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Abstract—With the worldwide spread of the broadband In-
ternet, massive multimedia data including texts, images, and
videos are increasing explosively and available for interactive
applications over the Internet. At the same time, more and more
attention has been paid to aiming at fast retrieval from massive
multimedia databases. Hash-based Approximate Nearest Neigh-
bor (ANN) search is a technology that achieves fast retrieval by
regarding the hash key as a retrieval index, where the similarity
of data is maintained and embedded in the neighborhood of
the hash key. In other words, the closer the Hamming codes
between hash keys, the more similar the data become. In general,
short binary codes are preferred for storing hash keys and
values. The difficulty is to define the similarity between data
and reflect it in binary codes. In this paper, we propose Diffusion
Hashing (DH) as a novel ANN search technique based on hashing
with an anisotropic diffusion kernel. DH aims to transform the
search index into as short binary codes as possible, preserving
the similarity induced by random walk on the data manifold
in higher dimensional space. From comparative experiments,
we will demonstrate that DH outperforms previously known
hash-based ANN search techniques including Locality Sensitive
Hashing and Spectral Hashing.

I. INTRODUCTION

We have observed massive multimedia data, such as docu-
ments, images, sounds, and videos almost ubiquitously avail-
able on the Internet. To take advantage of these massive data,
attention has been paid to fast similarity search techniques
in many research fields, including computer vision and text
mining.

Generally speaking, the dimension of feature vectors rep-
resenting documents and images could be extremely large,
ranging from several hundred to several hundreds of thou-
sands. If we construct databases of such media for information
retrieval, a linear search will become impracticable if feature
vectors are very high dimensional. Recently, to cope with this
problem, approximate nearest neighbor search algorithms have
been investigated.

Approximate Nearest Neighbor (ANN) search technologies
can be roughly divided into two types: Tree structure based
[1], [2], [18] and hash-based [5], [8], [22]. Tree structure based
ANN search iteratively subdivides the feature space to produce
tree data structures, aiming at fast retrieval to narrow down
the range of search when retrieving data. The range of search
is determined by a hypersphere having its radius defined by
the distance between a query and the tree structure with a
predetermined tolerance, subject to the curse of dimensionality
when the dimension of data becomes very high. On the other
hand, hash-based ANN search transforms high dimensional
data into short binary codes to be used for hash keys, which

results in fast retrieval. It is possible to suppress the curse of
dimensionality by transforming the data so that the Hamming
distance between binary codes is minimized. Transforming
into short binary codes also makes it possible to compress
the storage necessary for search index.

Locality Sensitive Hashing (LSH) [5], [8], [9] is one of
the well-known algorithms for hash-based ANN search. LSH
embeds the high dimensional vector data into lower dimen-
sional space by means of random projection such that two
arbitrary data with smaller distances in feature space tend to
have similar binary codes to each other. Given n number of
vector data {xi}n

i=1 ∈ R
d in the database, the hash keys are

defined by hash function {hi}k
i=1 that produces k-bit binary

codes. It should be noted that hash function h must meet the
following characteristic [5]:

Pr[h(xi) = h(xj)] = sim(xi,xj),

where sim(xi,xj) ∈ [0, 1] is a similarity function between
two vectors. The data similar to each other in the retrieved
database have the possibility of collision into an identical hash
key. Charikar et al considered the similarity defined by inner
product sim(xi,xj) = xT

i xj , and proposed a hash function
as the product of two vectors on a d-dimensional random
hyperplane, which conforms to standard normal distribution
N (0, I) [5]. The hash function itself takes the value of either
0 or 1 as below:

h(x) =
{

1 rT x ≥ 0
0 otherwise

For k number of random vectors r ∈ R
d, k number of hash

functions are defined, corresponding to r. Kulis et al extended
the idea of LSH by allowing non-linear mapping Φ(x) for
the similarity computation by inner product sim(xi,xj) =
k(xi,xj) = Φ(xi)T Φ(xj), and proposed Kernelized Locality
Sensitive Hashing (KLSH) [11]. The basic idea of KLSH is to
approximate random vectors r, conforming to standard normal
distribution N (0, I), from the subset of a given database. The
datum Φ(x) is considered to be distributed in the database,
having mean μ and covariance Σ. By defining vectors z =
1
t

∑
i∈S Φ(xi) consisting of the subset S with t number of

data, it turns out that z̃ =
√
t(z − μ) conforms to Gaussian

distribution N (0,Σ). It is also shown that Σ−1/2z̃, obtained
by whitening the above vectors, obeys the Gaussian distri-
bution N (0, I). Replacing the random vector r by Σ−1/2z̃,
hash functions in non-linear transformation mapping space is
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defined as:

h(Φ(x)) =
{

1 Φ(x)T Σ−1/2z̃ ≥ 0
0 otherwise

It was shown that KLSH exhibited higher precision than LSH
from the experiments using an image database [11].

Semantic Hashing produces binary codes using the network
structure defined by multiple Restricted Boltzmann Machines
(RBM), in a configuration with gradually decreasing unit
numbers, stage by stage [17]. Torralba et al applied the
Semantic Hashing to the content-based image retrieval (CBIR)
and obtained higher precision than the one obtained by LSH
[19]. Spectral Hashing produces binary codes such that the
sum of Hamming distances between binary codes, weighted
by Gaussian kernel in feature space, takes the minimum value
[22]. Spectral Hashing achieved higher precision through ex-
periments than the methods based on RBM and Boosting [19],
assuming that vector data are distributed uniformly. Raginsky
et al [15] proposed a method independent of data distribution,
by using Random Fourier features [16]. Further examples
include frameworks based on sequential projection learning
[20] and semi-supervised hashing [21].

In this paper, we propose Diffusion Hashing (DH), a novel
hash-based ANN search algorithm, which transforms vector
data into binary codes. DH produces binary codes able to
capture non-linear structure of vector data, based on the sim-
ilarity relationship represented by transition probability given
by random walk on the data manifold in a high dimensional
feature space. DH minimizes the effect of biased distribution
of vector data by means of anisotropic diffusion kernel [6], and
determines the weights between data accordingly. Specifically,
the weights are derived from a network structure for the
entire database, by assuming the nodes as data objects, and
the arcs as the similarity or the closeness between two data.
Through experiments using document collections and image
data benchmarks, we will demonstrate that DH outperforms
previously known hash-based ANN search methods including
Spectral Hashing (SH), Locality Sensitive Hashing (LSH),
Kernelized Locality Sensitive Hashing (KLSH), and Shift
Invariant Kernel Hashing (SIKH) especially when the number
of bits in hash keys is small.

In the remainder of this paper, we will describe our pro-
posed algorithm and the fundamental principles behind DH
in Section 2. In Section 3, we will show the results of
comparative experiments by taking four different data sets
including documents collections and image data benchmarks.
Finally, we will conclude our approach and discuss potential
areas for future investigation in Section 4.

II. BINARY CODES FOR ANN SEARCH

In this section, we will first review and formulate a recent
approach to binary code generation by hash functions for ANN
search, based on manifold learning. Then, we will present our
novel approach.

A. Manifold learning-based approach

It is vital to develop a method of producing as short binary
codes as possible for high dimensional vector data in hash-
based ANN search. Stated mathematically, given n number of
d-dimensional vector data X = {xi}n

i=1 ∈ R
d×n, the objective

is to find a hash function {hi}k
i=1 that transforms vector data,

keeping the similarity relationship in high dimension, into k-
dimensional binary codes {yi}n

i=1 ∈ R
k×n.

Spectral Hashing (SH) proposed by Weiss et al attempts
to find effective binary codes for hash-based ANN search, by
applying a balanced graph partitioning problem [22]. They
considered the minimization problem to keep the similarity
relationship in higher dimension defined by Gaussian kernel
Wi,j = exp(−||xi − xj ||2/σ2).
Objective function: ∑

i,j

||yi − yj ||2Wi,j

Three constraints:

yi = [y1, y2, . . . , yk] ∈ {−1, 1}k∑
i

yi = 0

1
n

∑
i

yiyT
i = I

The first constraint states that each binary code takes the
value either 1 or -1, the second constraint states that binary
codes are uniformly sampled without deviation, while the third
constraint demonstrates the independence between different
binary codes. By relaxing the first constraint, Weiss et al
simplified the minimization problem to a matter of solving
the eigenvalue problem of Laplacian matrix L = D − W ,
defined by Gaussian kernel matrix W and diagonal matrix
Di,i =

∑
j Wi,j [22]. Hash functions of SH are defined by

thresholding eigenvectors {Ψi}k
i=1 ∈ R

n, corresponding to k-
smallest eigenvalues, eliminating the ones taking 0 eigenvalues
of Laplacian matrix L.

hi(xj) =
{

1 yi = Ψi(j) ≥ 0
0 otherwise

The first constraint is equivalent to the minimization prob-
lem of Laplacian Eigenmaps (LE) [3] classified into Manifold
Learning. Manifold Learning is considered to be a non-linear
dimensional reduction method by estimating a manifold struc-
ture in low dimensional space, embedded into high dimen-
sional space [4]. SH can be regarded as thresholding vector
data of reduced dimension by LE to produce binary codes.
Belkin et al showed that the Laplacian matrix was to be an
approximation to Laplace-Beltrami operator on the manifold,
assuming that data distribution is uniform in their research
on LE [3]. However, in real data, since it is often the case
that uniform distribution cannot be assumed, and Laplacian
matrix cannot be guaranteed to be an approximation of the
Laplace-Beltrami operator, we might fail to estimate manifold
structure. Since SH assumes uniform distribution analogously



with LE, it is inferred that SH has a similar difficulty in
maintaining the similarity relationship between vector data in
high dimensional space, when projected into binary codes in
lower dimensional space. On the other hand, the Diffusion
Map proposed by Coifman et al [6] can cope with a similar
minimization problem. It is also possible to estimate manifold
structure by utilizing anisotropic diffusion kernel, which is
shown to be an approximation to Laplace-Beltrami operator,
even when data are not uniformly distributed.

B. Diffusion Hashing

We propose Diffusion Hashing (DH) to maintain the similar-
ity relationship, defined by random walk in higher dimensional
space, when projected by hash functions into binary codes in
lower dimensional space. DH inherits salient features derived
from the minimization problem for finding binary codes by
SH. It also attempts to decrease the effect of data distribu-
tion in high dimensional space by taking advantage of the
anisotropic diffusion kernel.

We will relax the first constraint defined in the previous
section so that the hash function can take an arbitrary num-
ber. Consider a linear transformation given by transformation
matrix F ∈ R

d×k, in order to make it easier to obtain binary
codes for unknown data:

yi = FT (xi − x̄)

It should be noted that we subtract the average vector x̄ from
the original vector x in order to satisfy the second constraint:

x̄ =
1
n

∑
i

xi

In SH, Weiss et al employed the Gaussian kernel, which
was subject to the bias of data distribution, and also subject
to the difficulty in coping with non-linear behavior of data in
higher dimension. We have adopted an anisotropic diffusion
kernel [6] to overcome this problem:

K = Q−1WQ−1

Wij = exp
(−||xi − xj ||2

2σ2

)

Qii =
∑

j

Wij

The diagonal matrix Qii has a characteristic by which the
element becomes smaller when the data distribution is sparse,
whereas it becomes larger when the distribution is dense. By
normalizing the data with the reciprocal of these elements in
Qii, we expect to cope with a variety of data distributions.
It is also possible to obtain the transition probability matrix
from matrix K , if we normalize it such that the sum of each
column becomes 1:

P = D−1K

Dii =
∑

j

Kij

Pij represents the transition probability from point xi to point
xj . By modifying the original objective function to have
its weight replaced by transition probability matrix P , it is
possible to make binary codes reflect the properties induced
by random walk in feature space. Let y = (y1, y2, . . . , yn)T

be such space. ∑
i,j

(yi − yj)2Pij

The objective function with our choice of weights Pij incurs
a heavy penalty of high transition probability points xi and xj

are mapped far apart. Therefore, minimizing it is an attempt
to ensure that if xi and xj are high transition probability then
yi and yj are close. Suppose f is a transformation vector, that
is, yT = fTX , where the ith column vector of X is xi. Our
proposed objective function can be expanded per below:

E =
1
2

∑
i,j

(yi − yj)2Pij

=
1
2

∑
i,j

(fT xi − fT xj)2Pij

=
∑

i

fT xixT
i f −

∑
i

fT xiPijxT
j f

=fTX(I − P )XT f

The third constraint, shown before, is rephrased as follows:

yT y = fTXXT f = 1

The minimization of the objective function is therefore given
as below:

argmin
f

fT XXT f=1

fTX(I − P )XT f

By applying Lagrange’s multiplier, we obtain

L(f) = fTX(I − P )XT f + λ(1 − fTXXT f)

Taking a partial derivative and letting it be naught,

∂L
∂f

= 2X(I − P )XT f − 2λXXT f = 0

Finally, we obtain the following generalized eigenvalue prob-
lem:

X(I − P )XT f = λXXT f

By taking λ′ = 1− λ, this is further reformulated as follows:

XPXT f = λ′XXT f (1)

To find stable solutions to the generalized eigenvalue prob-
lem in (1), matrix XXT must be non-singular. If the dimen-
sion of vector data is larger than the number of samples, matrix
XXT could be singular. If this happens, we employ singular
value decomposition to project subspace whose rank is the
same as the rank of the matrix:

X = UΣV T

X̃ = UTX = ΣV T ,



where Σ is a diagonal matrix of r by r, whose elements are
singular values s1 ≥ ... ≥ sr, and U and V are orthogonal
matrices of size d× r and n× r, respectively:

X̃P X̃T f̃ = λX̃X̃T f̃

The transformation matrix is defined as follows:

f = U f̃

The transformation matrix F of DH is obtained by solving
the generalized eigenvalue problem of equation (1). F can
be uniquely expressed by the eigenvectors corresponding to
eigenvalues in the following descending order: λ1 ≥ λ2 ≥
... ≥ λk.

F = [f1, f2, ..., fk]

Here we define hash functions of DH using a k-number of
vectors from transformation matrix F as below:

yi = fT
i (x − x̄)

hi(x) =
{

1 yi ≥ 0
0 otherwise

C. Time Complexity Analysis

DH algorithm is summarized in Figure 1. In the training
phase of DH, the time complexity is O(n2) by the calculation
of the Gaussian kernel between all data points in step 2.
However, in the test phase of DH to calculate the binary codes
of new data, the time complexity is O(dk) because it is only
a multiplication of the transform matrix by a data vector in
step 7. Therefore, when the new data such as a search query
is given, the calculation time for the binary codes is the same
as LSH.

D. Relation to Diffusion Maps

As with Diffusion Maps [6] in manifold learning, Diffusion
Hashing (DH) defines the similarity between vectors in high
dimensional space using anisotropic diffusion kernel, and de-
rives the low dimensional expression of vectors by estimating
the manifold structure. The generalized eigenvalue problem of
DH represented by (1) is deduced to the ordinary eigenvalue
problem of Diffusion Maps by assuming ψ = yT = XT f ,
where matrix X is a full rank matrix:

XPXT f = λXXT f

PXT f = λXT f

Pψ = λψ

From these equations, if the number of samples is large
enough, compared to the dimension of vector data, and if
vectors are linearly independent to each other, it can be shown
that the embedding by the transformation matrix of DH is
similar to the embedding by Diffusion Maps. Therefore, it is
conjectured that both Diffusion Maps and DH could estimate
the manifold structure under the assumption of non-uniform
data distribution.

Input: d-dimensional training data X = {xi}n
i=1 ∈ R

d×n

Output: k number of hash functions {hi}k
i=1

1. Compute the mean of x

x̄ = 1
n

∑
i xi

2. Compute Gaussian kernel W between each data

Wij = exp(−||xi − xj ||2/2σ2)

3. Normalize W with the diagonal matrix Q whose

element is the sum of each column

K = Q−1WQ−1, Qii =
∑

j Wij

4. Compute transition probability matrix P

P = D−1K, Dii =
∑

j Kij

5. Compute eigenvectors fi from generalized eigenvalue

problem

XPXT f = λXXT f

6. Compute transformation matrix F from eigenvectors

F = [f1, f2, . . . , fk]

7. When a query z ∈ R
d is given, search similar data

from binary codes using hash functions with

pre-defined F and x̄

hi(z) =

{
1 fT

i (z − x̄) ≥ 0

0 otherwise

Fig. 1. The Diffusion Hashing (DH) algorithm of fast retrieval with massive
data sets

III. EXPERIMENTAL RESULTS

To confirm the effectiveness of our proposed Diffusion
Hashing (DH), we first conducted experiments using docu-
ment benchmark data 20-newsgroups [12] and Reuters-21578.
Secondly, we employed image databases MNIST Digits and
CIFAR-10 [10], and conducted comparative experiments us-
ing our methods and previously known methods. For previ-
ously known methods, we chose Locality-Sensitive Hashing
(LSH) [5], Kernelized Locality-Sensitive Hashing (KLSH)
[11], Spectral Hashing (SH) [22], and Shift Invariant Kernel
Hashing (SIKH) [15]. For evaluation measures, we have
used precision within Hamming radius 2 when varying the
number of bits, and precision recall curve using 16-bit codes.
Search results are determined based on the Hamming distance
between a binary code of a query and the code of each object
in the database.

A. 20-newsgroups

20-newsgroup consists of 18,845 news group documents
gathered from Usenet newsgroups [12]. Each document is clas-
sified into one of 20 distinct news groups. Among them 11,314
news are used for training, while the remaining 7,531 news
are used for testing. For the training, we randomly selected
2,000 news from the training dataset. In our experiments, we
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Fig. 2. Precision within Hamming radius 2 using hash lookup and the varying
number of bits with 20-newsgroups data sets.

conducted word stemming [14] and stopword elimination1 as
pre-processing, followed by selecting 2,000 words from the
largest document frequencies, and generated tf-idf weighted
document vectors. The σ parameter to DH is set to be 80.0.

Figure 2 shows the precision using hash lookup within
Hamming radius 2, by varying bit-numbers from 8 to 64. From
8 to 24 bits, DH exhibits the largest precision among the five
methods. Figure 3 shows the precision recall curve using 16-
bit codes. DH exhibits the largest precision over all the recall.
From these two figures, it is shown that our proposed DH
outperformed previously known major methods in terms of
both precision and recall.

In 20-newsgroups, every news is classified into one of 20
classes. By closer examination, we could also put them into
rough major groups such as IT technologies and sports. This
observation leads to our guess that in high dimensional docu-
ment vector space similar topical documents are distributed
densely together, while isolated documents are distributed
sparsely, to constitute complex structures. Since DH takes
care of such a biased distribution, we consider it can handle
complex document vector space appropriately as expected.

B. Reuters-21578

Reuters-21578.2 has 21,578 articles, some of which have
topic labels. In our experiments, we utilized datasets produced
by ModApte-split. Eliminating documents classified into mul-
tiple classes, we have 59 classes after classification. Among
these news documents, we randomly chose 2,000 documents
from the training dataset. Pre-processing and generation of
document vectors are the same as in the previous experiment.
The σ parameter to DH is set to be 10.0.

Figure 4 shows the precision using hash lookup within
Hamming radius 2, by varying bit-numbers from 8 to 64.
From 8 to 16 bits, DH exhibits the highest precision among
the five methods. Figure 5 shows the precision recall curve

1http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-
list/english.stop

2http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
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Fig. 3. Precision recall curve using 16-bit codes with 20-newsgroups data sets.
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Fig. 4. Precision within Hamming radius 2 using hash lookup and the varying
number of bits with Reuters-21578 ModeApte data sets.

using 16-bit codes. DH exhibits the greatest precision over all
the recall. This experiment demonstrates that, on average. DH
outperforms the other methods in terms of both precision and
recall.

As we pointed out, our data from Reuters-21578 were
classified into 59 classes, where each class has distinctive
news. We conjectured, however, that these 59 classes had
some inter-dependence among them, which made it difficult to
uniquely determine a class for an arbitrary news data. DH has
a salient feature of taking good care of biased distribution,
leading to higher precision, at the sacrifice of enumerating
all the related data. This behavior might be the cause of
lower recall compared to Spectral Hashing, when there is
inherent inter-dependence among classes, such as 59 classes
from Reuters-21578.

C. MNIST Digits

MNIST-Digit (MNIST)3 includes 70,000 handwritten digit
images from digit “0" to digit “9". 60,000 out of 70,000 images
are dedicated to training, while the remaining 10,000 images

3http://yann.lecun.com/exdb/mnist/
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Fig. 5. Precision recall curve using 16-bit codes with Reuters-21578 Mod-
eApte data sets.

are prepared for testing. We randomly chose 2,000 data from
the training data set. Since each digit image is a gray-scale
image and has a pixel size of 28×28, we can assume that the
image consists of 784 vector data. The σ parameter to DH is
set to be 15.0.

Figure 6 shows the precision using hash lookup within
Hamming radius 2, by varying bit-numbers from 8 to 64. From
8 to 16 bits, DH exhibits the largest precision among the five
methods. Figure 7 shows the precision recall curve using 16-
bit codes. DH is slightly superior to SH in precision over all
the recall. In the feature vector comprised of pixel values, the
search precision of DH is equal to SH.

It should be noted that the hand-written digit images have
apparent visual similarity between digit-3 and digit-8 images,
for instance. These data tend to stick closer together feature
space, while visually different images tend to become more
separated from each other, distributing with a combination of
sparser and denser regions in feature space. Since DH naturally
makes it possible to cope with biased distribution in feature
space by means of transition probability to generate binary
hash codes, we consider that DH generally has captured latent
clusters more precisely.

D. CIFAR-10

CIFAR-104 consists of 60,000 color images of 32 × 32
pixel resolution with 10 class labels including airplanes,
automobiles, dogs, and horses. Among them, 50,000 are
data for training, while the remaining 10,000 are data for
testing. We randomly chose 2,000 data for training. In our
experiments, we extracted GIST feature vectors [13] having
3 × 4 × 4 × 6 × 4 = 1, 152 dimensions, and converted them
to binary codes, where each RGB pixel is pre-processed by 4
scales in 6 directions within a 4 × 4 region. The parameter σ
of DH was set to be 3.0.

Figure 8 shows the precision using hash lookup within
Hamming radius 2, by varying bit-numbers from 8 to 64. From

4http://www.cs.utoronto.ca/ kriz/cifar.html
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Fig. 6. Precision within Hamming radius 2 using hash lookup and the varying
number of bits with MNIST data sets.
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Fig. 7. Precision recall curve using 16-bit codes with MNIST data sets.

8 to 16 bits, DH exhibits the largest precision among the five
methods. Figure 9 shows the precision recall curve using 16-
bit codes. DH exhibits the largest precision throughout the
recall. From these two figures, it is shown that our proposed
DH outperformed previously known major methods in terms
of both precision and recall.

CIFAR-10 roughly consists of two types of images: images
of vehicles such as airplanes and automobiles, and images of
living animals such as dogs and deer. We conjecture that in
feature space, dense and sparse regions are intermixed without
clearly discriminating the border between the two types of im-
ages, i.e., vehicles and living animals, partly because specific
colors are frequently used in both types of images as a whole,
and partly because the background is often indistinguishable
in both types. Since DH can estimate non-linear structures in
feature vector space, capable of representing biased distribu-
tion, we find that these complex inter-dependences can be well
captured by DH.

IV. CONCLUSION

We have proposed Diffusion Hashing (DH), as a novel
algorithm for hash-based ANN search. DH has successfully
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number of bits with CIFAR-10 data sets.
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Fig. 9. Precision recall curve using 16-bit codes with CIFAR-10 data sets.

proved to capture non-linear structure of vector data by di-
mensionality reduction, represented by shorter binary codes,
based on random walk in feature space. From our comparative
experiments using a couple of document collections and image
data sets, we have shown that DH outperformed previous
methods including Spectral Hashing and Locality Sensitive
Hashing, in terms of precision, especially when the number
of bits for representing hash keys is small. DH also has a
salient feature of being capable of representing complex high
dimensional data with much smaller bits than conventional
methods, which served as compact search indices.

DH has an internal parameter σ, which is subject to the
distribution of data, and must be adaptively determined. It is an
open problem to automatically adjust this parameter. It is also
important to seek applications other than multimedia retrieval
As a method for computing recommendation score for LSH
has been proposed [7], information recommendation might be
another application of DH to investigate further.
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