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Abstract— Singing voice synthesis has found numerous 
applications in the entertainment industry over the recent years. 
The template-based personalized singing voice synthesis method 
is a new method of generating high quality singing voice, which 
synthesizes the singing voice by means of conversion from the 
narrated lyrics of a song. In this synthesis method, template 
speaking and singing voices are first recorded for the purpose of 
modeling the transformation from speech to singing. To improve 
its accuracy while reducing computational load, the template 
voices are divided into several segments so that fine alignment 
and subsequent conversion can be performed separately for each 
segment. To correctly generate singing voice, a new instance of 
speech has to be divided into similar segments, each containing 
the same stanza as in the template voices. In order to achieve this, 
an automatic segmentation method is proposed in this paper. 
The experiment results have shown that the segmentation of 
speech signals using our method is comparable to manual 
segmentation, with an accuracy of 98.24%. This performance is 
consistent even in the presence of noise. 

I. INTRODUCTION 

With the development of the computer-based music 
technology, there has been a growing interest in singing voice 
synthesis over the recent years [1-6]. Former techniques in [1-
3] are mostly focused on singing voice synthesis from the 
lyrics of a song, which is called Lyrics-to-Singing (LTS) 
synthesis. Generating singing voices from spoken lyrics is 
called Speech-to-Singing (STS) synthesis [4-6]. Compared to 
LTS synthesis, the advantage of STS synthesis is that the 
timbre of the speaker can be preserved and the singing can, 
consequently, sound like it is being sung by the original 
speaker. STS synthesis can have many applications in the 
view of practice since it enables the user to synthesize and 
listen to his/her own singing voices by simply reading the 
lyrics of songs.  

In STS methods, conversion of speech into singing can be 
accomplished with either the guidance of music score or by 
means of transformation models based on pre-recorded 
templates of the song lyrics being read and sung 
synchronously. Unlike the score-based STS synthesis method 
in [4-6] that modeling the conversion of acoustic features 
based on the music score of a song, template-based STS 
synthesis trains the transformation models by analyzing a pair 
of template speaking and singing voices that are usually from 
a professional singer. Compared to score-based STS synthesis, 
it has two main advantages. Firstly, it omits the need to input 
the music score, which simplifies the operation of the system. 
Secondly, the pitch contour is derived from the actual singing 

voice, which is more natural than modifying a step contour to 
account for pitch fluctuations such as overshoot and vibrato. 
This can potentially improve the naturalness and quality of 
the synthesized singing.  

In template-based STS synthesis, transformation models of 
acoustic features are trained by analyzing the template 
speaking and singing voices. The lyrics of a song usually have 
multiple phrases. In view of accuracy and computational load, 
template voices are necessarily divided into several segments. 
The transformation models are trained separately for each 
segment. To apply these models to the conversion of a new 
speaking voice, it has to be first divided into similar segments, 
each containing the same stanza as the template voices. 
Without accurate segmentation, the singing voice cannot be 
generated correctly.  

Automatic segmentation of speech signals, however, is a 
very challenging task, which has been investigated in many 
speech research areas, e.g. Automatic Speech Recognition 
(ASR) [7-11]. The segment boundaries can be determined by 
inspection of speech waveforms and spectrograms based on 
the difference between the features of speech and silence [7]. 
However, these methods are not robust enough to divide the 
speech signal into the desired segmentations accurately all the 
time. This happens because factors such as signal-to-noise-
ratio (SNR), speaking rate, pause duration and unexpected 
pauses within speech, may affect the segmentation and 
change the total number of segments and the number of words 
in one segment. Recently, approaches such as Hidden Markov 
model (HMM), Maximum Entropy (Maent) and Conditional 
Random Field (CRF) classifiers have been applied and 
combine both lexical and prosodic features [8-11]. Although 
they have been shown to have better accuracy than a pause-
based segmentation, the process is much more complicated by 
formulating boundary-event detection as a sequence tagging 
problem, where each word in the speech has to be assigned a 
boundary label to the interval between that word and the next. 
Furthermore, these methods are applied after speech 
recognition and the information about alignment of word and 
phone transcriptions with the acoustic speech signal is 
required in feature extraction and segmentation [8].  

To address this problem, a Dynamic Time Warping (DTW) 
based segmentation method, together with a method for 
silence removal, is proposed in this paper. With the help of 
our method, the speech signal can be segmented consistently 
with the template. Besides high accuracy in automatic 
segmentation, easy implementation and simple process are 
also the advantage of our method.  
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The remaining parts of this paper are organized as follows. 
The template-based STS system is briefly introduced in 
Section II, in which, the segmentation method will be applied. 
Following that, the methods for the silence removal and DTW 
based segmentation are elaborated in Sections III and IV, 
respectively. The experimental results are presented in 
Section V. The concluding remarks are given in Section VI.  

II. SEGMENTATION IN TEMPLATE-BASED STS SYNTHESIS  

The STS system aims to convert a speaking voice into 
singing by automatically modifying the acoustic features of 
the speech. The template-based STS synthesis system may be 
broken down into three stages, namely, the learning, 
transformation and synthesis stages. In the learning stage, the 
template singing and speaking voices are analyzed to derive 
the transformation models for the conversion of speaking to 
singing based on the modification of acoustic features such as 
pitch contour, phoneme duration and spectrum. In the 
transformation stage, features are extracted for the speaking 
voice to be converted which is usually uttered by a different 
person. These are modified to approximate those of the 
singing voice based on the transformation models. After these 
features have been modified, the singing voice is synthesized 
in the last stage.  

As described in Section I, the template voices have been 
manually segmented and the transformation models are 
derived separately for each segment. To convert a new 
instance of speech into singing using the trained 
transformation models, it has to be segmented similarly to the 
template speech. Inaccurate segmentation leads to incorrect 
transformation and consequently produces incorrect singing 
voices.  

To address this problem, a segmentation method is 
proposed, whose flowchart is shown in Fig. 1. First, the 
speech is processed by removing the silent frames from the 
signal for the purpose of accurate alignment. Next, it is 
aligned with the template speech that has been manually 
segmented prior to conversion. The segment boundaries are 
then derived according to the synchronous information. The 
details are elaborated in the following two sections.  

 

Fig. 1 Flowchart of the proposed method for speech segmentation. 

 

III. SILENCE REMOVAL  

To remove the silence from a speech signal, two features, 
i.e. short-time energy and spectral centroid, are extracted from 
the speech signal. Since it is assumed that the signal within a 
short period is stationary or quasi-stationary, the signal is 
divided into frames, each of which has a length of 20 msec.  

Let Nnnsi ,...,2,1),(   be the audio samples in the ith frame 

and its short-term energy, denoted as
ie , can be expressed as 
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where N is the number of samples in one frame. Energy is the 
most useful feature to discriminate silence from speech in 
speech signals.  

The spectral centroid can be defined as  
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where ,,...,1,)( KkkSi   is the Discrete Fourier Transform 

(DFT) coefficients of 
is .  

Let the first two local maxima of the histogram of the 
energy sequence be 

1E  and 
2E , and those of the spectral 

centroid be 
1C  and 

2C . The thresholds used to discriminate 

the speech and silence frames are defined as [7] 
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where 
eW  and 

cW  are the weighting coefficients for 
eT  and 

cT , 

respectively. Instead of using a fixed value in [7] as 
,5 ce WW           (5) 

the weights are defined as 
,/4.0 12 EEWe          (6) 

and  
  ./5.0 12 CCWc          (7) 

This is more reasonable as the threshold need to be adjusted 
based on the level of the input signal.  

The thresholds defined in (3) and (4) are used to detect the 
start of speech activity. Let SLslnssl ,...,2,1),(   be the first 

SL  frames absent of the speech and the speech activity starts 
from  1SL -th frame. 

Knowing the starting point of the speech activity, we re-
define the thresholds of energy and spectral centroid as  
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and 
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where 
sle  and 

slc  are the energy and spectral centroid of 

),(nssl
respectively, 

spe  and 
spc  are the energy and spectral 

centroid of speech frames, respectively, and SP  is the total 
number of speech frames. The speech segments are formed by 
successive frames with features values larger than the 
thresholds. The silence is removed from the speech signal and 
the resultant signal will be segmented using the method 
described in the following section.    

IV. SPEECH SEGMENTATION  

After the silence has been removed from the speech signal, 
segmentation is carried out. Let   SS Llls ,...,2,1,   be the 

speech signal under segmentation, and    TT Llls ,...,2,1,   be 

the template speech signal, which have 
SL  and 

TL  audio 

samples, respectively. Here, the template speech, 
Ts  has been 

manually segmented to have 
TG  segments, each of which is 

denoted as   
  .,...,2,1, TTg Ggls   

Let  TgTg ls  be the last sample of the gth segment, where 
Tgl  is 

its position.     
The boundary samples of Ss , which is represented as 

 SgSg ls ,  are found by aligning Ss  and Ts . Alignment is 

performed using DTW [12]. DTW compares the similarity 
between each frame of a sequence with every frame of 
another, which may vary in time, seeking to match the 
corresponding frames between them. This method has been 
largely used in ASR to deal with different speaking speeds.  

The short-time cepstral features, MFCC, are extracted as 
acoustic features in alignment. Besides the MFCC, the Delta 
and Acceleration (Delta-Delta) of the raw MFCC features are 
calculated. There are 39 MFCC features in the full feature set, 
including 12 MFCC features, 12 delta MFCC features, 12 
Delta-Delta MFCC features, 1 (log) frame energy, 1 Delta 
(log) frame energy, and 1 Delta-Delta (log) frame energy. In 
order to reduce the acoustic variation across different frames 
and different parameters, frame- and parameter-level 
normalizations are carried on the MFCC features. 
Normalization is performed by subtracting the mean and 
dividing by the standard deviation of the features. 

With the help of alignment, the synchronous information 
between Ts  and Ss  can be obtained. As long as we know 

 TgTg ls  of Ts , we can estimate  SgSg ls  for Ss  from the 

synchronous information. In this way, the segmentation of Ss  

can be always consistent with that in Ts  regardless of other 

factors, e.g. SNR and pause duration, etc.  

V. EVALUATION  

   To evaluate the performance of the proposed method, a 
popular Chinese song titled “why do you bear to hurt me so” 
was selected in the experiment. Two singers, one male and 
one female, were employed to read the lyrics of the song to 
achieve 2 spoken utterances which were used as the templates 
for both genders. Each template utterance having around 
recording of 50-60 seconds was manually divided into 17 
segments.  

The data used for testing were 10 spoken utterances that 
were read by 6 speakers including 2 males and 4 females. 
Each utterance read the same lyrics as the template speech. 
For the purpose of comparison, the utterances were 
segmented using 4 methods listed as below: 

A. Proposed method including silence removal in 
Section III and DTW based segmentation in 
Section IV 

B. Silence removal in [7] and DTW based 
segmentation in Section IV 

C. DTW based segmentation in Section IV only 
D. Method proposed in [7]. 

The results are represented using the error rate and error 
types. The error rate (ER) is defined as  

             ,
UttSeg

Seg
ER wrg
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where 
wrgSeg  is the number of segmentation errors, Seg  is 

the number of segments in one utterance, and Utt  is the 
number of utterances in testing. The error types (ET) are 
listed below 

a) Grouping multiple segments into one segment 
b) Dividing one segment into multiple segments 
c) Missing starting- or ending- words in one segment 
d) Having only silence in a segment 
e) Early segmentation (Part of the last syllable in a 

segment is carried over to the subsequent segment) 
f) Late segmentation (Part of the first syllable in a 

segment is segmented with the previous segment) 

The 10 spoken utterances were segmented using the 4 
methods. For each method, the average value of the error 
rates and the number of errors for each type in the 10 
utterances were tabulated as shown in Table I.  

It can be seen from Table I that our method (Method A) 
has the lowest ER of 1.76% among the 4 methods. There 
are only 3 errors in dividing the 10 utterances into 170 
segments.  

TABLE   I 
SEGMENTATION RESULTS 

Method ER 
(%) 

ET (error times) 

a b c d e f 

A 1.76      3 

B 7.06   2  8 2 

C 4.12 1   1  5 

D 30.59 23 17 6 6   



Taking one spoken utterance as an example, the 
segmentation results are shown in Figs 2 and 3. The optimal 
warping path (red line) in the time warping matrix, when 
this utterance is aligned with the template speech, is 
illustrated in Fig. 2. The blue circles in this figure show the 
segment boundaries. The waveforms of the 17 segments are 
illustrated in Fig. 3(a). The adjacent segments are 
discriminated using different colours, either green or red. It 
can be seen from Fig. 3(a) that a noise (in blue) with much 
larger amplitude than that of the speech appeared at the end 
of signal, which was not recognized as a part of the last 
segment but filtered out by our method. 
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Fig. 2 Alignment of the input speech and template speech. 

0 10 20 30 40 50 60
-1

-0.5

0

0.5

1

Times (Seconds)

A
m

pl
it

ud
e

0 10 20 30 40 50 60
-1

-0.5

0

0.5

1

Times (Second)

A
m

pl
it

ud
e

(a) Original signal

(b) Noisy signal
 

Fig. 3 Waveforms of the 17 speech segments in the original signal (a) and the 
noisy signal with white Gaussian noise (SNR = 2) (b). 

To evaluate the performance of our method in noisy 
condition, white Gaussian noise was added to the signal 
given in Fig. 3(a) with a low SNR of 2. The noisy signal 
was correctly divided into 17 segments without any error by 
using the proposed method, whose waveforms are 
illustrated in Fig. 3(b). It shows that this method is able to 
accurately find the boundaries of the segments even when 
there is large noise in the speech signal. This is further 
indicates the robustness of our method. 

It can be found from the experiment that the removal of 
the silence from both the segmented and the template 
speech is critical in improving the performance of 
segmentation. If the original speech signals were segmented 
together with the silence as described in Method C, the ER 
was increased to 4.12%.  However, if the silence was 
removed using the method proposed in [7], ER reached 

7.06% (see Method B).  When the segmentation method in 
[7] was employed, the error rate is 30.59%, which is much 
higher than that achieved by our method.  

VI. CONCLUSIONS  

In template-based personalized singing voice synthesis, the 
input speech has to be divided into several segments before its 
features can be converted using the transformation models. Its 
segmentation should be consistent with that of the template 
voice. To achieve this, a segmentation method is proposed in 
this paper. First, silence is removed from the speech signal. 
Then, it is aligned with the template speech using DTW. 
Corresponding segment boundaries are derived with the 
alignment information attained. The results of the experiment 
show that the segmentation error can be as low as 1.76% even 
in the presence of noise.  
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