto.edu/∼hinton/MatlabForSciencePaper.html
3HTK speech toolkit, http://htk.eng.cam.ac.uk

• OS: Windows 7 professional 64 bits
• CPU: 2 x (4-core-Intel Xeon 2.67GHz)
• RAM: 8GB

V. EXPERIMENTAL RESULTS

In all experiments, DBNs and MLPs have the same archi-
tecture (number of layers, units per layer, activation functions)
as well as learning parameters. DBNs are only different from
MLPs in the unsupervised pre-training process, since the
weights of MLPs are initialized randomly. To simplify the
comparison, we use the same size for every hidden layer in
each network.

A. Different network sizes

1) Size of layers: In this experiment, we compare the
performance of DBNs and MLPs in phone recognition when
the number of hidden units increases from 256 to 2048. The
number of hidden layers is kept fixed at 3. The results for the
test set of DBNs and MLPs are shown in figure 3.

Surprisingly, in small networks with the layer size less
than 1024, conventional MLPs outperform DBNs. It can be
explained that DBNs are constructed by stacking up several
RBMs, where the first RBM is Gaussian-Bernoulli. Note that
429 continuous valued inputs are represented by 429 Gaussian
visible units, while hidden units are binary (Bernoulli). When
the number of hidden units is small (e.g., 256, 512, 768),
the binary hidden layer cannot infer the complicated data
distribution at the input layer. Hence the network parameters
can obtain extreme values. In the experiments, we realized that
after the unsupervised pre-training process of the first RBM,
the biases of the hidden layer take very large values, even
when smaller learning rates were applied. This initialization
is not good for the backpropagation algorithm in the fine-
tuning process. In this case, the small random initialization in
conventional MLPs is preferred.

However, when the hidden layer size is large enough (≥
1024 units/layer), the hidden layer can infer the data distribu-
tion at the visible layer, and we observe that DBNs consistently
perform better than MLPs.

A possible suggestion for using DBNs for continuous valued
inputs is that we can use a large number of hidden units for
the first hidden layer, and higher level hidden layers can be
assigned with smaller numbers of hidden units.

The combination of information from different ASR systems
generally improves speech recognition accuracy. The reason
for this advantage is explained by the fact that different
systems often provide different errors. In this research, we
examine the combination of DBNs and MLPs at the proba-
bility level. The state posterior probability of state si given
the input vector xt generated by DBNs: PDBN(si|xt) and
MLPs: PMLP(si|xt) are combined by the simple unweighted
sum rule and the unweighted product rule [14] as:

Psum(si|xt) = 0.5PDBN(si|xt) + 0.5PMLP(si|xt) (11)

Pproduct(si|xt) =
PDBN(si|xt)PMLP(si|xt)

N∑
i=1

PDBN(si|xt)PMLP(si|xt)
(12)

where N is number of classes (states).

Fig. 3. Phone error rates on the test set of the DBN, the MLP and the combined
systems with different hidden layer sizes.

The recognition results of the combined systems are shown
in figure 3. The combined systems outperform both the DBN
and MLP systems significantly in all cases. No big difference
between the two combination schemes is observed. However,
the product rule performs slightly better than the sum rule.

2) Depth of networks: This experiment is conducted to
examine the performance of DBNs and MLPs when difference
numbers of hidden layers are used. Figure 4 explores the effect
of varying the number of hidden layers for DBNs and MLPs.
In this case, the number of units in each hidden layer is kept
fixed at 1024. Through the figure, it can be seen that adding the
second hidden layer gives better performance in both DBNs
and MLPs. However, with deeper architectures, MLPs do not
achieve further improvement, and they even start performing
worse when hidden layer 5 is added. Whereas the performance
of DBNs is improved when more hidden layers are added,
although the improvement is not large.

The posterior probabilities generated by the two individual
systems are combined by the sum rule and the product
rule. Significant improvements over both the DBN and MLP
systems are observed in figure 4 .

B. Speed of convergence

Figure 5 illustrates the speed of convergence of DBNs and
MLPs. In this experiment, a 3-hidden-layer architecture with
1536 hidden units in each layer is used. It is clearly seen that
DBNs can converge after only a few epochs, while MLPs need
nearly 100 epochs to converge. The fast convergent ability
of DBNs is thanks to the unsupervised pre-training process.
After pre-training, DBNs are close to the global optimal point.
Hence DBNs can converge after a few fine-tuning iterations
(backpropagation) [2].

Note that in the fine-tuning process of DBNs, a significant
reduction in phone error rate is observed in epoch 7. The

Fig. 4. Phone error rates on the test set of the DBN, the MLP and the combined
systems with different numbers of hidden layers.

Fig. 5. Comparison of convergence speed between DBNs and MLPs in the
error backpropagation phase.

reason is that the fine-tuning process of DBNs are divided
into two phases. The first phase consists of the first six epochs
and the rest of the epochs belong to the second phase. In the
first phase, only the weights which connect the two top layers
are trained, while the other weights are frozen. In the second
phase, all network weights are trained jointly.

Each epoch in the backpropagation process takes around
3.5 hours. Hence the training process in MLPs takes around
12 days for 80 epochs while the fine-tuning process of DBNs
takes only 1/4 of that time (for 20 epochs). However, the
total training time of DBNs involves both the pre-training and
the fine-tuning processes, where the pre-training is also time
consuming. In this experiment, DBNs with 3 hidden layers are
used, that means 3 RBMs need to be trained. The first RBM
consists of 429 visible units (i.e., dimensions of speech feature
vectors) and 1536 hidden units, while in the two remaining
RBMs, both the visible and hidden layers contain 1536 units.
Each RBM is trained with 50 epochs, where each epoch takes
25 minutes and 45 minutes for the first RBM and the two
remaining RBMs, respectively. Hence, the pre-training process
takes around 4 days. Overall, while MLPs take 12 days for

training, DBNs need only 7 days (4 days for pre-training and
3 days for fine-tuning). Note that the training process can be
accelerated significantly if a highly parallel machine is used
such as graphics processing units (GPUs) instead of a normal
computer [5], [6], [7].

C. Limited labeled training data

In this experiment, we compare DBNs and MLPs for the
case when limited labeled training data are available. The
training corpus is divided into two parts. The first part is the
labeled training data and the remaining part is treated as the
unlabeled training data. Both DBNs and MLPs can only use
the labeled part for fine-tuning the weights with the back-
propagation algorithm. However, as opposed to MLPs, DBNs
benefit from the unsupervised pre-training process which can
use both the unlabeled and the labeled data. This advantage
is very important since labeled data are very expensive and
limited whereas unlabeled data are almost unlimited and much
easier to collect.

Table I lists the phone error rate of DBNs, MLPs and
the combined systems with different percentages of labeled
training data. The relative improvement of DBNs and the
combined systems over MLPs is illustrated in figure 6. It
can be seen that, the smaller the amount of labeled training
data is used, the better DBNs perform over MLPs. Whereas
the relative improvement of the combined systems over the
MLP system remains stable with different percentages of
labeled training data. Although this improvement is not as
large as expected, it points out that we can improve the
speech recognition accuracy by using unlabeled speech data.
Also note that this method is different from other approaches
such as incremental training [13] where the high confidence
utterances are recognized and used with labeled utterances
to adapt or re-train the model. This procedure is normally
repeated for several iterations and it is very time consuming.
In the DBN method, the unlabeled training data are used only
one time to pre-train DBNs before using the labeled data to
fine-tune the network weights. Hence, it can perform faster
than other methods. As a result, a larger amount of unlabeled
training dataset can be used effectively.

TABLE I
PHONE ERROR RATE OF THE MLP, THE DBN AND COMBINED SYSTEMS IN
PHONE RECOGNITION WITH DIFFERENT AMOUNT OF LABELED TRAINING

DATA.

Individual system(%) Combined system(%)
% of labeled training data MLP DBN Sum rule Product rule

5% 43.42 40.56 41.10 41.09
10% 36.97 35.20 34.89 34.85
20% 33.27 31.89 31.39 31.45
50% 28.78 29.03 27.29 27.14
100% 26.25 25.66 25.00 25.00

VI. CONCLUSION AND DISCUSSION

In this paper, a comparative evaluation of DBNs and MLPs
on the TIMIT speech database has been conducted. It has
been shown that when the network size is large enough, DBNs

Fig. 6. The relative improvement of DBNs and the combined systems over
MLPs in different percentages of labeled training data.

outperformed MLPs consistently. In addition, DBNs could be
trained much faster than MLPs with the same architecture.
Our experiments also pointed out that using unlabeled training
data could improve the performance of the hybrid HMM/DBN
system. However, experimental results also showed that the
improvement of DBNs over conventional MLPs was not as
large as the improvement in image classification shown in
[4]. Hence there are still several questions that need to be
solved by further research. For instance, what type of RBMs
can better model speech features? Currently, DBNs are still
used to estimate the state posteriors in the hybrid HMM/DBN
model. The better combination methods should be investigated
in the future.

We also showed that a consistent improvement is observed
when the state posterior probabilities generated by DBNs and
MLPs were combined. Although the two systems had an
identical structure, the pre-training process in DBNs made
the information generated by DBNs are complementary with
MLPs. In this study, only the two simplest combination
schemes (unweighted sum and unweighted product rules) were
investigated. Further improvement can be obtained if more
complicated combination schemes are used (e.g., weighted
combinations, nonlinear combinations). In addition, we only
combined the two systems at the probability level. In the
future, combination of DBNs and MLPs at the feature level
(e.g., Tandem [15]) or the hypothesis level (e.g., ROVER [16])
should be investigated.

REFERENCES

[1] H. Bourlard and N. Morgan, “Continuous speech recognition by connec-
tionist statistical methods,” Neural Networks, IEEE Transactions on, vol.
4, pp. 893-909, Nov. 1993.

[2] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep
belief nets”, Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.

[3] V. Nair and G. Hinton, “3-d object recognition with deep belief nets.”,
Advances in Neural Information Processing Systems, no. 22, 2009.

[4] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, p. 504, 2006.

[5] A. Mohamed, G. Dahl, and G. Hinton, “Deep Belief Networks for phone
recognition,” in Proc. of NIPS 2009 Workshop on Deep Learning for
Speech Recognition and Related Applications, 2009.

[6] A. Mohamed, D. Yu, and L. Deng, “Investigation of full-sequence training
of deep belief networks for speech recognition,” in Eleventh Annual
Conference of the International Speech Communication Association,
2010.

[7] G. Dahl, A. MarcAurelio Ranzato, and G. Hinton, “Phone Recognition
with the Mean-Covariance Restricted Boltzmann Machine,” Advances in
Neural Information Processing Systems, vol. 24, 2010.

[8] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Advances in Neural Information
Processing Systems 19: Proceedings of the 2006 Conference, p. 153, The
MIT Press, 2007.

[9] R. Salakhutdinov, Learning deep generative models. PhD thesis, Univer-
sity of Toronto, 2009.

[10] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural computation, vol. 14, no. 8, pp. 1771-1800, 2002.

[11] K.-F. Lee and H.-W. Hon, “Speaker-independent phone recognition
using hidden markov models,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 37, no. 11, pp. 1641-1648, 1989.

[12] G. E. Hinton, “A practical guide to training restricted boltzmann
machines,” Tech. Rep., Univ. Toronto, Aug. 2010.

[13] B. Varadarajan, D. Yu, L. Deng, A. Acero, “Using collective informa-
tion in semi-supervised learning for speech recognition,” in Acoustics,
Speech and Signal Processing, 2009. ICASSP 2009. IEEE International
Conference on , pp. 4633-4636, 19-24 April 2009.

[14] K. Kirchhoff, “Combining articulatory and acoustic information for
speech recognition in noisy and reverberant environments,” in ICSLP,
pp. 891-894, 1998.

[15] H. Hermansky, D. Ellis, and S. Sharma, “Tandem connectionist fea-
ture extraction for conventional HMM systems,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, pp. 1635-1638, 2000.

[16] J. Fiscus, “A post-processing system to yield reduced word error rates:
Recognizer output voting error reduction (ROVER),” in Automatic Speech
Recognition and Understanding, 1997. Proceedings., IEEE Workshop on,
pp. 347-354, Dec. 1997.

