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Abstract—Due to the efficiency in implementation, the Walsh 
(Hadamard) transform plays an important role in signal analysis 
and communication. Recently, Lee generalized the Walsh trans-
form into the Jacket transform. Since the entries of the Jacket 
transform can be ±2k, it is more flexible than the Walsh trans-
form. Both the Walsh transform and the Jacket transform are 
defined for the case where the length N is a power of 2. In this 
paper, we try to extend the Walsh transform and the Jacket 
transform to the case where N is not a power of 2. With the 
“folding extension algorithm” and the Kronecker product, the 
arbitrary-length Walsh-Jacket transform can be defined success-
fully. As the original Walsh and Jacket transforms, the proposed 
arbitrary-length Walsh-Jacket transform has fast algorithms 
and can always be decomposed into the 2-point Walsh-Jacket 
transforms. We also show the applications of the proposed arbi-
trary-length Walsh-Jacket transforms in step-like signal analysis 
and electrocardiogram (ECG) signal analysis.                           
 

I. INTRODUCTION 

The Walsh (Hadamard) transform [1] is defined as         

            
1 1
1 1
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
2W ,    

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

4W ,     (1) 

                         ( )= ⊗2M 2M 2 MW P W W , (2) 
where P2M[2s−1, s] =  P2M[2s, M+s] = 1  if s is odd,     
           P2M[2s−1, M+s] =  P2M[2s, s] = 1  if s is even,          
           P2M[m, n] = 0 otherwise.       
(Note that the index used in this paper starts at 1. Therefore, 
for an N×N matrix A, the entries are A[m, n] where m = 1, 
2, …, N and n = 1, 2, …, N.) The inverse of the Walsh trans-
form is its transpose multiplied by N:  

                              1 T

N
=-1

N NW W .          (3) 

Since the Walsh transform requires only the multiplication of 
　1 (the exception is that the inverse Walsh transform needs 
the multiplication of 1/N), it is very efficient in implementa-
tion. The Walsh transform is useful in signal expansion, elec-
trocardiogram (ECG) signal analysis, data compression, im-
age processing, feature extraction, and error control coding. 
More, in digital communication, it also plays an important 
role in code division multiple access (CDMA) [1][2][3].    
 

Recently, Lee et. al. generalized the Walsh transform into 
the Jacket transform [4][5][6[7][8][9][10]. For example, the 
4-point Jacket transform is defined as [3][4]:       

    

a b b a
b c c b
a b b a
b c c b

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

4J ,  2 aka = ,   2 bkb = ,   2 ckc = , (4)     

and its inverse is  

    

1 / 1/ 1/ 1/
1/ 1/ 1/ 1/1
1/ 1/ 1/ 1/4
1/ 1/ 1/ 1/

a b b a
b c c b
b c c b
a b b a

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
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⎢ ⎥

− −⎣ ⎦

4H ,    =4 4H J I . (5) 

Note that, instead of ±1, and the entries of the Jacket trans-
form can be a power of 2. Since the multiplication of ±2m can 
be implemented by the bit shifting operation, as the Walsh 
transform, the Jacket transform is also efficient in implemen-
tation.  

The Jacket transform is more general and flexible than 
the Walsh transform. With proper assignment of parameters, 
the Jacket transform can work similar to the sinusoid trans-
form [10]. The Jacket transform has been found to be useful 
in MIMO system analysis, spread spectrum communication, 
and CDMA [4][5][6][7][8][9]. The (2M)-point Jacket trans-
form can be defined by the Kronecker product of the M-point 
Jacket transform and the 2-point Walsh transform: 
                              ( )= ⊗2M 2M 2 MJ P W J ,  (6)    
where W2 is the 2-point Walsh transform and P2M is defined 
the same as that in (2).  

 
The 2k-point Walsh transform and the 2k-point Jacket 

transform can be successfully defined form (2) and (6). How-
ever, there is a problem: How do we define these transforms 
with arbitrary number of points?   

If one constrains that the entries of the Walsh transform 
should be 1 or −1, then the arbitrary-point Walsh transform is 
impossible to define. In this paper, we apply the concept of 
the Jacket transform and relax the constraint. We give the 
definition of the Walsh-Jacket transform, which is a discrete 
transform whose entries have the values of ±2m or zero. It can 
be viewed as a generalization of the Walsh transform and a 
further generalization of the Jacket transform.  

In Section 2, we give the definition of the Walsh-Jacket 
transform. In Section 3, we show the general form of the 2-
point and the 3-point Walsh-Jacket transforms. In Section 4, 
we propose the “folding extension algorithm” that can extend 
the M-point and the (M +1)-point Walsh-Jacket transform into 
the (2M +1)-point Walsh-Jacket transform. Therefore, the 5-
point Walsh-Jacket transform can be derived from the 2-point 
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and 3-point Walsh-Jacket transforms, the 7-point Walsh-
Jacket transform can be derived from the 3-point and 4-point 
Walsh-Jacket transforms, and so on. With the folding exten-
sion method together with the Kronecker product, the arbi-
trary-point Walsh-Jacket transform can be derived success-
fully. In Section 5, we show the fast implementation algo-
rithm of the Walsh-Jacket transform. The applications of the 
Walsh-Jacket transform in electrocardiogram (ECG) signal 
analysis and step-like signal analysis is given in Section 6.          

 
II. DEFINITION OF THE WALSH-JACKET TRANSFORM   

First, we give the definition of the “Walsh-Jacket trans-
form”. The Walsh-Jacket transform is a discrete operation 
whose entries should satisfy the following constraints. Sup-
pose that the transform matrices of the forward and the in-
verse N-point Walsh-Jacket transforms are WN and UN, re-
spectively, and their entries are denoted by WN[m, n] and 
UN[m, n] (m, n = 1, 2, …, N). Then    

(Constraint A) The entries of both the forward transform WN 
and the inverse transform UN should be powers of 2 
or zero.  

(Constraint B) WN[m, n] = ±WN[m, N+1−n] should be satis-
fied.                        

(Constraint C) As the original Walsh transform, the numbers 
of zero crossing of the rows of the Walsh-Jacket 
transform should be 0, 1, 2, 3, …, N−1, respec-
tively. The kth row of the Walsh-Jacket transform 
should have k−1 zero-crossings.                

Note that, due to Constraints B and C, the Walsh-Jacket 
transform works similar to the Walsh transform. However, 
from Constraint A, we can see that the Walsh-Jacket trans-
form relaxes the constraints that the entry should be ±1, which 
is required by the Walsh transform. Note that, since the multi-
plication of the power of 2 can be implemented by bit-shifting, 
the Walsh-Jacket transform can still be implemented in an 
efficient way.  

Also note that the Walsh-Jacket transform is also more 
general than the Jacket transform [4][5], since the entries of 
the Walsh-Jacket transform can be zero and the constraint that 
UN[m, n] = 1/WN[n, m]/N is not required. The Walsh trans-
form and the Jacket transform with arbitrary number of points 
are hard to define, but it is possible to define the arbitrary-
length Walsh-Jacket transform.  

 
III. GENERALIZED 2-POINT AND 3-POINT WALSH-JACKET 

TRANSFORMS  

A. 2-Point Walsh-Jacket Transform 
First, we show the general form of the 2-point Walsh-

Jacket transform. Due to the three constraints in Section 2, the 
2-point Walsh-Jacket transform should have the form of:   

                                  ,
a b
c d
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
2W   (7) 

     where a, b, c and d are powers of 2 and positive. 
Its inverse is  

                       1 .
d b
c aad bc
⎡ ⎤

= = ⎢ ⎥−+ ⎣ ⎦
-1

2 2U W  (8) 

Since the entries of U2 must also be powers of 2, the follow-
ing constraint should be satisfied:    
 2 ,qad bc+ =  where q is an integer. (9) 
Any 2×2 matrix that has the form as in (7) and satisfies the 
constraint in (9) will satisfy all the three constraints in Section 
2 and can be treated as the 2-point Walsh-Jacket transform. 
For example,       

                                       
1 1
1 1
⎡ ⎤
⎢ ⎥−⎣ ⎦

, (10) 

                               
1 2 1 2

,  
2 4 1 2
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 (11) 

are all the special cases of the 2-point Walsh-Jacket transform. 
 
B. 3-Point Walsh-Jacket Transform 

From the three constraints in Section 2, the 3-point Walsh-
Jacket transform should have the form of 

 0 ,
a b a
c c
d e d

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

3W  (12) 

where a, b, c, d and e are powers of 2 and positive. Since      

      1 2 0 2 .
2 ( )

ce bd ae bc
cd ac

c bd ae
ce bd ae bc

+⎡ ⎤
⎢ ⎥= = −⎢ ⎥+
⎢ ⎥− −⎣ ⎦

-1
3 3U W  (13) 

Therefore, to make the entries of U3 to be the powers of 2, the 
following constraint should be satisfied.:  
 2 ,qbd ae+ =   where q is an integer. (14) 
Moreover, if ae = k(bd), then (1+k)bd = 2q. Since bd is a 
power of 2, 1+k must also be a power of 2. Therefore, the 
only possible value of k is 1 and      
                                    ae = bd                    (15) 
should be satisfied.            

Any 3×3 matrix that has the form as in (12) and satisfy the 
constraint in (15) will satisfy all the three requirements in 
Section 2 and can be treated as the 3-point Walsh-Jacket 
transform. For example, we can choose {a, b, c, d, e} = {1, 2, 
1, 1, 2} in (12). Then 

                            
1 2 1
1 0 1
1 2 1

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

3W       (16) 

is a special case of the 3-point Walsh-Jacket transform and its 
inverse is  

             
1 / 4 1/ 2 1/ 4
1/ 4 0 1/ 4 .
1/ 4 1/ 2 1/ 4

⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥−⎣ ⎦

-1
3 3U W           (17) 

We can see that all the entries of W3 and U3 are either powers 
of 2 or zero. Moreover, the 1st and the 3rd rows of W3 are even 
symmetric and the 2nd row of W3 is odd symmetric. Also note 



that the 1st, the 2nd, and the 3rd rows in (16) have 0, 1, and 2 
zero-crossings, respectively. Therefore, all the three con-
straints in Section 2 are satisfied. We can also choose {a, b, c, 
d, e} = {1, 1, 1, 1, 1} and the obtain the forward and inverse 
3-point Walsh-Jacket transforms as follows:   

     
1 1 1
1 0 1
1 1 1

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

3W ,   
1 / 4 1/ 2 1/ 4
1/ 2 0 1/ 2 .
1/ 4 1/ 2 1/ 4

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

3U  (18) 

They also satisfy all the three requirements in Section 2.    
 

IV. ARBITRARY-LENGTH WALSH-JACKET TRANSFORM  

We derived the general forms of the 2-point and the 3-
point Walsh-Jacket transforms in the previous section. In this 
section, we introduce two important theories that are helpful 
for deriving the arbitrary-length Walsh-Jacket transform.  
 
A. Folding Extension Algorithm for Odd N 

[Theorem 1] If N is an odd number, then we can use the fol-
lowing folding extension algorithm to derive the N-point 
Walsh-Jacket transform from the M-point and the (M+1)-
point Walsh Jacket transforms, where N = 2M+1.           

Suppose that WM and WM+1 are the transform matrices of 
the M-point and the (M+1)-point Walsh Jacket transforms and 
UM and UM+1 are their inverse transform matrices, respec-
tively. Then the (2M+1)-point Walsh-Jacket transform can 
be derived from:    

            
( )
( )

1 1 12
,

0
+ + +

⎡ ⎤←
= ⎢ ⎥

− ←⎢ ⎥⎣ ⎦

M M M
N N

M M

W c W
W P

W W

% %
       (19) 

where N = 2M+1, 1+MW%  means the first M columns of WM+1 
and cM+1 is the last column of WM+1, i.e.,   
                         ⎡ ⎤= ⎣ ⎦M+1 M+1 M+1W W c% ,      (20) 

and ( )← in (19) is the “column reverse operation”. That is, if 
a matrix A contains K columns, then             
            [ ] [ ], , 1B m n A m K n= + −     if  B = (A)←. (21)   
The permutation matrix PN in (19) is  
            PN[2s−1, s] = 1         for s = 1, 2, …, M+1,     
            PN[2s, M+1+s] = 1   for s = 1, 2, …, M,        
            PN[m, n] = 0 otherwise.          (22) 

Moreover, the inverse (2M+1)-point Walsh-Jacket 
transform can be defined from:                    

                1 0 ,
2 ˆ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥↑ − ↑⎣ ⎦

M
M+1 T

N N

M+1 M

U
U

U P
U U

    (23)   

where 1
ˆ

+MU  is a matrix that contain the first M rows of UM+1 
and ↑ means the “row reverse operation”. That is, if A con-
tains H rows, then                     
              [ ] [ ], 1 ,B m n A H m n= + −     if  B = A↑. (24)    

From Theorem 1, we can generate the (2M+1)-point 

Walsh Jacket transform that satisfy all the requirements in 
Section 2 successfully. For example, we can use the 2-point 
and 3-point Walsh-Jacket transform to generate the 5-point 
Walsh-Jacket transform. If the 2-point Walsh-Jacket trans-
form we use is defined as in (10) and the 3-point Walsh-
Jacket transform we use is defined as in (16), then, from (19), 
obtained the 5-point Walsh Jacket transform is         

                   

1 2 2 2 1
1 1 0 1 1
1 0 2 0 1
1 1 0 1 1
1 2 2 2 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= −
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

5W .      (25) 

From (23), the inverse 5-point Walsh Jacket transform is   

          

1 / 8 1/ 4 1/ 4 1/ 4 1/ 8
1/ 8 1/ 4 0 1/ 4 1/ 8
1/ 8 0 1/ 4 0 1/ 8
1/ 8 1/ 4 0 1/ 4 1/ 8
1/ 8 1/ 4 1/ 4 1/ 4 1/ 8

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= −
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

5U . (26)   

We can see that the rows of W5 in (25) are either even or odd 
symmetric and their numbers of zeros crossings are 0, 1, 2, 3, 
and 4, respectively. Both the 5-point Walsh transform and the 
5-point Jacket transform are hard to define, but now we define 
the 5-point Walsh-Jacket transform successfully.                    

Furthermore, to derive the 7-point Walsh-Jacket transform, 
we can use the 4-point Jacket transform introduced by Lee [4]: 

                          

1 1 1 1
1 2 2 1
1 1 1 1
1 2 2 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

4W    (27) 

together with the 3-point Walsh-Jacket transform in (16). 
From (19) and (23), the derived forward and inverse 7-point 
Walsh Jacket transforms are 

               

1 1 1 2 1 1 1
1 2 1 0 1 2 1
1 2 2 2 2 2 1
1 0 1 0 1 0 1
1 1 1 2 1 1 1
1 2 1 0 1 2 1
1 2 2 2 2 2 1

⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

7W ,       (28) 

           

2 2 2 4 2 2 2
2 2 1 0 2 2 1
2 2 1 4 2 2 1

1 2 0 2 0 2 0 2
16

2 2 1 4 2 2 1
2 2 1 0 2 2 1
2 2 2 4 2 2 2

⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

7U .  (29) 

It is not hard to show that the 7-point Walsh Jacket transform 
defined above satisfies all the three constraints in Section 2.  



In Corollaries 1-4, we prove that WN and UN derived in 
Theorem 1 form a forward and inverse transform pair and 
they are bound to satisfy all the three constraints in Section2.      

[Corollary 1] WN and UN defined in (19) and (23) form a 
forward and inverse transform pair, i.e.,   

                                  UNWN = I.     (30) 

(Proof): If we use wN,m[n] to denote the mth row of WN and 
use uN,p[q] to denote the pth column of UN, then, since wN,m[n] 
and uN,p[q] are even symmetric if m, p ≤ M+1 and wN,m[n] and 
uN,p[q] are odd symmetric if m, p > M+1,        

      [ ] [ ]
1

0
N

n
n n

=

=∑ N,m N,pw u  if m ≤ M+1  and p > M+1           

                                            or m > M+1  and p ≤ M+1. (31)   
In the case where m ≤ M+1 and p ≤ M+1, from (19) and (23),   

[ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ]

1

1 2

1

1

1 1

1 12 1 1
2 2
1 1 1
2

N

n
M N

n n M
M

n
M

n

n n

n n M M n n

n n M M

M n M n

=

= = +

=

=

= + + + +

= + + ⋅ +

+ + − + −

∑

∑ ∑

∑

∑

N,m N,p

N,m N,p N,m N,p N,m N,p

M+1,m M+1,p M+1,m M+1,p

M+1,m M+1,p

w u

w u w u w u

w u w u

w u

      

[ ] [ ]
1

M

n
n n

=

= ∑ M+1,m M+1,pw u .        

Since UM+1WM+1 = I, i.e., [ ] [ ]
1

M

n
n n

=
∑ M+1,m M+1,pw u  ,m pδ= , there-

fore,   

                       [ ] [ ] ,
1

N

m p
n

n n δ
=

=∑ N,m N,pw u     (32) 

is satisfied for m ≤ M+1 and p ≤ M+1.        
When m > M+1 and p > M+1, from (19) and (23),             

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

1 1 2

1

1

1
2
1 1 1
2

N M N

n n n M
M

n
M

n

n n n n n n

n n

M n M n

= = = +

− −
=

− −
=

= +

=

+ + − + −

∑ ∑ ∑

∑

∑

N,m N,p N,m N,p N,m N,p

M,m M-1 M,p M-1

M,m M-1 M,p M-1

w u w u w u

w u

w u

      

                               [ ] [ ]
1

M

n
n n

=

= ∑ M,m-M-1 M+1,p-M-1w u  

                                ,m pδ= .         (33) 
From (31), (32), and (33), we can see that the inner product of 
wN,m[n] and uN,p[q] is δm,p in all the cases and UNWN = I.   #  
 
[Corollary 2] From (19) and (23), since the entries of WN and 
UN are either zero or equal to the entries of WM, WM+1, UM, 
UM+1 multiplied by ±1, 2, or ±1/2, we can conclude that their 
values are either zero or the powers of 2, which satisfy Con-
straint A in Section 2.  

[Corollary 3] Moreover, from (19), it is obviously that       
          WN[m, n] =  WN[m, N+1−n]  if m ≤ M+1,         
          WN[m, n] =  −WN[m, N+1−n]  if m > M+1,     (34) 
which satisfy Constraint B in Section 2.              

[Corollary 4] To prove that WN in (19) satisfies Constraint C 
in Section 2, we can set     

               
( )
( )

1 1 12

0
+ + +

⎡ ⎤←
= ⎢ ⎥

− ←⎢ ⎥⎣ ⎦

M M M
N

M M

W c W
V

W W

% %
.       (35) 

Note that the numbers of zero crossings of the rows of WM+1 
are 0, 1, 2, …, and M. Therefore, from (35), the numbers of 
zero crossings of the first M+1 rows of VN are 0, 2, 4, …, and 
2M, respectively. For the last M rows of VN, since there is a 
zero crossing at the center and the numbers of zero crossings 
of WM are 0, 1, 2, …, and M−1, the last M rows of VN have 1, 
3, 5, …, and 2M−1 zero crossings, respectively.  

Since WN = PNVN, where PN is defined as in (22), we can 
see that WN satisfies Constraint C in Section 2.   

 
From Corollaries 1-4, we can see that one can indeed use 

the folding extension algorithm in Theorem 1 to derive the N-
point Walsh-Jacket transform that satisfies all the constraints 
in Section 2 from the M-point and the (M+1)-point Walsh-
Jacket transforms, where M = (N−1)/2 and N is odd.   

To derive the N-point Walsh-Jacket transform where N is 
even, one can use the Kronecker product algorithm introduced 
in the following subsection.  

 
B. Kronecker Product Algorithm for Even N 
 
[Theorem 2] If N is even and        
                                 N = 2k⋅H,           (36) 
where H is an odd number and k is a positive integer, then we 
can define the N-point Walsh-Jacket transform from the 
Kronecker product algorithm:     
                          ( )= ⊗kN N H2

W P W W ,      (37) 

where WH and k2
W  are the H-point and the 2k-point Walsh-

Jacket transform matrices. The row permutation matrix PN in 
(37) is defined as       
       PN[(n2−1)2k +n1+1,  n1H + n2] = 1  if  n2 is odd,     
       PN[(n2−1)2k +2k−n1,  n1H + n2] = 1  if  n2 is even,            
                           n1 = 0, 1, …, 2k −1,  n2 = 1, 2, …, H,          
       PN[m, n] = 0  otherwise.      (38) 
Moreover, the inverse N-point Walsh-Jacket transform can 
be defined from   
                            ( )= ⊗k

T
N H N2

U U U P ,      (39) 

where UH and k2
U  are the H-point and the 2k-point inverse 

Walsh-Jacket transform matrices.    
 
For example, from Theorem 2, the 6-point Walsh-Jacket 

transform can be derived from the 2-point and 3-point Walsh-



Jacket transforms. If the 2-point one is defined as in (10) and 
the 3-point one is defined as in (18), then, from (37) and (39), 
the 6-point Walsh-Jacket transform we obtain is  

                

1 1 1 1 1 1
1 1 1 1 1 1
1 0 1 1 0 1
1 0 1 1 0 1
1 1 1 1 1 1
1 1 1 1 1 1

⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− −

= ⎢ ⎥
− −⎢ ⎥

⎢ ⎥− −
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

6W , (40) 

and its inverse is 

              

1 1 2 2 1 1
2 2 0 0 2 2
1 1 2 2 1 11 .
1 1 2 2 1 18
2 2 0 0 2 2
1 1 2 2 1 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −

= ⎢ ⎥
− − −⎢ ⎥

⎢ ⎥− −
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

6U  (41) 

Similarly, we can also use Theorem 2 together with the 2-
point and the 5-point Walsh-Jacket transforms defined as in 
(10) and (25) to derive the 10-point Walsh-Jacket transform. 
From (37) and (39), the forward and inverse the 10-point 
Walsh-Jacket transforms are 

 

1 2 2 2 1 1 2 2 2 1
1 2 2 2 1 1 2 2 2 1
1 1 0 1 1 1 1 0 1 1
1 1 0 1 1 1 1 0 1 1
1 0 2 0 1 1 0 2 0 1
1 0 2 0 1 1 0 2 0 1
1 1 0 1 1 1 1 0 1 1
1 1 0 1 1 1 1 0 1 1
1 2 2 2 1 1 2 2 2 1
1 2 2 2 1 1 2 2 2 1

⎡ ⎤
⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− −
⎢ ⎥=

− − −⎢ ⎥
⎢ ⎥− − − −⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − − −⎣ ⎦

10W , (42)   

 

1 1 2 2 2 2 2 2 1 1
1 1 2 2 0 0 2 2 1 1
1 1 0 0 2 2 0 0 1 1
1 1 2 2 0 0 2 2 1 1
1 1 2 2 2 2 2 2 1 11
1 1 2 2 2 2 2 2 1 116
1 1 2 2 0 0 2 2 1 1
1 1 0 0 2 2 0 0 1 1
1 1 2 2 0 0 2 2 1 1
1 1 2 2 2 2 2 2 1 1

⎡ ⎤
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥=

− − − − −⎢ ⎥
⎢ ⎥− − − −⎢ ⎥

− − −⎢ ⎥
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − − −⎣ ⎦

10U . 

                    (43)     
It is not hard to see that the derived 6-point and 10-point 

Walsh-Jacket transforms in (40) and (42) satisfy all the con-
straints in Section 2. In Corollaries 5-8, we will prove that WN 
and UN derived in Theorem 2 can always form a forward and 
inverse transform pair and they are bound to satisfy all the 
three constraints in Section2.     

[Corollary 5] The forward and inverse Walsh-Jacket trans-
forms defined in (37) and (39) form a reversible transform 
pair (i.e., UNWN = I).             

(Proof): From the facts that PN
TPN = I and that (A1⊗B1) 

(A2⊗B2) = (A1A2) ⊗ (B1B2), we can prove that   
     ( ) ( )= ⊗ ⊗k k

T
N N H N N H2 2

U W U U P P W W          

                  ( ) ( )= ⊗ = ⊗ =k k H H2 2
U W U W I I I .    # 

[Corollary 6] Since the entries of WH, k2
W , UH, and k2

U  are 
either zero or powers of 2, the entries of the matrices obtained 
by their Kronecker products should also be zero or powers of 
2, which satisfies Constraint A in Section 2.         

[Corollary 7] To prove that WN derived from (37) satisfies 
Constraint B in Section 2, we can apply the fact that 
           [ ] ( ) [ ]1, 1 , 1mm n m H n−= − + −H HW W ,    

          [ ] ( ) 1, 1 , 2 1m km n m n− ⎡ ⎤= − + −⎣ ⎦k k2 2
W W .    

Therefore, if 
                        = ⊗kN H2

V W W ,  (44) 
then          
                  [ ] ( ) [ ]1 2, 1 , 1n N nτ ττ τ+= − + −N NV V ,   
       where    τ1 = ⎡τ/H⎤ −1, τ2 = τ − τ1H,  (45) 
and (⎡ ⎤ means rounding toward infinity. Then, from (38), we 
can see that   
   [ ] [ ]2 1, ( 1) 1,m n m H m n= − + +N NW V     when m1 is even,   
              (46) 
   [ ] 2 1, (2 ) 1,km n m H m n⎡ ⎤= − + +⎣ ⎦N NW V  when m1 is odd.      
          (47) 
where m1 = ⎡m/2k⎤ −1 and m2 =  m − m12k. Therefore, 
      [ ] ( ) [ ]2 11 1, 1 , 1m mm n m N n− + += − + −N NW W     

   ( ) [ ]1 221 , 1
km m m N n+= − + −NW ( ) [ ]1 , 1N m N n= − + −NW  

                                                 when m1 is even,       

      [ ] ( ) [ ]2 12 1, 1 , 1
k m mm n m N n− + += − + −N NW W     

   ( ) [ ]2 11 , 1m m m N n+= − − + −NW  

   ( ) [ ]1 221 , 1
km m m N n+= − + −NW ( ) [ ]1 , 1N m N n= − + −NW    

                                                       when m1 is odd.   
and Constraint B in Section 2 is satisfied. 

[Corollary 8] To prove that WN derived from Theorem 2 
satisfies Constraint C in Section 2, we can apply the fact that 
     [ ] [ ], , 1kH kHτ τ= − +N NV V  

                     if [ ] ( ) [ ]2 1
1 11, 1 1, 1k kττ τ−+ = − − + +k k2 2

W W , 

     [ ] [ ], , 1kH kHτ τ= +N NV V    otherwise,    (48) 
where VN,τ1, and τ2 are defined the same as those in (44) and 
(45) and k is ant integer. Therefore, we can conclude that the 
τth row (τ = τ1H +τ2) of VN should have        
    (τ2 −1)2k + τ1 zero crossings       when τ2 is odd,    (49) 



    (τ2 −1)2k + 2k −1 −τ1 zero crossings     when τ2 is even.  
           (50) 
Then, from (46), (47), (49), and (50), we can see that     
(Case 1): When m1 is even, from (46) and (45), we can see 

that τ1 =  m2 −1 and τ2 =  m1 +1. Since τ2 is odd, from 
(49), the number of zero crossings is   

                      m12k + m2  −1 = m−1.          
(Case 2): When m1 is odd, from (47) and (45), τ1 = 2k −m2  
and τ2 =  m1 +1. Since τ2 is even. From (50), the number of 
zero crossings is   
          m12k + 2k −1−(2k −m2) = m12k + m2  −1 = m−1.  
Therefore, in both cases, the mth row of WN has m−1 zero 
crossings, which satisfies Constraint C in Section 2.  #     
 

Therefore, from Corollaries 5-8, the Walsh-Jacket trans-
form derived from Theorem 2 satisfies all the three con-
straints in Section 2.  
 

TABLE I   
THE WAYS TO GENERATE THE N-POINT WALSH-JACKET TRANSFORM FOR N = 
5~39, WHERE M1 AND M2 MEANS THAT THE N-POINT WALSH-JACKET TRANS-

FORM CAN BE GENERATED FROM THE M1-POINT AND M2-POINT WALSH-
JACKET TRANSFORMS BY THE METHOD LISTED IN THE 4TH COLUMN 

N M1 M2 Method 
5 2 3 Theorem 1 
6 2 3 Theorem 2 
7 3 4 Theorem 1 
9 4 5 Theorem 1 

10 2 5 Theorem 2 
11 5 6 Theorem 1 
12 4 3 Theorem 2 
13 6 7 Theorem 1 
14 2 7 Theorem 2 
15 7 8 Theorem 1 
17 8 9 Theorem 1 
18 2 9 Theorem 2 
19 9 10 Theorem 1 
20 4 5 Theorem 2 
21 10 11 Theorem 1 
22 2 11 Theorem 2 
23 11 12 Theorem 1 
24 8 3 Theorem 2 
25 12 13 Theorem 1 
26 2 13 Theorem 2 
27 13 14 Theorem 1 
28 4 7 Theorem 2 
29 14 15 Theorem 1 
30 2 15 Theorem 2 
31 15 16 Theorem 1 
33 16 17 Theorem 1 
34 2 17 Theorem 2 
35 17 18 Theorem 1 
36 4 9 Theorem 2 
37 18 19 Theorem 1 
38 2 19 Theorem 2 
39 19 20 Theorem 1 

[Theorem 3] Combine Theorems 1 and 2, we can derive the 
arbitrary-length Walsh-Jacket transform successfully. 

When N is odd, we can apply the “folding extension algo-
rithm” in Theorem 1 to derive the N-point Walsh Jacket trans-
form from the M-point and the (M+1)-point Walsh-Jacket 
transforms, where N = 2M+1.  

When N is even, we can use the “Kronecker product algo-
rithm” to derive the N-point Walsh-Jacket transform from the 
2k-point and the H-point Walsh-Jacket transforms, where N = 
2k⋅H and H is odd.        

No matter what the value of N is, we can derive the N-
point Walsh-Jacket transform successfully by Theorems 1 
and 2 and iterative decomposition.  

 
In Table 1, we summarize the way to generate the N-point 

Walsh Jacket transform for N = 5~39. For example, when N = 
11, the values of M1 and M2 are 5 and 6 and the corresponding 
method is Theorem 1. It means that the 11-point Walsh-Jacket 
transform can be derived from the 5-point and the 6-point 
Walsh Jacket transform by Theorem 1. Furthermore, the 5-
point Walsh-Jacket transform can be derived from the 2-point 
and the 3-point Walsh-Jacket transforms by Theorem 1 and 
the 6-point Walsh-Jacket transform can be derived from the 2-
point and the 3-point Walsh-Jacket transforms by Theorem 2. 
If the 2-point and the 3-point Walsh-Jacket transforms we 
choose are as in (10) and (16), then the obtained forward and 
inverse 11-point Walsh Jacket transforms are   

1 2 1 1 2 2 2 1 1 2 1
1 2 2 2 1 0 1 2 2 2 1
1 2 1 1 2 2 2 1 1 2 1
1 1 0 1 1 0 1 1 0 1 1
1 0 1 1 0 2 0 1 1 0 1
1 0 2 0 1 0 1 0 2 0 1
1 0 1 1 0 2 0 1 1 0 1
1 1 0 1 1 0 1 1 0 1 1
1 2 1 1 2 2 2 1 1 2 1
1 2 2 2 1 0 1 2 2 2 1
1 2 1 1 2 2 2 1 1 2 1

⎡ ⎤
⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥− − − − −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥

= − − −⎢ ⎥
⎢ ⎥− − −⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − − −
⎢

− − − − −⎣ ⎦

11W

⎥

,  (51) 

1 1 1 2 2 2 2 2 1 1 1
1 1 1 2 0 0 0 2 1 1 1
1 1 1 0 2 2 2 0 1 1 1
1 1 1 2 2 0 2 2 1 1 1
1 1 1 2 0 2 0 2 1 1 1

1 1 0 1 0 2 0 2 0 1 0 1
16

1 1 1 2 0 2 0 2 1 1 1
1 1 1 2 2 0 2 2 1 1 1
1 1 1 0 2 2 2 0 1 1 1
1 1 1 2 0 0 0 2 1 1 1
1 1 1 2 2 2 2 2 1 1 1

⎡ ⎤
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

− − − − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥

= − − −⎢ ⎥
⎢ ⎥− − − − −⎢ ⎥

− − − − −⎢ ⎥
⎢ − − − −⎢
⎢ − − − −
⎢

− − − − −⎣ ⎦

11U

⎥
⎥
⎥
⎥

. 

       (52) 



 
Fig. 1  The implementations of (a) the 2-point Walsh-Jacket transform and (b) 

the 3-point Walsh-Jacket transform.           
 

 
Fig. 2  Implementing the (2M+1)-point Walsh-Jacket transform by the M-

point and the (M+1)-point Walsh-Jacket transforms.  
 

V. FAST IMPLEMENTATION ALGORITHMS  

As the 2k-point Walsh transform and the 2k-point Jacket 
transform, the arbitrary-length Walsh-Jacket transform also 
has the fast implementation algorithm. In fact, no matter what 
the value of N is, the N-point Walsh-Jacket transform can 
always be decomposed into the combination of the 2-point 
Walsh-Jacket transforms.    

 
In Fig. 1, we show the implementation structures of the 2-

point and the 3-point Walsh-Jacket transforms. Note that the 
3-point Walsh Jacket transforms can be decomposed into two 
butterflies, i.e., two 2-point Walsh-Jacket transforms.    

For the case where N > 3, we can use the methods as in 
Figs. 2 and 3 to decompose the N-point Walsh-Jacket trans-
form into the smaller size Walsh-Jacket transforms. From 
Theorem 1, we can see that when N is odd, the N-point 
Walsh-Jacket transform can be decomposed into the M-point 
and the (M+1)-point Walsh-Jacket transforms by the method 
as in Fig. 2 (N = 2M+1). When N is even, from Theorem 2, 
the N-point Walsh-Jacket transform can be decomposed into 
the 2k-point and the H-point Walsh-Jacket transforms by the 
method as in Fig. 3 (N = 2kH and H is odd).                

 
Fig. 3  Implementing the 2kH-point Walsh-Jacket transform by the 2k-point 

and the H-point Walsh-Jacket transforms.  
 

No matter what the value of N is, we can use the structures 
in Figs. 2 and 3 to decompose the N-point Walsh-Jacket trans-
form into the combination of the 2-point Walsh transform.  

For example, for the 10-point Walsh-Jacket transform in 
(41), we can first use Fig. 3 to decompose it into the 2-point 
and the 5-point Walsh-Jacket transforms. Then, we use the 
structure in Fig. 2 to further decompose the 5-point Walsh-
Jacket transform into the 2-point and 3-point Walsh Jacket 
Jackets. Then, from the structure in Fig. 1(b), the 3-point 
Walsh Jacket Jackets can be implemented by the 2-point 
Walsh-Jacket transforms. The whole fast implementation 
structure of the 10-point Walsh-Jacket transform is shown in 
Fig. 4. It shows that the 10-point Walsh-Jacket transform can 
be fully implemented by the combination of the 2×2 butter-
flies (i.e., the 2-point Walsh-Jacket transforms).  
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Fig. 4  The fast implementation algorithm of the 10-point Walsh-Jacket transform. The 10-point Walsh-Jacket transform can be fully decomposed into the 2×2 

butterflies (i.e., the 2-point Walsh-Jacket transforms). 
 

 
Fig. 5  The fast implementation algorithm of the 11-point Walsh-Jacket transform. The 11-point Walsh-Jacket transform can be fully decomposed into the 2-point 

Walsh-Jacket transforms.  
 

Similarly, with iterative decomposition, the 11-point 
Walsh-Jacket transform in (51) can also be implemented by 
the combination of the 2-point Walsh-Jacket transforms, as in 
Fig. 5.    

 
Moreover, as the forward transform, the inverse Walsh-

Jacket transform also has the fast implementation algorithm 
and we can decompose the N-point inverse Walsh-Jacket 
transform iteratively into the 2-point Walsh-Jacket transforms, 
no matter what the value of N is.  
 

VI. APPLICATION IN SIGNAL ANALYSIS  

As the 2k-point Walsh transform and the Jacket transform, 
the proposed arbitrary-point Walsh-Jacket transform can also 
be applied in signal analysis, feature extraction, and CDMA.  

 

In fact, all applications of the original Walsh transform 
and the Jacket transform can also be viewed as the applica-
tions of the proposed arbitrary-point Walsh-Jacket transform.  

In Figs. 6-9, we perform some simulations that use the 
proposed Walsh-Jacket transform for electrocardiogram (ECG) 
signal analysis. The length of the ECG signal in Fig. 6 is 188, 
which is not a power of 2. It is hard to analyze by the Walsh 
transform, but can be analyzed by the proposed arbitrary-
point Walsh-Jacket transform. In Fig. 7, we show the normal-
ized mean square error (NMSE) of the reconstructed signal 
when using part of the coefficients of the 188-point Walsh-
Jacket transform:              

        
2

2NMSE
−

= Sx x

x
       x: the original signal,      (53) 

                      y = WNx,         xS = UNyS,              
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Fig. 6  A 188-length electrocardiogram (ECG) signal. 
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Fig. 7  The normalized mean square error (NMSE) when using part of the 

coefficients to reconstruct the ECG signal in Fig. 6. Solid line: using 
the 188-point Walsh-Jacket transform; dash line: using the DFT.   
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Fig. 8  A 131-length electrocardiogram (ECG) signal. 
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Fig. 9  The NMSE when using part of the coefficients to reconstruct the ECG 

signal in Fig. 8. Solid line: using the 131-point Walsh-Jacket transform; 
dash line: using the DFT. 
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Fig. 10  A 95-point step-like signal.  

10 20 30 40 50 60
0

0.2

0.4

0.6

Number of Coefficients S

N
M

S
E

 
Fig. 11  The NMSE when using part of the coefficients to reconstruct the 

step-like signal in Fig. 10. Solid line: using the 95-point Walsh-
Jacket transform; dash line: using the DFT.    

 
 
where WN and UN are the forward and inverse Walsh-Jacket 
transform matrices. The vector yS preserves S coefficients of y 
and others are set to zero. In Fig. 7, we also show the NMSE 
of the reconstructed signal when using the 188-point discrete 
Fourier transform (DFT). The results in Fig. 7 show that, with 
the Walsh-Jacket transform, we can achieve the less approxi-
mation error when using only S terms (S < 188) to expand the 
ECG signal.        

In Figs. 8 and 9, we give another simulation. The length 
of the ECG in Fig. 8 is 131. In Fig. 9, we show the NMSE of 
the reconstructed signal when using part of the coefficients of 
the 131-point Walsh-Jacket transform and the 131-point DFT. 
The results also show that the Walsh-Jacket transform is more 
effective for analyzing the ECG signal.                           

Moreover, as the description in [1][2], in addition to 
ECG signal analysis, the Walsh transform is also effective for 
analyzing the step-like signal. In Fig. 10, we show a 95-length 
step-like signal. Then, we use the 95-point Walsh-Jacket 
transform and the 95-point DFT to analyze the signal and plot 
the NMSE of the reconstructed signal when using part of the 
coefficients for reconstruction in Fig. 11. It is obviously that 
the error of the proposed Walsh-Jacket transform is less. 
Therefore, as the original Walsh transform, the proposed arbi-
trary-point Walsh-Jacket transform is also effective for step-
like signal analysis.        

Furthermore, as the original Walsh transform and the 
Jacket transform can be applied for MIMO system analysis, 

DFT 

Walsh-Jacket 

DFT 

Walsh-Jacket 

DFT 

Walsh-Jacket



CDMA, and data encryption, they are also the potential appli-
cations of the proposed Walsh-Jacket transform. Since the 
Walsh-Jacket transform can be defined for arbitrary length, it 
is more flexible than the Walsh transform and the Jacket 
transform in these applications.      

 
 

VII. CONCLUSIONS 

In this paper, we generalize the Walsh transform and the 
Jacket transform into the case where the number of points N is 
not a power of 2. With the folding extension algorithm (i.e., 
Theorem 1) and the Kronecker product algorithm (Theorem 
2), the arbitrary-length Walsh-Jacket transform can be defined 
successfully.  

As the original Walsh transform and the Jacket transform, 
the proposed arbitrary-point Walsh-Jacket transform also has 
the fast implementation algorithm. We also show that the N-
point Walsh-Jacket transform can always be implemented by 
the combination of the 2-point Walsh transforms, no matter 
what the value of N is. Since the proposed Walsh-Jacket 
transform can be viewed as the arbitrary-point version of the 
Walsh transform and the Jacket transform, the applications of 
the Walsh transform and the Jacket transform (such as ECG 
signal analysis, step-like signal analysis, and digital commu-
nication) are also the applications of the proposed Walsh-
Jacket transform.  
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