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Abstract—Voice activity detection (VAD) is a basic component
of noise reduction algorithms. In this paper, we propose a voice
activity detector based on a sequential Gaussian Mixture Model
(SGMM) in log-spectral domain. This model comprises two
Gaussian components, which respectively describe the speech
and nonspeech log-power distributions. The initial distributions
are firstly established by EM algorithm, and then sequentially
updated in an on-line manner. From the SGMM, a self-regulatory
threshold for discrimination is derived at each subband. The
proposed VAD does not rely on an assumption that the first
several frames of an utterance are nonspeech, which is widely
used in most VADs. Moreover, the speech presence probability in
the time-frequency domain is a byproduct of this VAD. We tested
it on speech from TIMIT database and noise from NOISEX-
92 database. The evaluations effectively showed its promising
performance.

I. INTRODUCTION

Voice activity detection (VAD) is an indispensable compo-
nent for noise reduction. It plays an important role in variant
speech communication systems. Generally speaking, VADs
consist of acoustic features and discrimination models.

Early algorithms paid more attention to robust acoustic fea-
tures to distinguish speech/nonspeech. Three types of acoustics
features are widely used. The energy-based features were the
most popular one. The SNR (Signal to Noise Ratio) was
usually taken as an energy cue for discrimination [3], [4].
The second popular feature was the quasi-periodicity of voiced
speech [3], [5]–[7]. It can discriminate speech signal from
non-periodicity background noises. The third popular feature
was the dynamics of speech signal, which was reflected in the
variance of power envelopes [3], [8] or SNR [9].

During the last decade, more VADs focused on statisti-
cal models to discriminate speech/nonspeech. Most statistical
models aimed to construct classifiers for speech/nonspeech
classification. The classical classifier made use of the Gaussian
statistical model to describe the DFT coefficients [10]–[12].
These statistical models have a common characteristic. They
are generally initialized based on an assumption that utterances
always begin with nonspeech signal. An initial nonspeech
model is established from the first several frames of an
utterance. These VADs based on this assumption have a defect
in some practical applications. If an utterance begins with
speech signal, such assumption will be unsatisfied so that
the nonspeech model is invalidly initialized. Serious speech

leakage will be caused at the utterance beginning, and more
error may be resulted in from the incorrect initialization. In
such situation, the unsupervised learning can still work since
that assumption is not necessary for it.

Few VADs have taken advantage of the unsupervised learn-
ing. In [14], [15], the noisy speech signal is unsupervisedly
clustered into two classes via LBG algorithm based on the
energy feature. One class with larger mean is taken as speech,
and the other for nonspeech. In [13], [16], the logarithmic
energy probability density functions (PDF) of speech and
nonspeech are estimated by model-based clustering. An op-
timal threshold for discrimination is derived from the PDFs.
The methods of unsupervised clustering bring two benefits
to VADs. One is that such assumption is unnecessary for
them; the other is that the threshold can be self-regulated
at the observed data. However, there are still two essential
problems to be solved in these VADs. Firstly, a mechanism of
incrementally updating models is absent. They are not able
to run in an on-line manner because clustering algorithms
are usually conducted in an off-line manner. So, these VADs
can not be applied to some real-time systems. Secondly, it is
difficult for them to decide whether one or two clusters are
to be formed. In case of speech absence or low SNR, miss-
detection of speech is serious if two clusters are formed. For
these two reasons, more important works need to be done for
developing an unsupervised VAD.

Keeping the above problems in mind, we propose a novel
VAD based on an unsupervised learning framework. A sequen-
tial GMM is presented to realize this learning process at each
band. The initialization with EM algorithm plays the role of
model-based Gaussian clustering [?], and the updating process
for the role of incremental learning. The two components of
this GMM respectively represent the speech and nonspeech
distributions. According to the GMM, a self-regulatory thresh-
old is yielded to discriminate speech/nonspeech at each sub-
band. The discrimination results of all bands are summarized
by a voting procedure.

II. SEQUENTIAL GAUSSIAN MIXTURE MODEL

This algorithm is concerned on a single band in the fol-
lowing subsections, where the band index r is omitted for the
interests of brevity.
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A. Modeling Power Sequence with GMM
Without loss of generality, we first consider a high-SNR

frequency band with speech and nonspeech signals. It is
assumed that both speech and nonspeech power obeys the
Gaussian distribution. This model is described by the follow-
ing equations.

Let xk denote the log power of a subband at the time k.
z is the speech/nonspeech label, z ∈ {0, 1}, where 0 denotes
nonspeech and 1 for speech. According to the Bayes’ rule, we
have the equation

p(xk|λ) =
∑

z

p(xk, z|λ) =
∑

z

p(xk|z, λ)p(z) (1)

where p(z) is the prior probability of speech/nonspeech, and
is actually equal to the weight coefficient wz (w0 + w1 =
1). p(xk|z, λ) represents the likelihood of xk given the
speech/nonspeech model.

p(xk|z, λ) =
1√

2πκz
exp

{− (xk − µz)2/2κz

}
(2)

where µz and κz respectively denote the mean and variance.
λ , {µz, κz, wz|z = 0, 1} is the parameter set of the
GMM. An interesting point is that, the difference of the two
means represents the posteriori SNR because µ1 and µ0 are
respectively the averaged logarithmic energy of speech and
nonspeech.

Let x , {x0, x1, x2, . . . , xM} be a logarithmic energy
sequence at a subband. The probability density function (PDF)
is given by

p(x|λ) =
M∏

k=0

p(xk|λ). (3)

The parameter set λ is estimated by maximizing this likelihood
function. µ0 is the estimate of the noise level of the M + 1
frames.

B. Sequential Estimation of GMM Parameters
How to sequentially estimate the GMM parameter set is a

crucial point for this algorithm. Our approach of estimating it
comprises an initialization process and an updating process.
The initial GMM is firstly established by the typical EM
algorithm, and then sequentially estimated at each time instant.
The parameter set at time k is denoted as λk , {µk,κk,wk}.
λ0 is the initial one estimated from the first P samples in
an off-line manner. In this section, we give the details of
sequential estimation.

The following are the basic way to sequentially update
GMM by utilizing every K frames. Suppose λk is known
at the time k + 1, the parameters in λk+1 are derived by the
following sequential equations:

wk+1,z =

∑k
j=k−K+1 p(z|xj , λk) + p(z|xk+1, λk)

K + 1
(4)

µk+1,z =

∑k
j=k−K+1 xjp(z|xj , λk) + xk+1p(z|xk+1, λk)
∑k

j=k−K+1 p(z|xj , λk) + p(z|xk+1, λk)
(5)

p(z|xk, λk) =
wk,zp(xk|z, λk)∑
z wk,zp(xk|z, λk)

(7)

where p(z = 1|xk, λk) denotes SPP. The weight, mean,
and variance can be regarded as the zero, first, and second
order moments of speech/nonspeech logarithmic energy, re-
spectively. This updating method is not so desirable. On one
hand, {p(xj |z, λk) for all j has to be calculated at each time
k. It will result in heavy computational load. On the other
hand, it is not beneficial for GMM to track signal variation
because the late and early samples do the same contribution
to updating models.

Based on such considerations, we propose a novel
approach of sequentially updating GMM. Suppose
that the GMM varies with time slowly, λk ≈ λk−1

at time k. Accordingly, we have the relationship∑k
j=k−K+1 p(z|xj , λk) ≈ ∑k

j=k−K+1 p(z|xj , λk−1).
According to Eq. 4, the summation is approximated by the
zero-order moment,

∑k
j=k−K+1 p(z|xj , λk−1) ≈ Kwk,z .

Combining these relationships, we finally have the following
equation

k∑

j=k−K+1

p(z|xj , λk) ≈ Kwk,z. (8)

Substituting Eq.8 into Eq. 4, we obtain

wk+1,z =
Kwk,z + p(z|xk+1, λk)

K + 1
. (9)

Let α = K/(K + 1), we obtain the iterative equation

wk+1,z = αwk,z + (1− α)p(z|xk+1, λk) (10)

where α can be considered as a forgetting factor, 0 < α ≤ 1;
the conditional probability p(z|xk+1, λk) is calculated using
Eq. 7.

With the same principle, the summation item in Eq.5 can
be approximated by the 1st-order moment

k∑

j=k−K+1

p(z|xj , λk)xj ≈ Kwk,zµk,z. (11)

Substituting Eq.11 into Eq. 5, we obtain

µk+1,z =
αwk,zµk,z + (1− α)p(z|xk+1, λk)xk+1

wk+1,z
. (12)

Accordingly, the summation item in Eq. 6 is approximated
by the 2nd-order moment

k∑

j=k−K+1

p(z|xj , λk)(xj − µk+1,z)2 ≈ Kwk,zκk,z. (13)

Substituting Eq.13 into Eq. 6, we obtain

κk+1,z =
αwk,zκk,z + (1− α)p(z|xk+1, λk)(xk+1 − µk+1,z)2

wk+1,z
.

(14)
The sequential estimate consists of Eqs. 7, 10, 12, and 14,

where the SPP is derived from GMM, and then feeded back to



κk+1,z =

∑k
j=k−K+1(xj − µk+1,z)2p(z|xj , λk) + (xk+1 − µk+1,z)2p(z|xk+1, λk)

∑k
j=k−K+1 p(z|xj , λk) + p(z|xk+1, λk)

(6)
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Fig. 1. Schematic illustration of the log-power distribution of noisy speech
with high SNR.

update GMM. By these equations, the model λk+1 is estimated
from λk and xk+1. In this iteration, the earlier frames are
forgotten with time going, and the later frames plays a more
important role. µk+1,0 is the noise estimate given λk and xk+1.

C. Constraints to the GMM

The above model is only applicable to high-SNR bands with
both speech and nonspeech signal. But at low-SNR bands, the
speech signal may be unobvious or absent, and so it is difficult
to model the power with the two-component GMM. For this
reason, some constraints must be introduced to deal with the
low-SNR bands.

Several constraints come from the special relationships
between speech and nonspeech distributions [16]. Fig. 1
schematically illustrates the typical log-power histogram of
a noisy band, which consists of a speech and nonspeech
distributions. Assuming that the noise signal is usually more
stationary than speech signal, the variance of nonspeech power
is smaller than that of the speech. So, there exists a sharp
peak corresponding to nonspeech µ0 in the histogram; while
the other flat peak corresponds to speech µ1. Since “speech”
denotes the superposition of noise and clean speech signals
in this paper, the average of nonspeech power is smaller than
that of speech. The mean difference µ1 − µ0 represents the
posterior SNR of this band. These relationships shown in Fig.
1 are shaped by three constraints.

Firstly, the relationship between µ1 and µ0 is shaped by the
following constraint

µk,1 = max{µk,1, µk,0 + δ}, (15)

where δ > 0. This constraint makes the averaged posterior
SNR no less than δ. If the actual posterior SNR is less
than δ, this constraint will set the speech distribution center
to be µk,0 + δ, which is greater than the actual one. As a
result, the speech likelihood b(xk|sk = 1, λk) is decreased
for most samples. Eventually, some weak speech components
dominated by noise signal will be taken as nonspeech to be

used for noise estimation. Here, δ makes a tradeoff between
weak speech spectral components and strong nonspeech spec-
tral components. A large δ will result in more weak speech
components to be used for noise estimate. In contrast, a
small δ will make the strong nonspeech components to be
unavailable for estimation. So, a large δ is beneficial to high
noise environments, and a small δ to low noise environments.
According to our preliminary experiments, we find out that
δ = 5 can achieve a good tradeoff in general noisy conditions.

It should be noted that, in the initialization and updating
process, when the constraint of Eq. 15 decreases a lot the like-
lihood b(xk|z = 1, λk), p(z = 0|xk, λk) À p(z = 1|xk, λk).
With several iterations, p(z = 1|xk, λk) will approach to
zero. So, the denominators will be zero when solving the
speech mean and variance, which results in the failure of this
algorithm. To prevent this failure, we introduce the second
constraint

wk,1 = max{wk,1, ε}
wk,0 = 1− wk,1.

(16)

where ε is near and greater than zero. When the condition
in Eq. 16 is not satisfied, the iteration in EM algorithm will
terminate. This constraint is a slave to the one in Eq. 15.

Thirdly, according to the variance relationship, the following
constraint is introduced.

κk,1 = max{κk,0, κk,1} (17)

With these three constraints, SGMM can run under not only
high-SNR frequency bands, but also low-SNR bands. Even
when speech signal is absent, the mean and variance of the
speech component are respectively µk,0 + δ and κk,0. At that
situation, the speech distribution is not estimated from the real
data. It is a virtual one that is constructed according to the
nonspeech component. From the point view of clustering, all
the data is clustered into the nonspeech class in low-SNR or
speech-absent situations.

III. IMPLEMENTATION OF THE ALGORITHM

The above section describes noise estimation in one fre-
quency band. This process is conducted in parallel at each
band. Before estimation, the log power is smoothed by a
five-point median filter. The constraints are applied after each
parameter is updated. For example, in the updating process,
Eq.10 is followed by Eq.16, Eq.12 by Eq.15, and Eq.14 by
Eq.17. In initialization, these constraints are utilized in the
same way. Actually, the Kuhn-Tucker necessary condition is
the major way of constrained maximization. Compared with
it, the proposed way for applying constraints is more cost-
effective.

It is worthwhile clarifying that the SGMM can be correctly
initialized even if speech samples are not utilized. At that



situation, these constraints will construct a virtual speech
component, which can convert into a real one when the SGMM
is updated with coming speech samples. For the signal with a
sampling rate of 16 kHz, the parameters of this SGMM is set
as α = 0.97, δ = 5, ε = 0.03, P = 60. The signal is chopped
into frames with a hanning window, 16 ms frame length, 8 ms
frame shift.

IV. EVALUATION

As a large-scale data set is helpful to give a convincing
evaluation of this VAD, we use the TIMIT TEST corpus,
consisting of 1680 utterances from 168 individual speakers.
The whole set is hand labeled from phone transcriptions. We
connect every two sentences into a longer utterance. The white
and babble noises from NOISEX-92 database are artificially
added to the test set at variant SNR conditions.

In order to gain a comparative analysis of the SGMM per-
formance, several modern VAD algorithms are also evaluated.
These algorithms are the two ETSI AMR VADs options 1
and 2 [3] (denoted respectively as AMR1 and AMR2), the
ITU G.729 Annex B VAD [5] (referred to as G729), and a
soft VAD proposed by Sohn [11] (denoted as Sohn). As the
sampling rate of the AMR and G729B is 8000 Hz, all the data
is resampled to 8000 Hz for a fair comparison.

In our experiments, the detection performance is assessed
in terms of the speech hit rate (HR1) (i.e., the ratio of
the correctly detected speech frames to all speech frames)
and nonspeech hit rate (HR0) (i.e., the ratio of correctly
detected nonspeech frames to all nonspeech frames). Receiver
Operating Characteristics (ROC) curve gives a full description
of the relationship between HR0 and HR1. The SGMM ROC
curves are obtained by tuning the voting threshold.

We design two experiments to evaluate the discrimination
capability of the SGMM VAD. The first experiment is to
compare the VADs’ performance at general conditions, where
the data set satisfies the assumption of “nonspeech beginning”.
Fig. 2 shows the ROC curves at variant noisy conditions. The
eight working points in each SGMM ROC curve respectively
correspond to the voting thresholds from 1 to 8.

The acoustic feature and the statistical model of Sohn VAD
are the most similar to that of SGMM. But the Sohn VAD
which employs the assumption of “nonspeech beginning” to
initialize the nonspeech model. One can see that the SGMM
based on the unsupervised learning framework runs better than
Sohn VAD, as shown in Fig. 2. The standardized VADs such
as AMR and G729 extract several acoustical features to fully
utilize the property of speech signal for speech/nonspeech
discrimination. They combine these features together by fuzzy
rules. Comparing with these standardized VADs, the proposed
VAD shows promising performance.

The purpose of the second experiment is to evaluate the
influence of the “nonspeech beginning” assumption on the
VADs’ performance. We compare their performance on the
data sets of satisfying and unsatisfying the assumption. The
latter is obtained by cutting off the first 0.6s signal of each
long utterance. Thus, some utterances will begin with speech
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Fig. 4. Informal evaluation of speech presence probability: (a) Noisy speech
spectra; (b) Speech presence probability.

signal. The experiment result is shown in Fig. 3, where the
symbol “N” denotes the ROC curve of the data set without
this assumption. As the Sohn VAD is a semi-supervised one,
the assumption is crucial to it. AMR2 VAD also utilizes
the semi-supervised way to track background noise. So, the
performance of AMR2 and Sohn VADs are affected by this
assumption. In contrast, since SGMM VAD is an unsupervised
one, its performance changes a little bit. G.729 and AMR1
VADs utilize neither of the semi-supervised and unsupervised
learning. So, their performance is not affected by this assump-
tion.

In addition to discriminating frames, the SGMM VAD
can provide the SPP in the time-frequency domain. At each
subband, the SPP sequence {p(z = 1|xk, λk)|k = 0, 1, 2, · · · }
describes the speech activity in a soft manner. The SPP is
informally evaluated by comparing the time-frequency SPP
with the noisy spectrogram. Fig. 4(a) shows the spectra of
an utterance corrupted by white noise at SNR 0 dB, and
the color gray of Fig. 4(b) denotes SPP. For the sake of
comparison, each subband consists of only one frequency
bin. From this comparison, one can see the speech spectral
structure is described clearly by the time-frequency SPP.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we present a VAD based on sequential Gaus-
sian mixture model. This framework outperforms conventional
statistical models because of its advantages in both the initial-
ization process and the sequential process. In initialization,
both the speech and nonspeech models are simultaneously
constructed based on the criterion of maximum likelihood.
This initialization does not rely on the assumption of “non-
speech beginning”. Whether or not speech signal is present in
the utterance beginning, the proposed model can be correctly
initialized. Thus, this VAD is more practical than conventional
ones.

In the updating process, the advantage is shown in two
aspects. One aspect is the soft manner of updating statisti-
cal models. The “soft” degree is controlled by the SPP. In
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Fig. 2. ROC curves under different noises (columns) and SNRs (rows).
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Fig. 3. ROC curves of the data set satisfying the assumption of “nonspeech beginning” vs. that unsatisfying this assumption.

contrast, most VADs utilize a “hard” updating manner. The
speech/nonspeech model is either updated or not. The soft
updating method of SGMM VAD is more reasonable than
that of the conventional ones. The other aspect concerns the
decision feedback. Due to the speech sparsity in the frequency
domain, not all frequency components of a speech frame are
occupied by speech signal. Hence, it is better to describe the
speech presence of each component, and to feed them back
respectively. However, most VADs only gives speech presence
information in the frame level. The more detailed information
in each frequency component is absent. Hence, the nonspeech
information in the speech frames is unavailable for updating

models. On the contrary, as the SGMM VAD can provide
the frequency domain SPP, the nonspeech information in
speech frames can be employed to update models. Therefore,
this statistical framework can more accurately model signals
than conventional ones. This is another reason for using the
univariate GMM instead of the multivariate GMM. Especially
in noise reduction applications, this advantage of the proposed
VAD is obvious. Due to these advantages, the proposed VAD
performs better than typical semi-supervised VADs even when
the assumption of “nonspeech beginning” is satisfied. The
experiments confirm its superiority.

The proposed algorithm uses only a simple acoustic feature



for classification. In fact, other features that satisfy the bimodal
distribution of Fig. 1 can also be applied to this unsupervised
framework. By using advanced features, this VAD is expected
to be further improved by fully employing speech properties.
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