
Protrusion Based Segmentation of Complex 3D
Shape Models

Masaki Aono∗, Shiro Wakida∗, and Atsushi Tatsuma∗,
∗ Toyohashi University of Technology, Aichi, Japan

E-mail:aono@tut.jp Tel: +81-532-44-6764

Abstract—3D shape models have been used in many fields.
Segmentation of 3D model is a technology that allows us to split
the model into multiple semantically meaningful parts, for reuse
and partial shape retrieval. Our proposed method hypothesizes
that any complex 3D shape models consist of “protruded” parts
and the remaining body. To determine the border between
“protruded” parts and the remaining body, we need the distance
measure. In this paper, we first describe a couple of well-
known distance measures, then we propose a new method for
approximating a geodesic distance using “landmarks”, which we
prove to be much efficient than other distance measures. We
also propose a new method for computing boundaries between
segments. We have used a segmentation benchmark data set to
evaluate the validity of our methods. The results we have obtained
so far are very encouraging.

I. INTRODUCTION

3D digital models have been used in many fields including
industrial product design and simulation, virtual medical op-
erations, education, and entertainments such as movies and
games. However, it is very expensive to create a new 3D
model from scratch, and it has been mostly neglected to reuse
existing 3D models initially made for other purposes. For
this reason, research on 3D shape retrieval has been actively
investigated in the past decade. Yet not much attention has
been paid to 3D partial shape retrieval to date, compared to the
whole shape retrieval. To make it possible to do partial shape
retrieval, it is very important to subdivide a whole 3D shape
models into a collection of meaningful parts. The subdivision
of 3D shape is commonly called “3D segmentation”. Ever
since Princeton University made public “3D segmentation
benchmark” [1], the research on segmentation has become
much easier, since we can take advantage of the manually
tagged “correct” segmentation results in order to evaluate the
results. The segmentation of a 3D model takes two inputs (3D
shape and k, the number of segments to be produced) and
outputs k-grouped segments, where each segment is assumed
to consist of a collection of 3D polygonal meshes.

In this paper, we hypothesize that a 3D shape to be seg-
mented is usually complex and has one or more “protruded”
parts within itself. Under this assumption, we propose an
algorithm to repeatedly extract a segment based on protru-
sion hypothesis. We also propose an approximate method
for computing a geodesic distance, by introducing the notion
of “landmarks”, needed to determine the end points, which
are supposed to locate the outermost part of the protruded
segment in concern. The evaluation of segmentation is done by

several standpoints. One of them is the beauty of the boundary
between segments. In this respect, we propose a method for
determining the candidates polygons on the boundary, by con-
sidering both distance histograms and the distribution of sliced
areas from one “landmark” to the neighboring ”landmarks”.

II. RELATED WORK

In his survey, Shamir [11] divided 3D segmentation research
into 5 groups. Chen et al [1] described comparison of 7 dif-
ferent segmentation algorithms using 3D segmentation bench-
mark. Our purpose in this section is not to do comprehensive
survey, but to focus on some of prominent approaches, from
which we can extract two of methods; the one for a known
superior method and the other for a baseline method.

• Region growing based [7]
• Topology based [14]
• Clustering based [12]
• Graph partitioning based [4]
• Spectral analysis based [9]
Katz et al [7] proposed a segmentation method by first

transforming an input model based on the theory of multi-
dimensional scaling (MDS) [3] into a pose-invariant repre-
sentation. Second, this representation facilitates the robust
extraction of prominent feature points. Finally, they extracted
the core component of the mesh by using a spherical mirroring
operation for segmentation.

Tierny et al [14] took a different approach to 3D shape seg-
mentation. They first extracted enhanced topological skeletons,
and these skeletons were also used to determine the core shape
geometry. Then a semantic-oriented hierarchical segmentation
process was carried out. Their method has a limitation that it is
difficult to distinguish features when features form a compact
connected component like a closed fist, where we cannot tell
the difference between two skeletons of similar shapes.

Shlafman et al [12] proposed a surface decomposition
by using an algorithm similar to k-means clustering al-
gorithm, where given a polyhedral surface S with n ver-
tices, they compute a decomposition of S into k disjoint
patches S1, S2, ..., Sk. To determine the segment border, they
employed the dihedral angles between adjacent faces, so
that if two adjacent faces are close to being coplanar to
each other, they are more likely to belong to the same
patch. The distance between two adjacent faces was thus
defined as Distance(F1, F2) = (1 − δ)(1 − cos2(α)) +
δPhys Dist(F1, F2), where δ is a weight parameter and

APSIPA ASC 2011 Xi’an

Phys Dist denotes the Euclidean distance between the
centers of gravity of two adjacent faces. On the other
hand, the distance between non-adjacent faces was defined
as Distance(F1, F2) = minF3 �=F1,F2(Distance(F1, F3) +
Distance(F3, F2)). This amounts to a close approximation
to a geodesic distance.

Golovinsky et al [4] proposed a hierarchical decomposition
procedure that uses a set of randomized minimum cuts to
guide placement of segmentation boundaries. They classify
this method into “Randomized cuts” to discriminate it from
“Normalized cuts”, which they propose in the same paper.
With “Randomized cuts”, they first decimate the mesh (to
2,000 triangles), and they then proceed top-down hierarchi-
cally, starting with all faces in a single segment and iteratively
making binary splits. For each split, they compute a set of
randomized cuts for each segment, and then they identify
for each segment which cut is most consistent with others
in the randomized set. Amongst this set of candidate cuts,
they choose the one that results in the minimal normalized cut
cost (called “MinCut” algorithm). The algorithm terminates
when a user-specified number of segments has been reached.
There is a limitation of this approach in that MinCut algorithm
produces unstable results for symmetric objects.

Liu et al [9] proposed a mesh segmentation algorithm via
recursive bisection where at each step, a sub-mesh embedded
in 3D was first spectrally projected into the plane and then
a contour was extracted from the planar embedding. They
rely on two operators to compute the projection: the graph
Laplacian and a geometric operator designed to emphasize
concavity. They achieved invariance to shape bending through
multi-dimensional scaling (MDS[3]) based on the notion of
inner distance.

III. PROTRUSION BASED SEGMENTATION

Our proposed hypothesis is stated as follows: an arbitrary
complex 3D shape model should consist of a rounded core part
and one or more “protruded” parts, with each “protruded” part
may be further made of a rounded core part and one of more
finer “protruded” parts, and so on in a nested fashion. A simple
example is illustrated in Fig. 1, where a teddy bear is regarded
as semantically being made of a rounded body, illustrated in
solid curves, with five “protruded” parts (four legs and one
head), shown in dotted curves, and the head is further divided
into a rounded part and two “protruded” ears.

In order to translate our hypothesis into practical algorithms,
we consider the following two steps. The first step is to
detect and identify the shape of “protrusion”, and the second
step is to determine the boundary between the rounded part
and one or more protruded parts. Since we assume that any
complex 3D shape has a nested protruded parts, it is natural to
apply the above steps iteratively until no evidently protruded
parts remain. The net segmentation algorithm is based on this
assumption except that we have to conform to the number
“k” for stopping criterion of the iteration, where “k” is the
desirable number of segments a priori given for each 3D shape.

Fig. 1. Sample model having a nested protrusion

Note that each segment constitutes a set of polygonal meshes,
and so does each boundary between segments.

A. Overall Segmentation Algorithm

The overall flow of our protrusion based segmentation
algorithm is shown in Fig. 2. It consists of four major steps.
In the first step, we compute the distances along geodesic path
of the model. They are needed in steps 2 and 3. Step 2 selects
“tips” of protruded parts (k-1) times, where tips are called
“landmarks”. During Step 2, we determine the tip of protrusion
based on some evaluation criterion, and eliminate implausible
tips from consideration. After a tip of protrusion is selected, we
compute the distance between the tip and a boundary between
segments in Step 3. The boundary determination itself will
be elaborated later. In Step 4, we mark the same segment ID
to all the meshes falling into the distance between the tip of
protrusion and the boundary. We also put a different segment
ID to the other meshes. During steps 2 and 3, we may have
“landmarks” that do not meet a condition, which have to be
removed. Due to this consideration, it may occur after Step
4 that we would not satisfy the number k of segments to be
produced. In this case, we pick up the segment that has the
largest area and repeat from Step 2 until k number of segments
are produced.

B. Distance Computation

In order for our protrusion based segmentation algorithm
to work out, it is essential to define the distance traversed
along a real surface, made of polygonal meshes, instead of
direct Euclidean distance as shown in Fig. 3. The most faithful
definition of this distance can be defined by geodesic distance
along the polygonal meshes connecting two end points as
shown in Fig. 3.

To specify points on the surface, we will employ a centroid
of each convex polygon, which will be regarded as a node,
and a path between two nodes of neighboring polygons will
be regarded as a link, making up a connected graph as a whole.

The actual distances we consider are as follows:
1) Diffusion Distances: Diffusion distance, hereafter we

call DD for short, is the distance measured with Diffusion
maps [2], [8]. Diffusion maps can be regarded as a non-
linear dimensional reduction method, based on unsupervised
manifold learning [6]. Like other manifold learning, diffusion
maps employ graph theoretic approaches. Specifically, given
a weight matrix W of a graph G, and a diagonal matrix D,

compute distance
along geodesic path

Step 2. select tip of protrusion

Step 3. determine border
between segments

Step 4. do segmentation

from tip to border, as well as
to the other part

k == #segments
No Yes

stop

Start

Step 1.

Fig. 2. Flow of protrusion based segmentation algorithm

Fig. 3. Distance along a mesh surface and Euclidean distance

defined as di,i =
∑

j wi,j , we first define an operator P as
follows:

P = D−1W

The operator P is regarded as a transition matrix, representing
a random walk on the graph, whose transition probability is
given by W . The transition probability defines how the data
is propagated, which in turn defines the diffusion distance.
Assume that P t represents the probability after t steps of
random walks, the diffusion distance between xi and xj is

expressed by the following:

D2
t =

∑

z

(p(t, z|xi) − p(t, z|xj))2w(z),

where p(t, z|x) denotes the probability to reach z after t
steps. This distance can be rewritten by applying dimensional
reduction after eigen-decomposition of P as below:

D2
t (xi,xj) =

∑

k≥1

λ2t
k (ψ(i)

k − ψ
(j)
k)2,

where λk is the eigenvalue of the transition matrix P with
1 = λ0 > λ1 ≥ λ2 ≥ ..., and ψi

k is the i-th element of k-th
eigenvector, corresponding to k-th eigenvalue λk .

2) Geodesic Distances: Given a connected graph, it is
possible to compute a geodesic distance between two nodes
with Dijkstra’s shortest path algorithm [13]. They showed
that the running time of computing geodesics on meshes was
O(N2 logN), where N denotes the number of nodes in a
graph. When N is large, the cost of geodesic computation is
prohibitive.

3) Landmark-based Geodesic Distances: To alleviate the
expensive cost of computing either the geodesic distance or
the diffusion distance, we propose an approximate method by
introducing “landmarks”, as a small subset of nodes randomly
scattered on a selected mesh. The geodesic distance is now
replaced by landmark-based geodesic distance, which we call
“LGD” (Landmark-based Geodesic Distance) hereafter. The
LGD is computed by the following steps:

1) Select NL landmarks randomly from a model of N
meshes

2) Compute distance between landmarks
3) Keep track of normal nodes, and their distances to

nearest landmarks
4) Compute LGD, as the sum of distances between normal

nodes, where each distance is defined by the distance
between a normal node and the nearest landmark plus
the distance between normal nodes

Note that “normal” nodes refer to nodes not belonging to
landmarks. Since Dijkstra’s shortest path algorithm is repeated
only NL times, the computational cost of LGD is therefore
O(NL(N+E) logN), where E and NL denote the number of
edges in the graph, and the number of landmarks, respectively.
Because NL is much less than N (i.e. NL � N), the distance
computation is greatly reduced.

C. Selection of Protrusion

Our hypothesis is that an arbitrary complex 3D shape
consists of a central rounded part and one or more protruded
parts in a nested way. To produce k number of segments, it
is straightforward to generate make (k-1) protruded parts, and
one remaining central part. The initial choice of protrusion is
made by finding the mesh (or equivalently the node in a graph)
that satisfies the following equation:

argmax
j

N∑

j=1

dist(i, j) (1)

Fig. 4. Examples of tips of protrusion represented by spheres

The choice after the first mesh is made by finding the mesh
that satisfies the following equation:

argmax
i

{min(dist(p, i))}, ∀p ∈ P (2)

where P denotes a set of protrusions, already found so far.
The idea behind the selection of protrusion with the above
equations is based on our observation that a protruded part
tends to be evenly distributed apart from the central part. This
is true for 3D shapes with well-balanced protrusions such as
four-leg desks and animals.

Fig. 4 illustrates how we select protrusions with the above-
mentioned algorithm, where the selected mesh is denoted by
spheres. For example, the plier shape on the left top in Fig. 4
has four spheres chosen at four tips of protrusion. Similarly
the human shape on the right bottom has five spheres at five
tips (two at fingertips, two at tiptoes, and one at top of head)
of protrusion. On the other hand, the chair on the left bottom,
and the teddy bear on the right top, may not produce good
tips of protrusion. However, during border computation step
(i.e. Step 3), since erratic tips will not produce good borders,
they will be disregarded.

D. Border Computation

Generating “good” and smooth-curved borders between
segments is an important but seemingly formidable task. The
quality and the beauty of borders depend both upon how the
shape is made of polygonal meshes of different sizes and upon
what level of detail is specified in terms of mesh resolution.
Since we do not tell in advance anything about these meshing
details, we propose to determine the border meshes using a
method independent of the size of meshes and the meshing
resolution. Specifically, we introduce two statistics; one is a
distance histogram that is constructed by taking the statistics

Tip of protrusion

Fig. 5. Distance slots from the tip mesh of protrusion to the other meshes in
a distance histogram

of the LGD distance from the tip mesh of protrusion to the
other meshes. The other is a statistics of diameters of sectional
area from the tip mesh of protrusion to the other meshes. We
will describe these in turn.

1) Distance Histogram: To identify borders, it is natural
to think that we should extract one or more features that
suggest the existence of border with high probability. The first
feature we consider is a distance histogram. This histogram
is constructed in such a way that starting from the tip mesh
of protrusion, we gradually proceed to distant meshes along
LGD path. We subdivide the farthest distance from the tip
into ten groups for coloring with the same distance range.
Each group consists of ten intervals, which in total amounts
to hundred intervals. We will call “slot number” for referring to
the interval from 1 to 100. The vertical axis is the frequency of
polygonal meshes belonging to each interval. Fig. 6 illustrates
this distance histogram for a chair shown in Fig. 5. Our
observation from this histogram is that a segment border is
likely to be placed at an inflection point of the outer shape
of the histogram, where the flatter contour becomes a sudden
increase or decrease. For example, from slot numbers 21 to 30,
there seems to be an inflection point. Note that slot numbers
are the same with the number attached to Fig. 5.

2) Sectional Area Diameter Histogram: The second feature
we consider in order to identify the border of segments is a
distribution of diameters of the sectional area from the tip of
protrusion, assuming that any dissecting plane to the 3D shape
has intersections with the polygonal meshes at least two or
more points.

Fig. 7 shows an example of this histogram, corresponding
to the same data as in Fig. 6. A similar inflection point is
observed between slot number 21 and 31.

3) Border Approximation Algorithm: Two previous his-
tograms make it possible to estimate candidates of the borders
between segments. Specifically, we first generate candidate slot
number intervals that include inflection points from distance

Fig. 6. Histogram of distances from the tip of protrusion

Fig. 7. Histogram of diameters of sectional area from the tip of protrusion

histograms. We then attempt to find out the most prominent
inflection point and the associated slot number from sectional
area diameter histogram. If the slot number is included in the
candidate intervals from the distance histogram, we output the
slot number as a border between segments. If the slot number
is not included, we proceed to the second most prominent
inflection point and the associated slot number from sectional
area diameter histogram.

For example, from distance histogram 6, slot number inter-
vals such as (23,68) and (71,80) are computed as candidate
borders, while from sectional area diameter histogram 7, slot
number 23 is computed as the most prominent inflection
interval. Since slot number 23 is included in the interval
(23,68), we will generate slot number 23 as a border candidate.

IV. EXPERIMENTS AND EVALUATIONS

In this section, we will describe two separate experiments.
The first experiment concerns the measure of distances, while
the second experiment concerns the comparative experiments
of segmentation, where our method (simply called “Pro-
trusion”) incorporates the LGD (Landmark-based Geodesic
Distance), necessary to estimate the border of segments, after
showing that the LGD results in the good balance between the
fast computation and the accurate segmentation.

A. Distance experiments

The experiments have been conducted under a PC with Intel
Core i7 920 CPU, 12GB memory, and Debian GNU/Linux

TABLE I
DISTANCE NAMES AND THEIR MEANINGS

distance name meaning
GD Geodesic Distance
DD(k) number of eigenvectors is the same with k
DD(5) number of eigenvectors = 5
DD(10) number of eigenvectors = 10
LGD(1) 1 % of number of meshes (N)
LGD(5) 5 % of number of meshes (N)
LGD(10) 10 % of number of meshes (N)

TABLE II
DISTANCE COMPARISON

distance name Time (octopus)[sec] Time(camel)[sec]
GD 12.9 850.5
DD(k) 17.4 105.8
DD(5) 17.7 105.4
DD(10) 18.3 106.3
LGD(1) 0.44 32.9
LGD(5) 0.96 68.2
LGD(10) 1.67 135.4

operating system with g++ compiler v4.3.2. Eigenvalue com-
putation needed in Diffusion Distance (DD) has been done
by using CPP Lapack++ [15]. For computational complexity
between geodesic distance and LGD, which has been discussed
in Distance Computation section. Here, by taking two 3D
models, an octopus consisting of 19,510 meshes and a camel
consisting of 2,682 meshes, chosen from 3D segmentation
benchmark we will describe in the subsequent section, we
compare the time needed to estimate the border by repeatedly
using the distance measure. Tables I and II summarize the
result. Specifically, Table I describes the meaning of the names
of distance. For example, GD denotes Geodesic Distance, DD
denotes Diffusion Distance, while LGD denote our proposed
Landmark based Geodesic Distance. Table II shows the time
to compute the border of segments by repeatedly using the dis-
tance. Together with other experiments using different models,
we have determined to adopt LGD(5), the Landmark based
geodesic distance with 5% of the original number of meshes.
This selection makes it possible to take reasonable trade-offs
between fast computation and accurate segmentation due to
the approximation of geodesic distance. The trade-offs will be
elaborated in later section in more detail.

B. Segmentation experiments

For comparative experiments on segmentation, we have
used a benchmark data set called 3D Mesh Segmentation
Benchmark [1], MSB for short. MSB consists of twenty
classes, each of which has twenty different 3D models,
resulting in four hundred 3D models in total. Since plural
manual segmentations (i.e. tentative answers) to each of the
3D models in MSB are provided with MSB, we could regard
the manual segmentations as sample distributions over how
humans decompose each 3D model into functional parts. Thus,
they could be served as a kind of “ground truth”.

C. Evaluation measures for segmentation

For comparison, we employed “Randomized Cuts” [4]
(hereafter we call “RandCuts” for short) as a known superior
method, and K-means method [7] as a baseline method.
Evaluation measures include cut discrepancy [5], Hamming
distance [5], and RandIndex [10].

Cut discrepancy is an evaluation measure of segmentation,
indicating how badly the border between segments is cut. If
this value is small, it means that the border is cut as close
to a direct line. Cut discrepancy is sensitive to the granularity
of segmentation. Given two segmentations, Hamming distance
evaluation measure attempts to establish a correspondence
between the two, computing the intersection between the
two regions. Hamming distance measure is the normalized
intersection. The smaller the degree of mismatch, the better
the segmentation becomes. RandIndex is another region-based
evaluation measure for segmentation, proposed by Rand [10].
It represents the ratio of duplication of the same location, and
we use the value by subtracting one minus this ratio. In effect,
the resulting segmentation is better when the value is smaller.

D. Results

Fig. 8 shows some of the results with protrusion based
segmentation we propose. Tables III, IV, and V demonstrate
the results based on the three evaluation criteria for 12
representative classes out of all 20 classes with RandCuts, K-
means, and our proposed Protrusion methods. The data classes
of these tables are sorted by the values of RandCuts method
in an ascending order, where RandCuts is chosen as the best
known previous method for 3D segmentation. Although the
three evaluation criteria are different aspects of segmentation
errors, there is a common characteristic that the smallest value
in the same data class represents the best method among the
three. We shade the cell of the best method in yellow for
clarity. The names of data classes with an italic text represent
the fact that our proposed (Protrusion) method exhibits the
best among the three.

For data classes Table and Plier, our proposed method
outperformed the other two in all the three evaluation criteria,
while for classes including Teddy, our method was the worst
among the three methods. We conjecture that this is in part
because “protruded” parts of Teddy do not have outstanding
sharp and well distinguished tips, and in part because distance
and diameter histograms do not have well discriminated in-
flection points for border computation.

To be more concrete, Table III shows the comparative results
using cut discrepancy evaluation measure. In addition to Table
and Plier, data classes Octopus, Cup, and Mech exhibit the
best results with our proposed method. Table IV shows the
comparative results using Hamming distance evaluation mea-
sure. In addition to Table and Plier, data classes Fish, Cup, and
Mech exhibit the best results with our proposed method. Table
V shows the comparative results using RandIndex evaluation
measure. In addition to Table and Plier, data class Octopus
turns out to be the best result with our proposed method.

Fig. 8. Sample segmentation results with protrusion based segmentation

TABLE III
COMPRISON WITH CUT DISCREPANCY

Data RandCuts K-Means Protrusion

Teddy 0.048 2.639 4.818

FourLeg 0.120 0.246 0.664

Ant 0.137 2.562 0.548

Glasses 0.155 1.430 0.190

Chair 0.750 1.208 1.344

Octopus 0.890 2.522 0.889

Plier 0.999 4.423 0.242

Fish 1.214 1.126 3.080

Cup 1.418 1.860 1.079

Mech 1.875 2.894 1.000

Table 2.181 2.453 0.717

E. Trade-offs

As we have mentioned in Distance experiments section,
we have adopted LGD(5), Landmark based Geodesic Dis-
tance with 5% of the number of meshes for landmarks. We
found from Tables I and II, that LGD(5) proved to be ten
to fifteen times faster in computation than GD (Geodesic
Distance) which was based on the Dijkstra’s algorithm with
O(N2 logN) time complexity, where N denotes the number
of meshes. For simplicity, we will exclude DD (Diffusion
Distance) in this section.

As indicated in the preceding section, we thought there
were trade-offs between the fast compuation and the accurate
segmentation. We have attempted to verify the presumed trade-
offs between speed and accuracy.

Among four hundred models with twenty classes, we se-
lected typical two data with relatively large number of meshes;
one from an Octopus class (an octopus with 30,982 meshes
(model No.123)) and another from a Table class (a table
with 26,746 meshes (model No.148)) to verify the trade-offs.
Table VI shows the results of evaluation measures (Hamming
Distance (HD), RandIndex (RI), and Cut Discrepancy (CD))
of segmentation with respect to several methods of ours having
different computational costs shown in Table II, including

TABLE IV
COMPRISON WITH HAMMING DISTANCE

Data RandCuts K-Means Protrusion

Glasses 0.034 0.852 0.577

Teddy 0.058 5.099 4.024

Ant 0.160 2.877 1.173

FourLeg 0.252 0.784 0.275

Cup 0.436 2.173 0.123

Octopus 0.538 2.286 0.734

Mech 0.654 2.319 0.612

Plier 0.695 2.869 0.276

Fish 0.962 2.716 0.673

Chair 1.234 2.561 1.266

Table 2.532 3.243 0.310

TABLE V
COMPRISON WITH RAND INDEX

Data RandCuts K-Means Protrusion

Glasses 0.039 0.764 0.782

Teddy 0.083 2.689 7.712

Ant 0.156 3.418 1.873

FourLeg 0.187 0.313 0.826

Plier 0.545 2.717 0.149

Cup 0.645 2.224 0.922

Fish 0.918 1.678 1.311

Chair 1.127 1.398 1.568

Mech 1.160 2.245 1.866

Octopus 1.812 3.226 1.172

Table 3.010 3.067 0.470

LGD(1), LGD(5), LGD(10), and GD, using an octopus model
No.123. RandCuts and K-Means are also included for the sake
of comparison, where the values are extracted from the data
attached with MSB. It is noted that the computational costs of
RandCuts and K-Means are not provided with MSB. The value
with an asterisk in Table VI means that it is the smallest (i.e.
the best) among the segmentation methods. Table VII shows
the similar experimental results, using a table model No. 148.

Fig. 9 visually demonstrates the different segmentations
with respect to an octopus model No.123. It is interesting
to note that GD, LGD(10), LGD(5), and LGD(1) look all
similar, even though the computing time of LGD(1) (84 sec)
is approximately 18 times faster than that of GD (1527 sec).
Fig. 10 visually demonstrates the different segmentations with
respect to a table model No.148. In Fig. 10, GD, LGD(10),
and LGD(5) look similar to each other, whereas LGD(1) has
apparent bad segment border depicted by the region in blue
color. Tables VI and VII indicate that coarser models in terms

Fig. 9. Comparison with different segmentations for an onctopus model
No.123

Fig. 10. Comparison with different segmentations for a table model No.148

of the number of landmarks do not necessarily attribute to
less accurate segmentation with respect to HD, RI, and CD.
Nevertheless, based on this observation as well as on the
quality of segmentation seen from Fig. 9 and Fig. 10, the
adoption of LGD(5) seems reasonable in terms of the trade-
offs between speed and accuracy.

TABLE VI
COMPARISON OF EVALUATION MEASURES OF SEGMENTATION WITH AN

OCTOPUS (NO.123) MADE OF 9 SEGMENTS

method HD RI CD
RandCuts 0.203 0.218 0.116*
K-Means 0.190 0.175 0.233
GD 0.086 0.108 0.285
LGD(1) 0.067* 0.081* 0.191
LGD(5) 0.076 0.093 0.255
LGD(10) 0.085 0.106 0.285

V. CONCLUSION

We proposed a protrusion based segmentation method for
a complex 3D shape model. To make it possible for our
algorithm to work, we described a method to identify tips of
protrusion by using geodesic distance between meshes. Specif-
ically, we first computed all combinations between arbitrary

TABLE VII
COMPARISON OF EVALUATION MEASURES OF SEGMENTATION WITH A

TABLE (NO.148) MADE OF 9 SEGMENTS

method HD RI CD
RandCuts 0.341 0.526 0.326
K-Means 0.358 0.551 0.537
GD 0.029 0.064 0.122
LGD(1) 0.036 0.070 0.112
LGD(5) 0.030 0.057 0.093
LGD(10) 0.024* 0.051* 0.090*

two meshes, and attempted to find out a mesh with largest sum
of distanced from the mesh, which will be the first selected
(“Landmark”) mesh. From the second candidate, we repeat a
similar process trying to find a mesh that is farthest from all
the landmarks found so far, until the number of landmarks
become k − 1, where k is a desired number of segments.

Upon completion of candidate landmark computation, we
proposed another method for determining the border between
segments. To do so, we proposed two clues: the one is a
distance histogram from the candidate landmark, and the other
is a diameter histogram from the candidate landmark. If these
two histograms share a common slot of having the inflection
point, showing the rapid increase of the number of meshes
within the same slot, we assume that the segment border
should be placed around the meshes.

Comparative experiments based on 3D Segmentation
Benchmark data set having 20 classes, each of which contain
20 shape models, have been carried out. For classes with
protrusions well observed, we have better results than k-
means type segmentation as well as the randomized cuts
algorithm which exhibited the best average performance in the
previously developed methods. For classes with protrusion not
well identified, however, we still leave further improvements
to be desired.

ACKNOWLEDGMENT

This research was conducted by the Strategic Information
and Communication R&D Promotion Programme (SCOPE
112306001) of Ministry of Internal Affairs and Communica-
tions (MIC) Japan.

REFERENCES

[1] Xiaobai Chen, Aleksey Golovinsky, and Thomas Funkhouser. A Bench-
mark for 3D Mesh Segmentation. ACM Transactions on Graphics (Proc.
SIGGRAPH), 28(3):73:1–73:12, 2009.

[2] Ronald R. Coifman and Stephane Lafon. Diffusion maps. Applied and
Computational Harmonic Analysis, 21:5–30, 2006.

[3] Trevor F. Cox and Michael A. A. Cox. Multidimensional Scaling, Second
Edition. Chapman & HALL/CRC, 2001.

[4] Aleksey Golovinsky and Thomas Funkhouser. Randomized Cuts for
3D Mesh Analysis. ACM Transactions on Graphics (Proc. SIGGRAPH
ASIA), 27(5):145:1–145:12, 2008.

[5] Qian Huang and Byron Dom. Quantitative Methods of Evaluating Image
Segmentation. Proceedings of the 1995International Conference on
Image Processing (ICIP’95), pages 53–56, 1995.

[6] Alan Julian Izenman. Modern Multivariate Statistical Techniques:
Regression, Classification, and Manifold Learning. Springer, 2008.

[7] Sasi Katz, George Leifman, and Ayellet Tal. Mesh segmentation
using feature point and core extraction. The Visual Computer (Pacific
Graphics), 21(8-10):649–658, 2005.

[8] Stephane S. Laffon. Diffusion Maps and Geometric Harmonics. Ph.D.
Dissertation, Yale University, 2004.

[9] Rong Liu and Hao Zhang. Mesh Segmentation via Spectral Embedding
and Contour Analysis. EUROGRAPHICS 2007, 26(3):10, 2007.

[10] William M. Rand. Objective criteria for the evaluation of clustering
methods. Journal of the American Statistical Association, pages 846–
850, 1971.

[11] Ariel Shamir. A survey on Mesh Segmentation Techniques. Computer
Graphics Forum, 27(6):1539–1553, 2008.

[12] Shymon Shlafman, Ayellet Tal, and Sagi Katz. Metamorphosis of
Polyhedral Surfaces using Decomposition. EUROGRAPHICS 2002,
21(3):10, 2002.

[13] Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J. Gotler,
and Hugues Hoppe. Fast Exact and Approximate Geodesics on Meshes.
ACM Transactions on Graphics (Proc. SIGGRAPH), 24(3):553–560,
2005.

[14] Julien Tierny, Jean-Philippe Vandeborre, and Mohamed Daoudi. Topol-
ogy driven 3D mesh hierarchical segmentation. IEEE International
Conference on Shape Modeling and Applications (SMI’07), page 6,
2007.

[15] M. Ueshima. CPPLapack Tutorial. available at
http://cpplapack.sourceforge.net/, 2004.

