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Abstract— A directional sound beam can be generated by a 
parametric loudspeaker system through the nonlinear 
interaction between finite-amplitude ultrasonic waves in air. 
However, this nonlinear interaction also produces harmonic 
components in addition to the desired audible sound. In order to 
investigate this nonlinear phenomenon, a baseband distortion 
model is developed from nonlinear system identification using 
Volterra kernels along with results obtained from both 
numerical simulations and experimental measurements that take 
into account the emitter’s response. A nonlinear model with 
reduced complexity to the 2nd-order Volterra kernel is found to 
agree with the mathematical model. Based on this model, we can 
predict the total harmonic distortion (THD) in the far field and 
perform predistortion technique to remove it.  

I. INTRODUCTION 

The original prototype of parametric loudspeaker in air was 
firstly studied experimentally by Bernett and Blackstock in 
the 1970s [1]. The nonlinear interaction between two finite-
amplitude ultrasonic waves, which are referred as primary 
waves, can give rise to an end-fire array of virtual sources 
along the propagation path. Thus, a difference frequency 
sound beam, which retains the high directivity of the 
ultrasonic waves, is generated. Due to this nonlinear 
mechanism, an audible sound modulating an ultrasonic carrier 
at the input of the parametric loudspeaker system can be 
reproduced at the output of the system. However, the 
frequency band of the demodulated secondary sound is 
extended from the original baseband with the generation of 
harmonics in the self-demodulation process, which distorts 
the desired baseband signal and degrades the sound quality. 
Considerable studies have been carried out on how to mitigate 
the distortion brought about by the conventional double-
sideband amplitude modulation (DSBAM) with improved 
modulation techniques, which mainly consist of single-
sideband amplitude modulation (SSBAM) [2], square-root 
amplitude modulation (SRAM) [3], and modified amplitude 
modulation (MAM) [4]. The advantages and disadvantages of 
these modulation techniques have been studied theoretically 
and experimentally in [5] with a conventional piezoelectric 
ultrasonic emitter array.  

The Volterra filter is widely used in modeling the nonlinear 
mechanism of a nonlinear system, rendering the system input-
output equation as a polynomial series. For example, the 
nonlinear process in horns and ducts has been studied by 
Klippel using a Volterra series expansion up to the nth-order 

kernels [6]. The nth-order Volterra filter has the advantage of 
modeling the nonlinear system with a straightforward filter 
structure, which is capable of approximating the nonlinear 
system with finite number of coefficients [7]. With reference 
to the previous theoretical study of parametric loudspeaker 
systems, the distortion is largely attributed to the second 
harmonic in the demodulated signal, especially when the 
DSBAM technique is used [8]. Therefore, in this paper, a 
baseband distortion model is developed using an adaptive 
Volterra filter consisting of the 1st- and 2nd-order kernels, 
which is able to predict the sound pressure levels (SPL) of the 
reproduced baseband term (fundamental) and the nonlinear 
quadratic term (second harmonic) in the sound field. 

The rest of this paper is organized as follows. Section 2 
gives a brief overview of the parametric loudspeaker system. 
Section 3 describes the adaptive structure and algorithms for 
computing the coefficients of the 1st- and 2nd-order Volterra 
kernels. In Section 4, numerical simulations of the Volterra 
kernels are conducted to match the theoretical output of the 
parametric loudspeaker system based on a mathematical 
model. Measurements are carried out to train the adaptive 
filter for modeling the actual system, and the modeling 
performance is evaluated in Section 5. Finally, Section 6 
concludes this paper. 

II. PARAMETRIC LOUDSPEAKER SYSTEM 

The acoustic parametric effect occurs when the parametric 
loudspeaker system operates in the nonlinear region of finite-
amplitude ultrasounds propagation in air. The consequence of 
this nonlinear phenomenon is the generation of an audible 
sound beam retaining the high directivity of the ultrasounds. 

Instead of transmitting multiple ultrasonic frequencies to 
generate audible signals in air, the parametric loudspeaker 
system is able to reproduce the desired audible sound by 
modulating an ultrasonic carrier using various modulation 
techniques at the system input stage. As shown in Fig. 1, the 
input baseband audible sound modulates the ultrasonic carrier 
to form a modulated signal, which is channeled by a power 
amplifier to drive the ultrasonic emitter to operate at a suitable 
pressure level for achieving the acoustic parametric effect in 
air. Due to the nonlinear interaction between the primary 
waves, the desired signal is reproduced from the end-fire 
virtual source array but suffers from harmonic distortion. 
Generally, the system output end is referred as a certain 
listening zone away from the ultrasonic emitter. In this paper,
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Fig. 1 Block diagram of a parametric loudspeaker system. 

 

the nonlinear distortion present in the reproduced baseband 
signal is examined using the DSBAM scheme and the output 
end is observed at the Rayleigh distance on the propagation 
axis. 

III. ADAPTIVE VOLTERRA FILTER 

The polynomial-series-based Volterra filter is very popular 
in modeling a causal and time-invariant nonlinear system with 
the following series expansion [9] 
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where ( )x n  and ( )y n  represent the input and output signals, 
respectively. 1 2( , , , )i ph m m m  is defined as the ith-order 
Volterra kernel, and 0h  can generally be ignored [9]. In this 
paper, we focus on using the Volterra filter to model the linear 
and quadratic nonlinear output of the parametric loudspeaker 
system. Thus, a truncated Volterra series expansion up to the 
2nd-order kernel is utilized and can be expressed as 
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where 1N  and 2N  are the memory lengths of the kernels 

1[ ]H  and 2[ ]H , respectively. The Volterra system 
identification process is implemented by using a cascaded 
adaptive structure combining the 1st- and 2nd-order kernels, 
as illustrated in Fig. 2.  

In Fig.2, the parametric loudspeaker system takes the input 
signal ( )x n  as the modulating signal. Through the nonlinear 
interaction occurring between the primary waves projected by 
the ultrasonic emitter, the self-demodulated secondary sound 

( )d n  is generated, consisting of the reproduced baseband 
signal and higher-order harmonics. Adaptations for the 1st- 
and 2nd-order kernels are carried out simultaneously during 
the identification process. The 1st-order kernel serves to 
model the linear component in ( )d n  with error 1( )e n  feeding 
back to adapt the 1st-order kernel. In addition, the residual 
signal 1( )e n  is also sent to the 2nd-order kernel in the second- 

 
Fig. 2 Block diagram of the adaptive Volterra structure. 

stage adaptation, in which the coefficients 2 1 2( , )h m m  are 
used to model the quadratic component present in 1( )e n  by 
feeding back error signal 2( )e n  to update 2[ ]H .  

In our proposed structure, the normalized least-mean-
square (NLMS) algorithm is employed as the adaptive 
algorithm, which is based on the steepest decent approach to 
minimize the squared error signal at each iteration. With the 
cascaded adaptive structure, the coefficients of the 1st- and 
2nd-order kernels are adapted using the NLMS algorithm as 
follows 
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where the time-varying step size 1( )n  and 2 ( )n  are given 

as 
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0  is the auxiliary step size, being in the range of 

00 2  . The input vector 1( )nX  and 2 ( )nX  for the 1st- 
and 2nd-order kernels are given as 
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and 
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IV. NUMERICAL SIMULATION 

It is well known that the Khokhlov-Zabolotskaya-
Kuznetsov (KZK) nonlinear parabolic wave equation [10], 
which accounts for the combined effects of diffraction, 
absorption and nonlinearity, is capable of giving an accurate 
description of the propagation characteristics of finite-
amplitude sound beams.  For axisymmetric sound beams 
propagating in the z  direction, the KZK equation can be 
written as 
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where p  is the sound pressure, 0/t z c    is the retarded 
time, r  is the radial distance from z  axis, 0c  is the small 
signal sound speed, 0  is the ambient density of the medium, 
D  is the sound diffusivity, and   is the nonlinear coefficient. 
As there is no explicit analytic solution of the KZK equation, 
a numerical solution in time domain is developed by Lee et al. 
[11] on the basis of a transformed expression of (10) as  

2 2

2 2 2

1 1
.

4(1 ) 1

P P P P NP P
d ' A




       

     
           

  (10) 

For simplicity, we only focus on two important parameters A  
and N , the detailed derivation can be referred to [11]. 

0 0A z  is the absorption parameter and 0 /N z z  is the 
nonlinearity parameter, where 0  is the attenuation 
coefficient, 0z  is the Rayleigh distance, and z  represents the 
plane wave shock formation distance.   

Based on the numerical solution of (10), simulation is 
conducted to model the linear and quadratic nonlinear output 
of the parametric loudspeaker system, where a band-limited 
white noise signal is presented as the system input ( )x n . The 
frequency of the white noise input ranges from 0 to 5 kHz and 
the amplitude is uniformly distributed between −1 to 1. A 40 
kHz ultrasonic carrier is modulated by the input with 
modulation index m = 0.8 to form the DSBAM primary waves. 
The desired signal ( )d n  is computed numerically from the 
KZK equation for the adaptation process shown in Fig. 2, in 
which the memory length of the 1st- and 2nd-order kernels is 
100 and the auxiliary step size 0  is 0.5. It is observed in Fig. 
3 that the mean-square error (MSE) values for 1( )e n  and 

2 ( )e n  after 3.2×104 iterations reduce steadily down to around 
−13 dB and −18 dB, respectively.  

The steady-state coefficients of the 2nd-order kernel are 
plotted in Fig. 4. We notice that the dominant coefficient for 
the 2nd-order kernel is located at 2 (0,0)h  while the other 
coefficients are insignificant. This observation implies that the 
quadratic nonlinear effect in the parametric loudspeaker 
system is largely memoryless and can be approximated by 
using a square function.   

V. EXPERIMENTAL MEASUREMENT 

In this section, the parametric loudspeaker system is 
modeled with the previous Volterra filter by using the desired 

  
Fig. 3 MSE of the 1st- and 2nd-order Volterra kernels from numerical 

simulations. 

 
Fig. 4 Final coefficients of the 2nd-order kernel from numerical simulations. 

signal from experimental measurements that take into account 
the emitter’s frequency response, and the Volterra modeling 
performance is evaluated based on SPL and THD obtained 
from the experiments. 

A. Nonlinear Modeling  

Experiments were carried out for the actual secondary 
sound in an anechoic chamber with dimensions of 6 m long, 4 
m wide, and 3.5 m high. Fig. 5 shows the block diagram of 
the experimental setup: A floating-point DSP platform 
implements the DSBAM signal and sends the modulated 
signal to a class-D power amplifier with low phase shift and 
output noise. An ultrasonic emitter consisting of 253 
piezoelectric transducer units, which resonates at 40 kHz, is 
driven at a suitable voltage level to achieve the parametric 
effect in air. The demodulated secondary sound is captured by 
a B&K Type 4134 1/2-inch microphone attached to a Type 
3110 module for a duration of 5 seconds per time capture at 
an axial distance of 4 m away from the emitter source.  The 
captured signal is low-pass filtered at 20 kHz cut-off 
frequency to remove any ultrasonic signal, before computing 
errors for the adaptive Volterra cascade structure. 
    In the experimental measurement, an input white noise 
signal with the same characteristics as the one discussed in 
Section IV is fed to the parametric loudspeaker system to train 
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Fig. 5 Block diagram of experimental setup.  

 
Fig. 6 MSE of the 1st- and 2nd-order Volterra kernels from measurements. 

 
Fig. 7 Final coefficients of the 2nd-order kernel from measurements. 

the adaptive Volterra filter for modeling the nonlinear system. 
With the adaptive structure shown in Fig. 2 and the same 
adaptive parameters for the 1st- and 2nd-order kernels as 
those in the simulations, the nonlinear model is trained for 
1 105 iterations. In Fig. 6, we can see that the MSE values for 

1( )e n and 2( )e n stabilize approximately at 12 dB and 15 
dB, respectively. Fig. 7 shows the final coefficients of the 
2nd-order kernel using d(n) from the measurements that 
accounts for the emitter’s frequency response. It is noted that 
the trend of coefficients of the 2nd-order kernel agrees well 
with that obtained in the simulations, which indicates that the 
quadratic nonlinearity largely depends on h2(0,0) and the 
frequency response of the ultrasonic emitter does not affect 
the location of the dominant coefficient in the nonlinear 
modeling.  

 
Fig. 8 SPL of the reproduced baseband signal and the 2nd harmonic obtained 

from measurements and Volterra model. 

 
Fig. 9 THD levels obtained from measurements and Volterra model. 

B. Modeling Performance 

In this subsection, the performance of the nonlinear system 
modeling is examined by passing five single tones from 1 kHz  
to 5 kHz through the parametric loudspeaker system and the 
Volterra filter with the steady-state coefficients obtained from 
the previous subsection. SPL and THD are calculated and 
compared between the Volterra filter output using the final 
coefficients from the model training and the secondary sound 
from the measurements, respectively.  

Fig. 8 shows the SPL of the reproduced baseband signal 
and the second harmonic from the measurements and the 
Volterra modeling, respectively. It is seen that the system 
model outputs can closely match the measurement results 
with an error of less than 1 dB. . It should be noted that the 
narrow bandwidth of the ultrasonic emitter partially equalizes 
the frequency response in Fig. 8, which is flatter than the 12 
dB/octave slope predicted by the mathematical model [8]. 

In this paper, THD is used to measure the total amount of 
distortion existing in the secondary sound, which is given as 
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where Ti represents the amplitude of the i-th harmonic in the 
secondary sound. The THD level can be approximated by 
measuring up to the 2nd harmonic as 
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Fig. 9 shows the THD calculated from the measurements 
based on (11) and (12), as well as from the Volterra modeling 
up to 2nd-order kernel. It is found that the measured THD 
level calculated from (2) is almost identical to that from (1), 
which verifies that the baseband distortion is largely attributed 
to the contribution of the second harmonic. In addition, the 
THD predicted by the Volterra modeling can match the 
measured THD with only small errors. 

VI. CONCLUSIONS 

In this paper, we developed a baseband distortion model 
based on the 1st- and 2nd-order Volterra kernels for studying 
the nonlinear effect in the demodulated secondary sound of a 
parametric loudspeaker system. The well-known NLMS 
algorithm was used in the nonlinear system identification with 
a cascaded adaptive Volterra filter structure. It has been found 
that the Volterra kernels are suitable in modeling the 
nonlinear distortion present in the reproduced baseband signal 
from the numerical simulations and experimental 
measurements.  The comparison between the two sets of 
kernel coefficients derived from the theoretical equation and 
experimental measurements shows good agreement and 
indicates that the quadratic nonlinear term is largely 
memoryless and can be approximated by a square function. 
The effectiveness of using the Volterra model has also been 
verified by the good agreement between modeling prediction 
and measurement results in terms of SPL and THD. Therefore, 
predistortion techniques based on the Volterra model can be 
more efficiently implemented to reduce the overall distortion 
in parametric loudspeaker systems. 
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