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Abstract—We propose a sampling theorem that reconstructs a
consistent signal from noisy under-determined samples. Consis-
tency in the context of sampling theory means that the recon-
structed signal yields the same measurements as the original ones.
The conventional consistent sampling theorems for the under-
determined case reconstruct a signal from noiseless samples in
a complementary subspace L in the reconstruction space of the
intersection between the reconstruction space and the orthogonal
complement of the sampling space. To obtain a good reconstruc-
tion result, one has to determine L effectively. To this end, we
first extend the sampling theorem for a noisy case. Since the
reconstructed signal is scattered in L, we propose to reconstruct
a signal so that the variance is minimized provided that the
average of the signals agrees with the noiseless reconstruction.
Note that the minimum variance depends on the subspace L.
Therefore, we next propose to determine L so that the minimum
variance is further minimized in terms of L. We show that such
L can be chosen if and only if L includes a subspace determined
by the noise covariance matrix. By computer simulations, we
demonstrate that there is a considerable difference between the
minimum and non-minimum variance reconstructions.

I. INTRODUCTION

The best known result in sampling theory is the perfect
reconstruction theorem for bandlimited signals of lowpass type
[1], [2]. If we formally apply the theorem to a real signal,
which is not exactly bandlimited, an orthogonal projection
of the signal onto the subspace of all bandlimited signals is
reconstructed. This is the best approximation to the original
signal within the subspace. This observation brought sampling
theory the approximation viewpoint.

Along this context, criteria to evaluate the degree of ap-
proximation play the central role. The relevant one is the
minimum squared error between the reconstructed and the
original signals [3]∼ [6]. This criterion can be satisfied if and
only if the subspace spanned by the reconstruction functions
is a subset of that spanned by the sampling ones. If we are
free to design the reconstruction or sampling functions, then
we can suffice the condition.

If sampling and reconstruction subspaces are fixed in
advance, the relation does not hold in general. Then, we
need some relaxed criterion. One of them is consistency,
which requests that the reconstructed signal yields the same
measurements as the original ones [7]∼[12]. This criterion
was first employed in [7] for a critical sampling case. The
authors clarified that the consistent reconstruction is an oblique
projection onto the reconstruction space along the orthogonal
complement of the sampling space. Further, they showed that

the error of the reconstruction to the target function is bounded
by that of the orthogonal projection to the target one. This
discussion was extended to the over-sampling case in [9].

For the under-sampling case, the consistent reconstruction is
not unique because of the non-zero intersection between the
reconstruction space and the orthogonal complement of the
sampling space. To make it unique, we need to determine a
complementary subspace L in the reconstruction space of the
intersection. This problem was first addressed in [10], in which
the subspace L was determined using principal components
given in an a priori manner. On the other hand, Dvorkind et
al. proposed a method based on the minimax principle [11].

In this paper, we propose another method to determine the
subspace L. To this end, we first extend the sampling theorem
for noisy case, in which the reconstructed signal is distributed
within the subspace L. Hence, we propose a criterion such
that the variance is minimized provided that the average of the
signals agrees with the noiseless consistent reconstruction. We
derive a sampling theorem that reconstructs the optimal signal
in the sense of the criterion. This is a natural extension of the
sampling theorem in [6] since the proposed one reduces to the
previous one in a special case, while the noise suppression
mechanism of the proposed approach is clearly understood
more than that in [6], because of the relevant expression of
the optimum solution.

Based on this result, we propose a new method to determine
the subspace L. The important observation is that the minimum
value of the variance depends on the subspace L. Hence, we
determine L so that the minimum value is further minimized
in terms of L. It is clarified that such L is chosen if and
only if L includes a subspace defined by the noise covariance
matrix. This implies that such L is not unique in general.
Under a certain condition, however, L is uniquely determined
as the orthogonal complement in the reconstruction space of
the intersection. By computer simulations, we show that there
is a considerable difference between the minimum and non-
minimum variance reconstructions.

This paper is organized as follows. In Section II, after
formulation of the sampling and reconstruction problem, we
quickly review the consistent sampling theorem for noiseless
case. Section III extends the consistent sampling theorem for
a noisy case, and propose the new sampling theorem. Section
IV discusses the problem of determining the subspace L so
that it minimizes the minimized variance. Section V concludes
the paper.
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II. NOISELESS CONSISTENT SAMPLING

The original input signal f is defined over a continuous
domain D and is assumed to belong to a Hilbert space
H = H(D). The measurements of f , denoted by dn (n =
0, . . . , N − 1), are given by the inner product in H of f with
the sampling functions {ψn}N−1

n=0 , as

dn = 〈f, ψn〉.

The N -dimensional vector consisting of dn is denoted by d.
Let As be the operator that maps f into d:

Asf = d. (1)

The reconstructed signal f̃ ∈ H is given by a linear combi-
nation of reconstruction functions, {ϕk}K−1

k=0 :

f̃ =
K−1∑
k=0

ckϕk. (2)

The K-dimensional vector of signal coefficients ck is denoted
by c. The (adjoint) reconstruction operator is defined by

f̃ = A∗
rc. (3)

Let X be the K × N matrix that maps d to c:

Xd = c. (4)

Then, Eqs. (1), (3), and (4) yield

f̃ = A∗
rXAsf. (5)

With this formulation, the sampling problem becomes equiv-
alent to finding a suitable matrix X so that f̃ satisfies some
optimality criterion.

Let Vs and Vr be subspaces in H spanned by {ψn}N−1
n=0

and {ϕk}K−1
k=0 , respectively. They are called the sampling and

reconstruction spaces, respectively.
Consider the case that the sampling and reconstruction func-

tions are determined a priori, and therefore Vs and Vr are also
fixed. This includes the case where a piece of music recorded
in a digital way is reproduced using a commercial audio player.
If Vr ̸⊂ Vs, we cannot obtain the best approximation, which
is the orthogonal projection of f onto Vr. A relaxation of
criterion for this case is consistency, which requests that the
measurements of the reconstructed signal agree with those of
the original signal, and is expressed as

Asf̃ = Asf. (6)

To obtain X which satisfies Eq. (6) is the problem in the
consistency sampling theorem for noiseless case.

To discuss the problem, we assume that

Vr + V ⊥
s = H, (7)

where V ⊥
s is the orthogonal complement of Vs. Eq. (7) means

that Eq. (6) can be achieved for any f in H .
We further assume that

Vr ∩ V ⊥
s ̸= {0}, (8)

which implies under-sampling scenario [10]. This condition
means that some signals in the reconstruction space Vr are
mapped to zero vector by sampling, and therefore the re-
constructed signal satisfying the consistency condition is not
unique. If Eq. (8) is not true, that is if Vr ∩ V ⊥

s = {0}, then
f̃ that satisfies Eq. (6) is unique, and given by the oblique
projection of f onto Vr along V ⊥

s . Sampling theorems that
reconstruct such signals are proposed for the critical sampling
scenario [7] and for the over-sampling scenario [9]. As shown
in [10], however, it is easy to find a case in which Eq. (8) is
true. This is the reason why we assume Eq. (8).

To enforce the uniqueness on the consistent reconstruction
under the condition (8), we consider a complementary sub-
space L in Vr of Vr ∩ V ⊥

s :

L+̇(Vr ∩ V ⊥
s ) = Vr, (9)

where +̇ denotes the direct sum, not necessarily orthogonal.
Further, it holds that

L ∩ V ⊥
s = {0}. (10)

As shown in [10], consistent reconstruction is unique in L,
and is characterized geometrically as follows. Eqs. (7) and (9)
implies that

L+̇V ⊥
s = H. (11)

Hence, we can define an oblique projection onto L along
V ⊥

s . By using this projection operator P , the consistent
reconstruction in L is given by f̃ = Pf [10], which is obtained
by the following sampling theorem:

Proposition 1: [10] Let L be a fixed complementary sub-
space of Vr ∩V ⊥

s in Vr. The unique consistent reconstruction
in L is obtained by Eq. (5) if and only if X is given by

X = (A∗
r)

†PA†
s + Y − ArA

†
rY AsA

†
s, (12)

where (·)† denotes the Moore-Penrose generalized inverse and
Y is an arbitrary linear operator (i.e., rectangular matrix) from
CN to CK .

Note that we have the degrees of freedom for the choice of
the operator X . By using this, we can minimize the influence
of noise in samples.

III. NOISY CONSISTENT SAMPLING

Let us consider the case in which the samples are corrupted
by additive noise εn, as

yn = dn + εn = 〈f, ψn〉 + εn.

Its vector expression yields

y = Asf + ε,

where y and ε are N -dimensional vectors whose nth elements
are yn and εn, respectively. The additive noise εn is assumed
to have a zero mean and the covariance matrix Q with the
form

Q = E
ε

(εεT ) = σ2Q0,



where Q0 is a known positive semidefinite matrix and σ is an
unknown positive real number. Then, the reconstructed signal
f̃ is given by

f̃ = A∗
rXy = A∗

rXAsf + A∗
rXε.

To obtain the consistent reconstruction in an arbitrary fixed
subspace L as precisely as possible, the variance should be
minimized provided that the average agrees with the noiseless
consistent reconstruction Pf . Therefore, let us reconstruct a
signal f̃ such that

J [X] = E
ε
∥f̃ − Pf∥2 (13)

is minimized under the condition that Eε f̃ = Pf for any f
in H . This is equivalent to

A∗
rXAs = P. (14)

To analytically derive a matrix X that provides the optimal
f̃ in the above sense, we use the three matrices defined as

Ψ = (I − AsA
†
s)Q(I − AsA

†
s),

Φ = AsA
†
s + ΨΨ†, and Pt = I − QΨ†.

We denote the range and null space of a bounded operator
T by R(T ) and N (T ), respectively. The matrix Φ is the
orthogonal projection onto R(As) + R(Q), to which the
vector y belongs, while QΨ† in Pt is the oblique projection
whose range and nullspace are QR(As)⊥ and N (QPR(As)⊥),
respectively. Then, our first main result follows:

Theorem 1: The matrix X which minimizes Eq. (13) sub-
ject to Eq. (14) is given as

X = (A∗
r)

†PA†
sPt + Y − ArA

†
rY Φ. (15)

In this case, the minimum value J0 of J [X] is given by

J0 = σ2〈PA†
sPtQ0, PA†

sPt〉, (16)

where 〈·, ·〉 is the Schmidt inner product of operators [13].

Proofs of all the theorems in this paper are abbreviated
because of the limited space. By comparing the predominant
term in Eq. (15) to that in Eq. (12), we know that the
difference is only Pt, which is applied to the latter from the
right. In noiseless case, a measurement vector d stays in the
subspace R(As). In noisy case, however, y sticks out from
R(As) in general. This means that we can suppress noise
by pushing y back into R(As). This is implemented by the
oblique projection Pt. Further, it is implied that QR(As)⊥ is
the optimum direction for the noise suppression in the sense
that J [X] is minimized under the condition (14). Since y
mostly stays in R(Φ) = R(As) + R(Q), and we can show
that R(PtΦ) = R(As), Pty belongs to R(As) in spite that
R(Pt) = N (QPR(As)⊥). The noise suppressed vector Pty is
transformed by (A∗

r)
†PA†

s. Then, the vector c is obtained and
Eq. (2) is computed.

Let us compare these results to those obtained in [6], which
discussed a problem of designing the reconstruction space Vr

provided the sampling space Vs. The optimum approximation

of the original signal, which is the orthogonal projection, can
be obtained if and only if Vr ⊂ Vs is true. Therefore, the
maximal subspace Vs was adopted for Vr, and a sampling
theorem with optimum noise suppression was derived. How-
ever, we cannot always design Vr as stated in Introduction,
or Vs and Vr are predetermined. One of the relaxed criteria
for such cases is consistency. The reconstructed signal for this
case is the oblique projection onto L along V ⊥

s . In the case
that we can make L ⊂ Vs hold, the oblique projection reduces
to the orthogonal projection. In this sense, the results obtained
above are extensions of those in [6].

It is also interesting to compare the expressions of the results
in the present paper and [6]. In the latter, the oblique projection
for the noise suppression was not shown explicitly. It was
stated implicitly as Corollary 1. The meaning of the operator
used in the expression is not always clear. On the other hand,
Pt derived in this paper has the clear meaning of the oblique
projection of the noise suppression. Correspondence between
the noisy expression to the noiseless one is also clear. Further,
the matrix Pt also plays the key role in the derivation of the
minimum value of J [X].

IV. MINIMUM VARIANCE CONSISTENT SAMPLING

In Section III, L was arbitrarily fixed. As a result, it was
shown that the minimum variance of f̃ due to noise is given
by J0 in Eq. (16). This depends on L. It is natural to determine
L so that J0 = J0[L] is minimized for reconstructed signals
to be stable. In this section, we clarify how such an L is
characterized

Toward this end, we prepare a few subspaces. Let us denote
Vr∩V ⊥

s by V0. The subspaces Vr and Vs are decomposed into
orthogonal direct sum as

Vr = V0 ⊕ V1, V ⊥
s = V0 ⊕ V2.

Then, we have the direct sum decomposition of H as H =
V0 ⊕ (V1+̇V2). Let P0 and P1 be the oblique projection oper-
ators onto V0 and V1 along V1+̇V2 and V0 ⊕ V2, respectively:

P0 = PV0,V1+̇V2
, P1 = PV1,V0⊕V2 .

Theorem 2: The minimum variance J0 is minimized in
terms of L if and only if L contains Ln = R(P1A

†
sPtQ0):

L ⊃ Ln = R(P1A
†
sPtQ0). (17)

In this case, the minimum value is given as:

min
L

J0[L] = σ2〈P1A
†
sPtQ0, P1A

†
sPt〉. (18)

The condition (17) implies that the choice of L is not unique
in general. In the following case, however, it becomes unique:

Theorem 3: The choice of L for the minimum consistent
reconstruction is unique if and only if it holds that

R(PtQ) = R(As). (19)

In this case, L is given by V1.
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(a) Minimum variance reconstruction
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(b) Non-minimum variance reconstrunction
Fig. 1. Comparison of minimum/non-minimum variance reconstuctions.

This result agrees with that derived in [11]. That is, the
subspace V1 is optimal in the sense of both the minimum
variance and the minimax criteria.

Let H be all one-variate functions bandlimited in (−Ω, Ω)
with the inner product defined as 〈f, g〉 =

∫ ∞
−∞ f(x)g(x)dx.

The reconstruction functions are given by

ϕk(x) =
Ω
π

sinc
Ω(x − xk)

π
(k = 0, 1, · · · , 4),

where

{x0, x1, x2, x3, x4} = {−3π

Ω
,− π

Ω
,
3π

Ω
, 0,

4π

Ω
}.

Sample points are {x0, x1, x2}. Let the noise covariance be
the 3× 3 matrix whose elements are all σ2 = 0.09. Then, Ln

is given as
Ln = span{ϕ1 + ϕ2 + ϕ3}.

One choice of L can be

L1 = span{ϕ0 + ϕ3 + ϕ4, ϕ1 − ϕ3, ϕ2 − ϕ4},

which satisfies L1 ⊃ Ln so that a signal of minimum variance
is reconstructed. Another choice can be

L2 = span{ϕ1 + ϕ̂, ϕ2 + ϕ̂, ϕ3 + ϕ̂},

where ϕ̂ = 3ϕ3 + ϕ4. This does not have Ln as its subspace,
thus minimum varianceness does not hold.

Let the original signal f(x) be

f(x) = 5ϕ0(x)− 4ϕ1(x)+2ϕ2(x)+19/2ϕ3(x)+7/2ϕ4(x).

This signal was chosen so that its projections onto L1 along
Vr ∩ V ⊥

s agrees with that onto L2 to be able to compare the
reconstructed signal easily.

Fig. 1 (a) and (b) show thirty signals reconstructed from
samples provided thirty times by the proposed consistent
sampling theorems with L1 and L2, respectively. The original
signal f(x) and its projection (Pf)(x) are also shown by
the solid and dashed lines, respectively. We can clearly see
that the minimum variance sampling theorem provides much
stabler results than the non-minimum variance one.

V. CONCLUSION

This paper proposed a sampling theorem which reconstructs
a consistent signal from noisy under-determined samples.
When the subspace L is arbitrarily fixed, reconstructed signals
are distributed in L. Thus, under the condition that the average
agrees with the noiseless reconstruction, we reconstructed the
signal so that the variance is minimized. Since this minimum
value depends on L, we determined L so that it is further
minimized. We showed that such an L can be chosen if and
only if L includes a subspace Ln which is determined by the
noise covariance matrix. By computer simulations, we showed
the difference between the minimum variance reconstruction
and the non-minimum case.
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