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Abstract—In this paper, we propose a computationally efficient
method of body-conducted voice conversion. A body-conducted
voice is robust against to external noise but its voice quality
is severely degraded by mechanisms of body-conduction. The
conventional body-conducted voice conversion method effectively
enhances the body-conducted voice by converting both spectral
and excitation features. On the other hand, its computational
cost is relatively high. To significantly reduce the computational
cost while keeping the enhanced voice quality as high as possible,
we propose a conversion method of using an original excitation
signal of the body-conducted voice and computationally efficient
feature extraction. The effectiveness of the proposed method is
confirmed in the objective and subjective evaluations.

I. INTRODUCTION

Towards noise-robust human-to-human speech communi-

cation, there have been several attempts to explore sensing

devices as alternatives to the air-conductive microphone. It

has been reported that speech signals detected by the bone-

conductive microphone can be effectively used to enhance

speech sounds under heavy noise conditions [1]. As one of

the sensing devices to detect body-conducted voices, we focus

on the nonaudible murmur (NAM) microphone [2]. It was

originally developed to detect extremely soft murmur called

NAM, which is so quiet that people around the speaker barely

hear its emitted sound. Placed on the neck below the ear, the

NAM microphone can effectively detect air vibrations in the

vocal tract from the skin through only the soft tissues of the

head. High-quality body-conductive recording of various types

of speech, such as a very soft murmur as NAM and a normal

voice, is possible from this position because the conduction

through obstructions, such as bones whose acoustic impedance

is different from that of soft tissues, is avoided. It is also robust

against external noise owing to its noise-proof structure like

in other body-conductive microphones. One serious drawback

of the NAM microphone is that severe degradation of speech

quality is caused by essential mechanisms of body conduction.

Therefore, its speech quality improvements are essential if it

is used in human-to-human speech communication.

To improve speech quality of the body-conducted voice

detected with the NAM microphone, body-conducted voice

conversion based on a statistical voice conversion technique

[3], [4] has been proposed [5]. Joint probability density func-

tions of the acoustic features of the body-conducted voice and

those of the normal voice are modeled by Gaussian mixture

models (GMMs). By using these GMMs, the acoustic features

of the body-conducted voice are converted to those of the

normal voice in a probabilistic manner. In the conventional

conversion system, STRAIGHT [6] is used as a high-quality

analysis-synthesis method to extract the acoustic features as

accurately as possible and its mixed excitation model [7] is

also used to convert an excitation signal as well. They are

very effective for improving the converted voice quality but

the computational cost of STRAIGHT analysis is relatively

high. To develop a real-time conversion system, it is required

to reduce the computational cost as much as possible. This re-

quirement becomes more essential if only the limited resources

are available to implement the system.

In this paper, we present a computationally efficient body-

conducted voice conversion system. By assuming that the

acoustic differences in the excitation signal between the body-

conducted voice and normal voice less affect the converted

voice quality, the original excitation signal of the body-

conducted voice is used in synthesis without any modifica-

tions. Several methods are proposed to considerably reduce the

computational cost while keeping the converted voice quality

as high as possible. To demonstrate the effectiveness of the

proposed system, both objective and subjective experimental

evaluations are conducted.

II. BODY-CONDUCTED VOICE CONVERSION

There are several acoustic differences between the body-

conducted voice detected with the NAM microphone and the

normal voice detected with the air-conductive microphone.

High-frequency components of the body-conducted voice are

severely attenuated by lack of radiation characteristics from

lips and effect of low-pass characteristics of the soft tissues.

Consequently, some phonemes with large power at high-

frequency bands, such as unvoiced fricatives, often lose their

own specific spectral structures. Waveform power differences

are also noticeable. It is hard to compensate for these acoustic

differences using simple modifications, such as global lin-

ear transformation. Moreover, aperiodic components, which

capture noisy strength on each frequency band of the exci-

tation signal [7], are also quite different between the body-

conducted voice and the normal voice. These complicated

acoustic differences are well dealt with in statistical voice

conversion from the body-conducted voice into the normal

voice uttered by the same speaker. The conversion process

of the conventional body-conducted voice conversion system

[5] is shown in Figure 1.
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Fig. 1. Conversion process of conventional body-conducted voice conversion
system (referred as system A). The excitation signal is modeled with
STRAIGHT mixed excitation and its aperiodic components are converted.

STRAIGHT analysis is employed to extract time-varying

speech parameters of the body-conducted voice. In this paper,

mel-cepstrum is used as a spectral feature and F0 and aperiodic

components are used as excitation features. To compensate for

the spectral structures often lost at several phonemes through

the body-conductive recording, a spectral segment feature

vector is extracted at each frame and is used as the source

feature vector in the spectral conversion [5]. The spectral

segment feature vector Xt at frame t is calculated as

Xt = A
[
c�t−L, c�t−L+1, · · · , c�t , · · · , c�t+L

]�
+ b, (1)

where c
(x)
t =

[
c
(x)
t (1), · · · , c

(x)
t (D)

]�
is a D-dimensional

mel-cepstrum vector of the body-conducted voice at frame

t. The transformation matrix A and the bias vector b are

determined with principal component analysis (PCA) to ex-

tract the lower dimensional spectral segment feature vector

by removing redundant components of 2L + 1 mel-cepstrum

vectors.

Two GMMs are used in the body-conducted voice con-

version: a GMM for spectral conversion and a GMM for

aperiodicity conversion. Using parallel data of the body-

conducted voice and normal voice as training data, which are

recorded simultaneously with the NAM microphone and an

air-conductive microphone, joint feature vectors of the source

and target features are developed. For the spectral conversion,

the spectral segment feature vector of the body-conducted

voice Xt and a joint static and dynamic mel-cepstral feature

vector of the target normal voice Y t =
[
c
(y)
t

�
, Δc

(y)
t

�
]�

are concatenated frame by frame to develop the joint feature

vector
[
X�

t , Y �
t

]�
. Using the joint feature vectors, a joint

probability density function of the source and target features

P
(
Xt, Y t|λ(X,Y )

)
is modeled by a GMM, where λ(X,Y ) is

a parameter set of the GMM. For the aperiodicity conversion,

the joint feature vector is developed by concatenating static

and dynamic features of aperiodic components of the body-

conducted voice and those of the normal voice, and then its

joint probability density function is modeled by the other

GMM.

In conversion, given a time sequence of the source feature

vectors X =
[
X�

1 , · · · ,X�
T

]�
, a time sequence of the target

static feature vectors y =
[
c
(y)
1 , · · · , c

(y)
T

]�
is determined

by maximizing the conditional probability density function

P
(
Y |X,λ(X,Y )

)
of a time sequence of the target static

and dynamic feature vectors Y =
[
Y �

1 , · · · , Y �
T

]�
. This

estimation is performed under a constraint between static and

dynamic feature vectors given by Y = Wy, where W is a

transformation matrix from the static feature vector sequence

to the joint static and dynamic feature vector sequence. The

spectral conversion and the aperiodicity conversion are per-

formed independently. The global variance is also considered

in the spectral conversion [4]. On the other hand, F0 values

with unvoiced/voiced (U/V) information extracted from the

body-conducted voice are not converted.
In synthesis, the converted excitation signal e(ŷ)(n) is

generated with STRAIGHT mixed excitation using the con-

verted aperiodic components and the extracted F0 values with

U/V information. Then, the converted voice signal s(ŷ)(n) is

generated by filtering the excitation signal with the converted

spectral filter h(ŷ)(n). This filtering process is written as

S(ŷ)(z) = H(ŷ)(z)E(ŷ)(z), (2)

where S(ŷ)(z), E(ŷ)(z), and H(ŷ)(z) are Z-transforms of

s(ŷ)(t), e(ŷ)(t), and h(ŷ)(t), respectively. Using Mel Log

Spectral Approximation (MLSA) filter [8], H(ŷ)(z) is given

by

H(ŷ)(z) = exp
D∑

d=0

c
(ŷ)
t (d)z̃−d, (3)

where c
(ŷ)
t (d) is the dth coefficient of the converted mel-

cepstrum at frame t and z̃−1 is the all-pass filter for frequency

warping.

III. BODY-CONDUCTED VOICE CONVERSION WITH

ORIGINAL EXCITATION SIGNALS

STRAIGHT analysis is capable of extracting highly accu-

rate spectral parameters by removing periodic components of

the excitation signal from spectral envelope using F0 infor-

mation. Moreover, STRAIGHT mixed excitation enables to

convert the excitation signal. On the other hand, STRAIGHT

analysis is computationally expensive and STRAIGHT mixed

excitation sometimes suffers from errors of the F0 extraction

and U/V estimation. To address these issues, a computation-

ally efficient conversion method using the original excitation

signals is proposed.

A. Use of Original Excitation Signal
The original excitation signal of the body-conducted voice

is well approximated with a residual signal r(x)(n) if it

is extracted by inversely filtering the body-conducted voice

signal s(x)(n) with the sufficiently accurate spectral filter

h(x)(n), such as given by mel-cepstrum extracted from the

body-conducted voice with STRAIGHT. The inverse filtering

process is given by

R(x)(z) =
1

H(x)(z)
S(x)(z), (4)
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Fig. 2. Conversion process of body-conducted voice conversion system
(referred as system B) using original excitation signals.

where R(x)(z), S(x)(z), and H(x)(z) are Z-transforms of

r(x)(n), s(x)(n), and h(x)(n), respectively. In the proposed

conversion method, the residual signal is used as the excitation

signal in synthesizing the converted voice as follows:

S(ŷ)(z) = H(ŷ)(z)R(x)(z) =
H(ŷ)(z)
H(x)(z)

S(x)(z). (5)

This is equivalent to filtering the body-conducted voice signal

with the difference spectral filter given by

H(ŷ)(z)
H(x)(z)

=

exp
D∑

d=0

c
(ŷ)
t (d)z̃−d

exp
D∑

d=0

c
(x)
t (d)z̃−d

= exp
D∑

d=0

c
(ŷ−x)
t (d)z̃−d, (6)

c
(ŷ−x)
t (d) = c

(ŷ)
t (d) − c

(x)
t (d). (7)

This conversion process is shown in Figure 2. Although the

excitation signal is not converted, this process is free from

errors of the F0 extraction and U/V estimation.

B. Reducing Computational Cost

In the statistical voice conversion, it is important to use a

highly accurate spectral parameter for the target feature since it

directly affects the converted voice quality. On the other hand,

the spectral parameter for the source feature does not directly

affect the converted voice quality as far as it is still useful as an

explanatory variable to estimate the target features. Therefore,

simple FFT-based spectral analysis is used to quickly extract

the source mel-cepstrum. This conversion process is shown in

Figure 3. Note that a GMM for the spectral conversion needs

to be trained with the joint feature vectors consisting of the

spectral segment feature vectors developed from the FFT-based

mel-cepstra of the body-conducted voice and the STRAIGHT-

based mel-cepstrum feature vectors of the normal voice. This

conversion process is very computationally efficient since

STRAIGHT analysis is avoided.

One drawback of this conversion process is that the ex-

traction accuracy of the source mel-cepstrum still affects the

filtering process even if it does not affect the conversion accu-

racy of the target mel-cepstrum. Since the FFT-based spectral

analysis is sensitive to the periodicity of excitation signal,

the source mel-cepstrum often captures harmonic components

of the periodic excitation signal. This causes the degradation
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Fig. 3. Conversion process of computationally efficient body-conducted voice
conversion system (referred as system C) using original excitation signals.
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Fig. 4. Conversion process of computationally efficient body-conducted voice
conversion system (referred as system D) using original excitation signals and
direct estimation of difference mel-cepstrum sequence.

TABLE I
COMPARISON OF BODY-CONDUCTED VOICE CONVERSION SYSTEMS

SHOWN IN Figures 1, 2, 3, AND 4

System index Excitation Analysis Conversion target

A w/ conversion STRAIGHT Target mel-cepstrum
(conventional) of aperiodicity and aperiodicity

B w/o conversion STRAIGHT Target mel-cepstrum
C w/o conversion FFT Target mel-cepstrum
D w/o conversion FFT Difference mel-cepstrum

of converted voice quality because the difference spectral

filter given by Eq. (6) is contaminated by the periodicity of

excitation signal.

To address this issue, the conversion to a difference

mel-cepstrum is proposed. In training, the difference mel-

cepstrum c
(y−x)
t = c

(y)
t − c

(x)
t is calculated by subtracting

the STRAIGHT-based mel-cepstrum of the body-conducted

voice from the STRAIGHT-based mel-cepstrum of the normal

voice. Thus, the difference mel-cepstrum does not capture

the periodic components of the excitation signal thanks to

STRAIGHT analysis. A GMM is trained with the joint feature

vectors consisting of the spectral segment feature vectors based

on the FFT-based mel-cepstra of the body-conducted voice and

the difference mel-cepstral feature vectors. This conversion

process is shown in Figure 4.

Table I shows a comparison of the body-conducted voice

conversion systems depicted in Figures 1, 2, 3, and 4. The

systems B, C, and D use the original excitation signals. The

computational costs of the systems C and D are much lower

than those of the systems A and B. The system D estimates

the difference mel-cepstrum to keep the spectral filter from

capturing the periodicity of excitation signal.



IV. EXPERIMENTAL EVALUATION

A. Experimental Conditions
The body-conducted voice and normal voice were simul-

taneously recorded by detecting a natural voice uttered by a

Japanese male speaker with the NAM microphone and an air-

conductive microphone. The sampling frequency was set to

8 kHz. A sentence set consisting of 100 phonetically balanced

sentences was recorded with each of three different types of

the NAM microphone. In each set, 50 sentences were used

for training and the remaining 50 sentences were used for

evaluation.
The 0th through 16th mel-cepstral coefficients were used as

a spectral feature. Aperiodic components on five frequency

bands (i.e., 0-1, 1-2, 2-4, 4-6, and 6-8 kHz) were used as an

excitation feature. The shift length was set to 5 ms. In the

extraction of the spectral segment feature, a 34-dimensional

vector was extracted at each frame from concatenated mel-

cepstrum vectors at current and ± 4 preceding/succeeding

frames. The number of mixture components of each GMM

was set to 32.
Objective and subjective evaluations were conducted to

compare the conversion performance of the systems A, B,

C, and D. In the objective evaluation, mel-cepstral distortion

between the converted voice signal and the target voice signal

was used as an evaluation metric. In the subjective evaluation,

the opinion test on voice quality was conducted using a 5-point

opinion scale, such as 1: very bad, 2: bad, 3: fair, 4: good,

and 5: excellent. Eight listeners participated in the test. Each

listener evaluated 120 samples consisting of 30 samples for

each system, which were randomly selected for each listener.

B. Experimental Results
Figure 5 shows the result of objective evaluation. The

system B yields lower mel-cepstral distortion than the system

A. This is because the conversion accuracy of the system A
suffers from the errors of F0 extraction and U/V estimation.

The system C causes very large mel-cepstral distortion since

the converted voice signal is directly affected by poor accuracy

in mel-cepstrum extraction of the body-conducted voice. This

issue is effectively addressed in the system D, the conversion

accuracy of which is equivalent to that of the system B.
The result of the opinion test is also shown in Figure 5.

The systems B, C, and D using the original excitation signals

yield the better converted voice quality than the system A. This

result implies that the converted voice quality is sensitive to

the F0 extraction error or the U/V estimation error rather than

a mismatch of aperiodic components. The system C causes

the significant degradation in the converted voice quality but

this degradation is effectively alleviated by the system D.

Consequently, the system D yields the best converted voice

quality equivalent to that of the system B while keeping its

computational cost much lower than that of the system B.
These results show the effectiveness of the system D. It

could depend on individual speakers whether the system D
outperforms the system A. We plan to evaluate the perfor-

mance of these systems for various speakers.
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Fig. 5. Mel-cepstral distortion (left) and mean opinion score (right) for each
body-conducted voice conversion system shown in Figures 1, 2, 3, and 4.

V. CONCLUSIONS

In this paper, we proposed computationally efficient body-

conducted voice conversion based on FFT-based spectral anal-

ysis, conversion from the source spectral feature to a difference

spectral feature between the body-conducted voice and the

normal voice, and the use of a residual signal of the body-

conducted voice as an excitation signal in synthesis. The

experimental results showed that the proposed conversion

yields better converted voice quality than the conventional

conversion since the proposed conversion is free from the

errors of F0 extraction and unvoiced/voiced estimation. Further

investigation for various speakers’ voices will be performed.
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