
VLSI Design and Implementation of Density-based
Spike Classification for Neuroprosthetic

Applications
Li-Fang CHENG, Tung-Chien CHEN and Liang-Gee CHEN

National Taiwan University, Taipei
E-mail: {fannycube, djchen, lgchen}@video.ee.ntu.edu.tw

Abstract—Successful proof-of-concept laboratory experiments
on cortically-controlled brain computer interface motivate con-
tinued development for neural prosthetic microsystems (NPMs).
In order to improve the NPMs, one of the main issue is to
realize the realtime spike sorting processors (SSPs). The SSP
detects the spikes, extracts the features, and then performs the
classification algorithm to differentiate the spikes for different
firing neurons. Several architectures have been designed for the
spike detection and feature extraction. However, the hardware
for classification is missing. To complete the SSP, a density-
based hardware-oriented clustering algorithm is adapted for the
hardware implementation for the classification. In the hardware
architecture level, the concepts of convolution and data reuse
are adapted to further reduce the power consumption. The final
implementation achieves 32.6µW and 0.25 mm2 in 90nm low-
leakage process.

I. I NTRODUCTION

Spike sorting is an important tool for analyzing neural
signals in the realm of neuroscience. It aims to sort the
detected neural activities, or spikes, to the corresponding firing
neurons. The performance of the cortically-controlled brain-
machine interface for paralyzed patients may be improved
with the aid of accurate sorting results [1]. One of the current
research directions is to design a real-time spike sorting
processor on the neural recording microsystems for the long-
term experiments [2]. The power consumption and the size
of the device are two of the major concerns for the hardware
optimization.

The on-chip spike sorting system is generally composed of
four stages: the spike detection, the filtering and alignment,
the feature extraction and the classification. Each stage of
the system can be divided into the on-line processing engine
and the algorithm training engine. The training engine can
collect a considerable amount of neural signals and extractthe
algorithm parameters used for the on-line processing engine.
Many on-line processing hardware units for spike sorting have
been proposed [3], [4]. The principal component analysis, one
of the training algorithms for the spike feature extraction,
has also been designed in VLSI hardware [5]. However in
the previous works, the hardware for the training part of
classification has not yet been proposed.

In this paper, we aim to implement the hardware of the
training engine for classification. We first choose a density-
based hardware-oriented algorithm proposed in [6] for the

Spike

Detection

Threshold

Estimation

Filtering and

Peak Alignment

Principal Component

Analysis (PCA)

PCA Feature

Extraction
Table-look-up

Classification

Cluster Contour

Generation

On-line Processing

Periodic Parameter Training

Feature-to-cluster

Mapping Table

Aligned

Spikes
Trained

PCs

Trained

Threshold

Spike

Signals

Sorting

Results

Extracted

Features

Fig. 1. The hardware operation of spike sorting processors.We will focus on
the the hardware design of the training device for the classification stage.

hardware design. In the hardware architecture level, we try
to further reduce the power consumption of the device due
to the large amount of data access power. The rest of this
paper is organized as follow. In section II, we introduce some
preliminary knowledge about the hardware design of spike
sorting. Section III gives a review of the adapted hardware-
oriented algorithm in this design. The proposed hardware
architecture is represented in section IV. Section V shows the
implementation results, and section VI gives the conclusion.

II. PRELIMINARY

A. Spike Sorting

Neurons in brain communicate with each other through
the firing of action potentials, or the so-called spikes. These
spikes can be detected and recorded by extracellular micro-
electrodes implemented in the brain. Many neuroscientific
studies and applications require the measurements of the
spikes for further improvement. However, the measured signals
are often composed of multiple spikes from a group of close-
by neurons, and how to analyze and identify the signals from
different neurons accurately becomes an important issue. Spike
sorting is the process to classify the detected spikes to their
corresponding source neurons.

Figure 1 shows a general architecture of the hardware
operation for spike sorting processors. The raw neural signals
after the amplification and digitization are passed to the spike
sorting processor. There are four major steps in the processor:
the spike detection, the filtering and alignment, the feature

APSIPA ASC 2011 Xi’an

(a) (b) (c) (d)

Labeling and

Initial Clustering

Density Map

Construction

Cluster

Merging

Table-look-up

Classification
Extracted

Features

Sorting

Results

Fig. 2. The block diagram of the density-based clustering algorithm.

extraction, and the classification. Each stage can be further
divided into the on-line processing part and the training
part. The on-line processing engines deal with the sequential
input signals in real time. The training engines compute the
parameters for the on-line processing engines by collecting
a considerable amount of neural data and implementing the
training algorithms. In this paper, we will focus on the
training engine in the classification stage for the spike sorting
processor. The training engine for classification can read the
spike features extracted by the feature extraction device and
implement the clustering algorithms to classify the feature
space. The mapping information of the feature space, such as
a feature-to-cluster table, can then be generated and return to
the on-line processing engine. The on-line processing engine
is then able to classify the detected spikes in real time by
table-look-up classification.

B. Requirements for the Hardware Implementation

Note that the power consumption and the area are two major
concerns for the spike sorting processors. In order to imple-
ment the hardware for the training engine of classification,a
hardware-friendly algorithm should be chosen at first. There
have been several algorithms used for the classification in the
off-line spike sorting, such as k-means algorithm and mean
shift algorithm [7], [8]. However, due to the large amount of
required memory and computation complexity, most of them
are not very feasible for hardware implementation. In this
work, we choose a density-based hardware-oriented algorithm
proposed in [6] for the hardware design because of the re-
ported smaller memory usage and computation complexity in
comparison with other traditional algorithms. The procedures
of the algorithm will be introduced in the next section.

III. R EVIEW OF THE HARDWARE-ORIENTED ALGORITHM

FOR CLASSIFICATION

In this section, we will briefly review the procedure of
the density-based hardware-oriented algorithm adapted inthis
work, and discuss its feasibility for hardware implementation.

A. Algorithm Procedure

Figure 2 shows the overall procedure of the density-based
hardware-oriented algorithm for classification [6]. In this al-
gorithm, the concept of density estimation is adopted for the
proved better performance of the mean shift algorithm than
the traditional k-means algorithm. There are three steps in
the algorithm. The first step of the algorithm is to create the
density information of the extracted feature spaces. In order

to calculate and store the density efficiently, the d-dimensional
feature space is previously quantized toNd basic units, or the
cells. N is the level of quantization along each dimension.
Next, a discrete symmetric profiling kernel is chosen for
density accumulation. When each feature comes in, we first
look for which cell contains the location of the feature, and
then add the kernel weights to the cell and its adjacent cells.
Through this accumulating procedure, we can get a density
map like Fig. 2 (a) after all the spike features are read.

The second step of the algorithm is to cluster the cells in the
feature space according to the density map created in the first
step. For each cell, we compare its density with that of the
adjacent cells, and a shift vector that indicates the direction to
the adjacent cell with the highest density value is generated.
We then group the current cell and the cell that the shift
vector points to together, give them the same cluster label,
and move on to the next cell for comparison. This iterative
shifting and labeling procedure will be terminated when the
cell with the local maximum of density is found. Start from
different cells and repeat the procedure described above, we
can classify the whole feature space. The initial clustering
process is finished when all the cells are checked at least
once. A cell-to-cluster table as shown in Fig. 2 (b) will be
generated after this step. Finally, in the merging step, we check
some merging conditions for the cells on the boundary of
different clusters and merge these clusters if the criterions of
the conditions are met. Fig. 2 (c) illustrates the cell-to-cluster
table after the merging process, which is the final results of
the classification. This table can be further transferred tothe
on-line classification device for table-look-up mapping. The
re-mapping results of the on-line processing engine is shown
as Fig. 2 (d).

B. Feasibility for Hardware Implementation

The power and area are two main issues for the hard-
ware implementation. In the algorithm level, we can use
the memory usage and the computation complexity of the
algorithm to estimate the feasibility for hardware realization.
This is because the memory usage often contributes to most
of the area, and the computation complexity can reflect the
dynamic power consumption of a hardware device. Therefore,
a good algorithm for hardware implementation should have
the characteristics of low memory usage and computation
complexity.

In comparison with the the traditional mean shift and
k-means algorithm, the density-based algorithm introduced
above reports a smaller amount of required memory and
lower computation complexity. One reason is that since the
spike features are transformed into the density domain with
quantization before the clustering procedure, the memory
usage can be reduced. Besides, in both k-means and mean
shift algorithm, a large amount of of distance calculation is
adopted during the iterative clustering procedure. However, in
the density-based algorithm, only comparisons between the
density of the cells are required. Since the comparison is
simpler to realize than the distance calculation for hardware

k -1,-1 k 0,-1 k1,-1

k -1,0 k 0,0 k 1,0

k -1,1 k 0,1 k 1,1

n x-1,y-1

*d x,y = n x-1,y n x,y

n x-1,y+1 n x,y+1

n x,y-1 n x+1,y-1

n x+1,y

n x+1,y+1

current kernel

window

next kernel

window

reusable data

(a) (b)

 accumulated

 spike number

symmetric

profiling kernel
density

k -1,-1 k1,-1 k -1,1 k 1,1

k 0,-1 k -1,0 k 0,1 k 1,0

= = =

= = =
x

y

Fig. 4. (a) The procedure of the convolution method. (b) The data reuse
scheme used during the procedure of convolution.

devices, the computation reduction and thus power saving
of the device can be expected. For more details about the
comparison results, please refer to [6]. Therefore, the density-
based algorithm should be more feasible for the hardware
design of the classification training device.

IV. VLSI A RCHITECTUREDESIGN

In this section, the hardware architecture design based on the
density-based classification algorithm discussed in section III
is proposed. We first introduce the direct form of the hardware
architecture adapting the original procedure, and a modified
architecture for power reduction is proposed and discussed.

A. Direct Form of the System

According to the density-based algorithm, we may derive
the working schedule of the system directly as shown in Fig. 3.
Two on-chip SRAMs are used to store the density information
and the cluster label for each cell. The working schedule is
briefly described as below. When the system detects the spike
features, the system calculates the corresponding memory
address, and adds proper kernel weights on the memory units
instead of recording the raw features. In this design, a3 × 3
symmetric kernel is applied, and one read-write procedure is
required for 9 memory units when one set of the extracted
features comes in. Therefore, in order to handle real-time
density accumulation, the operation frequency should be faster
than the rate of the input feature set. Next in the clustering
state, the system iteratively retrieves the accumulated densities
stored in SRAM 1 and writes the labeling results into SRAM
2. Finally in the merging step, the system allocates both the
label and the density information stored on the two SRAMs
to check the merging conditions. If there is a merging event,
the cluster labels for some memory units may change, and
the clustering results stored in SRAM 2 should be updated.
After finishing the merging step, we can access SRAM 2 to
get the final mapping table for the on-line processing device
for classification.

B. Power Reduction: The Convolution Method

Analyze the direct form of the hardware architecture, we
can find that in each step during the classification procedure,
the system needs to access the two SRAMs frequently for
processing. Therefore, a large amount of memory access power
may be consumed. We further observe that due to the large

amount of collected features, about 80% of the memory
access comes from the first step, that is, the on-line density
accumulation. In order to reduce the considerable data access
power, the concept of convolution is adapted. We first note that
since the chosen profiling kernel is symmetric, the density of
each cell is equal to the number of features within that cell
convolutes the kernel. That is, for each cellCx,y in the feature
space, the densitydx,y can be computed as

dx,y =

1∑

i=−1

1∑

j=−1

(ki,j) · (nx−i,y−j)

, where ki,j represents the kernel weights andnx,y is the
total number of spikes detected within the cellCx,y. x, y are
the corresponding coordinates of the cell in the 2D feature
space. The procedure of convolution is also shown in Fig. 4
(a). Therefore, the first step for density accumulation can
be separated into two stages. First, instead of accumulating
the kernel weights on all the cells within the kernel when
each feature comes in, we simply accumulates the number of
features of the corresponding cell. Since only one memory
unit needs to be accessed in this case, the operation frequency
of the system can be slower than that of the direct form under
the same input feature rate. In the second stage, we apply the
convolution procedure to calculate the corresponding density
for each cell sequentially. Note that during this procedure, a
data reuse scheme shown in Fig. 4 (b) can be adopted. Through
buffering the reusable data, the amount of data access can be
further reduced.

With the modified two-stage procedure for density map
construction, about 80% of the amount of memory access in
the original on-line accumulating step can be saved. The total
amount of memory access of the system can also be reduced
to 40% of the original amount. Therefore, the reduction on
power consumption should be available.

C. Memory Tradeoff for the Convolution Method

Although the convolution method described above may
achieve efficient power saving for the system, we should note
that additional memory units are required to temporarily save
the number of features during the procedure of convolution.
Therefore, the area and the leakage power of the hardware may
also increase. This problem is partially released by the scheme
of memory reuse. As Fig. 5 shows, there should have been one
more SRAM after inserting the convolution step which is used
to store the feature numbers. However, we can find that the
data life time of this SRAM will not overlap with SRAM 2
because the information of the feature number in each cell
is used only during the convolution step. Therefore, we can
reuse SRAM 2 for storing the number of features during the
on-line feature accumulation, and the increment of memory
usage caused by the convolution method can be minimized.

V. I MPLEMENTATION RESULTS

The training device for the classification part of the SSP
with the proposed architecture is implemented in UMC 90nm

...

Accumulating Density Map Shifting and Labeling Merging

...y1 y2 y3000
...

x1 ...x2 x3000...

clk

input feature x

input feature y

SRAM 1 R/W

(density data)

SRAM 2 R/W

(cluster label) W W R... WR ... W

writing the cluster label re-labeling

comparing the retirved density

R W R W R W... W... R R ... R R ...R ... R RR RW

multiple cycles for multi-unit accumulations

Fig. 3. The working schedule of the direct form of the system.R: loading data from SRAM. W: writing data to SRAM.

...

Accumulating

Feature Number Shifting and Labeling Merging

y1 y2
... y3000

x1 x2 ... x3000

clk

input feature x

input feature y

SRAM 1 R/W

(density data)

SRAM 2 R/W

(feature number

/ cluster label)

W W R... WR ... WR W R ... R W RW R R R ... R

writing the cluster label re-labelingmultiple cycles for single-unit

accumulation
loading data for convolution

comparing the retirved density

W R R ... R R ...R ... R RW

writing the density

Convoluting

Fig. 5. The working schedule of the system that adapts the convolution method. R: loading data from SRAM. W: writing data to SRAM.

TABLE I
IMPLEMENTATION RESULTS IN 90 NM CMOS PROCESS

Supply Voltage (Volt) 1.08
Operation Frequency (MHz) 2
Core Area (mm2) 0.25
Power Consumption (µW) 32.6

Fig. 6. The chip layout of the hardware implementation.

low-leakage CMOS process. Figure 6 shows the chip layout
and table I summarizes the final implementation results. The
operation frequency of the system is set to be 2MHz and is
able to handle real time feature processing for 1M feature sets
per second with a resolution of 16 bits per feature. About
3,000 spike feature sets can be recorded. The core area of
the hardware is 0.25 mm2 with 12.1k logic gates and 28.7kb
SRAM. The average power consumption is 32.6µW.

Figure 7 gives an estimated power comparison between
different forms of the system based on the synthesis results.
The input rate is set to be 1M feature sets per second for all
cases. In order to maintain realtime performance, the operation
frequency of the direct form is 18MHz. For other forms
that adapt the convolution method, the operation frequencyis

Fig. 7. The comparison of power consumption of different forms of the system.

2MHz. The dynamic power consumption for the combinational
part and non-combinational part are estimated by the ratio
of their area. We also assume that the dynamic power for
the non-combinational part is proportional to the amount of
memory access. According to the comparison results, the
leakage power of the final architecture is slightly increased due
to the 24% increment of memory usage. However, since the
dynamic power is greatly reduced, the total amount of power
consumption decreases. The final architecture efficiently saves
about 87% of the power consumption.

VI. CONCLUSION

In this paper, a training device of classification for the spike
sorting processors is implemented. We first adapt the density-
based hardware-oriented algorithm for the system because
of the relatively small amount of memory usage and low
computation complexity in comparison with the traditionalk-
means and mean shift algorithm. In the hardware architecture
level, we involve the convolution method and the concept of
data reuse to reduce the large amount of data access power
when on-line accumulating the density map. The scheme of
memory reuse is also adopted to minimized the increment of
the required memory due to the convolution step. According
to the final implementation results, the power consumption is
32.6µW and the core area is 0.25 mm2 in 90nm low-leakage
process. This on-chip classification training device may be

further integrated with real-time SSPs for the realizationof
embedded spike sorting microsystems.

REFERENCES

[1] M.D. Linderman and et al., “Signal processing challenges for neural
prostheses,” IEEE Signal Proc. Magazine, vol. 25, no. 1, pp. 18–28,
2008.

[2] Z. Zumsteg and et al., “Power feasibility of implantabledigital spike
sorting circuits for neural prosthetic systems,”IEEE Tran. on Neural
Syst. and Rehab. Eng., vol. 13, no. 3, pp. 272–279, 2005.

[3] M. Chae and et al., “A 128-channel 6mw wireless neural recording ic
with on-the-fly spike sorting and uwb transmitter,” inISSCC Dig. Tech.
Papers, Feb 2008, pp. 146–603.

[4] V. Karkare and et al., “A 130-gw, 64-channel spike-sorting dsp chip,” in
ASSCC Dig. Tech. Papers, 2009, pp. 289–292.

[5] T. C. Chen and et al., “A biomedical multiprocessor soc for closed-loop
neuroprosthetic applications,” inISSCC Dig. Tech. Papers, Feb. 2009,
vol. 25, pp. 434–435.

[6] L.-F. Cheng and et al., “Density-based hardware-oriented classification
for spike sorting microsystems,” inInt. IEEE/EMBS Conf. on Neural
Engineering, 2011, pp. 170–173.

[7] M. S. Lewicki, “A review of methods for spike sorting: thedetection
and classification of neural action potentials,”Network: Comput. Neural
Syst., pp. R53–R78, 1998.

[8] Q. Zhao and et al., “Evolving mean shift with adaptive bandwidth: A fast
and noise robust approach,” inAsian Conf. on Computer Vision, Sept.
2009, vol. 5994, pp. 258–268.

