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Abstract—This paper introduces a new discriminative model for 

image annotation. To learn the discriminative model, our 

method divides each training image into patches, and embeds the 

patches into a hypergraph, so as to find the representative 

instances (also called exemplars) for every single class by solving 

the graph. Then, the feature differences between the training 

samples and the exemplars are used to form new feature vectors 

for the training process. We aim to prune the specific features 

for each single label and formalize the annotation task as a 

discriminative classification problem. The kernel methods are 

also employed to solve the problem. Experiments are performed 

using the Corel5K dataset, and provide a quite promising result 

when comparing with other existing methods. 

I. I  

Nowadays, an increasing number of people enjoy taking 

photos and browsing pictures on the Internet. With the huge 

development in computer science, it is more convenient to 

store and manage a large number of digital images, not only 

on our computer hard disk but also in cyberspace. However, it 

is not always easy to find a target image in a short time 

without the knowledge of the tag of that image. If we can 

successfully use some text keywords to reflect the content of 

every single image, image management and browsing will 

become an easy task. Image annotation is the right method to 

solve this problem, as it assigns relevant keywords to images, 

representing their content. However, automatic image 

annotation is a very difficult task because of the lack of a 

direct relationship between the keywords and the image 

content. The so-called semantic gap problem always results in 

a bad performance for image-to-word mapping.  

In recent years, various learning methods have been 

proposed by many researchers for automatic image annotation. 

These methods have in common that they all rely on a set of 

labeled pictures to learn a model, which can then predict the 

labels for the unlabeled data. The literature can be grouped 

based on three models: generative models, discriminative 

models and nearest-neighbor-based models. Most generative 

models [17,18] construct a joint distribution over image 

contents and the keywords while finding a mapping between 

the image features and annotation keywords. These generative 

models aim to learn a single model for all the vocabulary 

terms, which yields a better modeling in terms of 

dependencies. Some methods treat the task of image 

annotation as several binary classification problems. This 

means that the joint distribution of the unobserved variables 

and the observed variables is not needed. In this situation, 

discriminative models [3,4] can generally yield a superior 

performance. These discriminative models learn a separate 

classifier for each single label, and use the classifier to judge 

whether the test image belongs to this class or not. Although 

the training process is complicated and time consuming, this 

approach can, with a smart design, achieve more promising 

performances than the generative models. The third model, as 

one of the oldest, simplest, and most effective methods for 

pattern classification, is the KNN-based model [19], which is 

accurate, especially with an increasing number of training 

data. Recently, a NN-based keyword transfer approach was 

proposed in [11]. In this method, the labels are transferred 

from neighbors to a given image after a simple distance 

calculation. The nearest neighbors are determined using the 

Joint Equal Contribution (JEC) only, which finds the average 

distance obtained from the differences in image features. The 

method was extended [13] to filter out most irrelevant labels, 

with a promising result obtained.  

The representations of image features play an important 

role in the abovementioned models. In [1], a graph structure 

was proposed to describe the relations of the features. In this 

approach, a pair-wise graph is constructed, with each vertex 

representing a single image that may be labeled or unlabeled. 

Two similar images are connected by an edge, and the edge 

weight is calculated as an image-to-image distance. [2] 

extended the concept of a simple graph to a hypergraph. The 

main argument is that the simple graph cannot completely 

represent the relations among images. Actually, the 

hypergraph can contribute to a better representation of the 

relations among images by considering not only the local 

grouping information, but also the similarities between the 

hyperedges that involve more than two images. 

This paper proposes a method to learn a discriminative 

model using the knowledge of KNN-based distance 

measurement for image annotation. In our algorithm, we 

divide each image instance into 5 windows (including 2 by 2 

non-overlapping windows and a window of the same size 

located at the image center), and embed these windows or 

patches of the training samples into a hypergraph. Then, the 

exemplars of each class can be derived from the hypergraph. 
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The feature differences of the training samples and the 

exemplars are computed, and a similarity vector is then 

constructed. The kernel-based method is further introduced 

for training the classifier for each exemplar, and the combined 

classifiers are trained for each label. For a query image, the 

best few labels will be selected as the final results based on 

the trained classifiers. 

The remainder of this paper is organized as follows. In 

Section Ⅱ , we give an overview of our method. Then, a brief 

introduction of related works will be described in Section Ⅲ. 

We present our proposed method in detail in Section Ⅳ. The 

experiment set-up and results, and a conclusion, are given in 

Sections Ⅴand Ⅵ, respectively. 

II. N VERVIEW OF OUR RAMEWORK  

In this section, an overview of our algorithm will be given. 

Our algorithm is divided into a training stage and a testing 

stage, as shown in Fig. 1 and Fig. 2, respectively. 
 

 

Fig.1. The training procedures of our proposed algorithm. 

III. ELATED ORK ON THE H

EATURE ELECTION  

A. Hypergraph 

In the field of machine learning, the pairwise relationships 

among different objects are always considered. These 

relationships are often embedded into a graph. A vertex can 

represent an object, and the different vertices can be 

connected by edges directly or indirectly. Since the pairwise  

relationships can be represented quite well by a simple graph, 

graph-based representation has recently attracted more and 

more attentions. However, this simple graph representation 

will inevitably result in a loss of information if only pairwise  

                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The testing procedures of our proposed algorithm. 

 

information is used to describe the complicated relationships 

among the objects. [2] introduced the concept of the 

hypergraph, which can more completely represent the 

relationships among objects. In a hypergraph, an edge can 

connect more than two vertices. This edge is called a 

hyperedge, which can be considered as a set of several 

vertices, rather than two vertices only. In other words, a set of 

vertices is defined as a weighted hyperedge; and the weight of 

a hyperedge can, to a certain extent, represent the degree of 

the vertices in this hyperedge belonging to one cluster.  

When a hypergraph has been constructed, the next problem 

is how to solve it. In [15], Zhou et al. employed a spectral 

clustering technique to partition the graph, similar to the 

normalized cut approach in [16]. Furthermore, the concept of 

hypergraph Laplacian has been introduced, which is derived 

by relaxation to approximately obtain the hypergraph 

normalized cuts. 

Let V denote a finite set of image instances (also represented 

as a set of vertices of a hypergraph), and E denote a subset of 

V such that  = 
e E

V


. A hypergraph is constructed as G= (V, 

E, W) with the vertices V, the hyperedge E, and the weight W 

for each hyperedge. A hypergraph can be represented by a 

|V|×|E| incidence matrix H with entries h(v,e) = 1 if v e , and 

0 otherwise. In this model, all the vertices in a hyperedge are 

treated equally; this inevitably results in the loss of 

information. [2] proposed a softmax probability model to 

replace the binary assignments to the entries. In the model, 

each vertex is taken as a „centroid‟ node in turn, and the 

hyperedge is formed by the vertex concerned and its k nearest 

neighbors. The incidence matrix H is defined by a distance 

measurement D(j, i) for the ith vertex and the jth hyperedge as 

follows: 

 
( , ) if

( , )
0, otherwise.

i j

i j

D j i v e
h v e


 


，
 (2) 

 

In this formulation, the vertex vi is softly assigned to the 

hyperedge ej based on the similarity measurement D(j, i). In 

this hyperedge, vj is the centroid and vi is the k-nearest 

neighbor of vj. This probability model not only considers local 

grouping information, but also presents the probability that a 

vertex belongs to a hyperedge. The correlations among 

Training 
 

Input:  Training images In (training images are 

categorized as 1, 2, 3, …, n classes) 
 

Step 1: Divide the training images into 5 sub-windows 

(including 2 by 2 non-overlapping windows and a 

window of the same size located at the image center), 

and extract the CPAM features [12] and other features 

of each patch (denoted as In
i ). 

Step 2: Embed all the patches into a hypergraph (see the 

details in Section 3), and obtain the representative 

exemplars for each label class. 

Step 3: Compute the feature differences between the 

patches of the training images and the exemplars so as 

to form delta-vectors (25 delta-vectors generated for 

each image pair). 

Step 4: Use a kernel-based method to train a classifier 

for each exemplar, such that 

2

2argmin | |w wx y


  ,                        (1) 

where x is the delta-vector and y is the observation. 

Testing 
 

Input: Testing image Iq 
 

Step 1: Use the same procedures as in the training stage 

to extract the delta-vector of Iq. 

Step 2: Use the classifier to output the score of each 

patch of the query image with respect to the exemplars 

of the corresponding class, and then sum the total value 

of the 5 patches. 

Step 3: Choose the highest 5 and 10 scores, and select 

the labels of these classes as the final labels of the 

query image. 
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different vertices can be well presented using this model. This 

also means that the structure of the vertices can be explored 

conveniently by referring to the probabilistic hypergraph 

model. For each hyperedge, we have a hyperedge weight 

computed as follows: 

 ( ) ( , ).
j i

i

v e

w e D i j


   (3) 

Unlike [2], our aim is not to solve the hypergraph for image 

retrieval. In other words, we need not partition the hypergraph 

for training. We simply embed the feature instances into the 

graph, and then we make use of the spatial structure to find 

the most representative patches for each label class. The 

hyperedge is the correlation between the centroid vertex and 

its k nearest neighbors. More specifically, assume that we 

have two vertices va and vb belonging to the same class m. If 

the hyperedge weight related to the centroid vertex va is 

greater than that related to the centroid vertex vb, we can say 

that the vertex va has more representative power than the 

vertex vb has for the class m, to some extent. From this point 

of view, we can use the knowledge of the hyperedge weight to 

identify the most representative instances for each class, and 

the so-called exemplars can be found for each class by solving 

the following formulation:  

 * arg max ( ).i
i

i w e  (4) 

This formulation means that, for each class, we indentify 

the k-nearest neighbors of each class sample that will form the 

most compact cluster. The compactness is measured by the 

sum of the similarity between the centroid sample and its 

neighbors.  

 

B. Exemplar-derived  Features 

Although many image features have been proposed for image 

annotation, the properties of the different features and the 

combination of the features have not been well investigated. 

Moreover, the selected features may contribute unequally or 

even negatively to the performance. In [1], Zhang et al. 

presented a group-sparsity-based method to solve the feature 

related problems in the image-annotation tasks. The features 

used in our paper are inspired by [1], but the features are used 

in a different way. 

In the Section Ⅲ.A , we have described how to construct 

the exemplars of each class. An exemplar represents the 

properties of the label class concerned, and we generate a new 

feature vector by computing the difference between the 

training samples and the exemplars. This new feature vector is 

called a delta-vector (Δ-vector). We assign the labels y of Δ (i, 

j) as a binary number: 

1 if  and  belong to same class
( , )

1 otherwise.

i j
y i j


 


   (5) 

IV.  

BASED ON A M  

A. Formalizing the annotation problem 

In the image-annotation problem, an annotation system 

receiving a query image Iq will output its corresponding labels 

l(q, t), where l(q, t) refers to the set of tags t related to the 

query image q. Assume that the label set L contains n classes, 

and l(q, t) is a subset L. An exemplar image is denoted as n

eI , 

where n is the class index. The aim of the system is to find the 

tags t* that maximize the conditional distributions p(t| Iq). 

In our algorithm, the Δ-vector is used instead of the 

traditional feature vector that directly describes an image 

instance. The Δ-vector is obtained by comparing the training 

images to the exemplars as follows: 

 ( ) ( )m n

eI I     (6) 

where 
mI  represents the mth image in the dataset, and γ(I) 

represents the feature set of image I. Now, the following 

formulation is used to obtain the output tags. 
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

 
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 (7) 

Thus the annotation task is performed in a new feature space 

composed of the difference vectors Δi instead of the original 

image feature space. 

 

B. Model Parameterization 

In our algorithm, an image-annotation model is to be learned 

as discriminatively as possible. In order to achieve this, a 

separate classifier is learned for each keyword, and is used to 

decide whether a query image belongs to the class or not. In 

our case, we change the traditional image-to-tags problem to a 

new feature-weighting problem. An image is described by 

dividing it into regions, with each region represented by a Δ-

vector. Then, a classifier is trained for each label class; the 

input to the classifier is the Δ-vectors, and the output is a 

probability value ranging from 0 to 1. In other words, a 

scoring function that measures the match between the visual 

differences and the high-level concept is designed. 

Specifically, we design the classifier thus: 

      ,( ) ,q i q i
i

F f     (8) 

where Δq,i represents the differences between the query image 

q and the ith exemplar, the function f is the classifier to be 

designed (details will be shown in Section Ⅳ .C), and the 

function Ψ is used to replace the simple summation of all the 

outputs of the classifier in (7). 
In the training steps, for any training image, the Δ-vector is 

firstly obtained by comparing the image I and the exemplars 

of that class, and then we compute the softmax probability of 

this vector belonging to the mth class. However, the 

differences between the image I and the different exemplars 

may contribute unequally to the final Δ-vector. More 

specifically, assume that we have a number of k exemplars for 

each class; the Δ-vectors obtained from the image I and the k 
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exemplars form a Δ-matrix, [|Δ1|, |Δ2|, … |Δk|]
T. Then, we 

explore the relationship among the different Δ-vectors. In 

other words, we want to find a mapping from each Δ-vector 

space to the tag space, i.e. minimizing the differences between 

the positive samples in a class and its corresponding 

exemplars with respect the observations. Now, we have 

converted the mapping problem into a metric-learning 

approach. 

The parameterization of the mapping is inspired by [3]: 

 

 : {0,1},  where ( , ).
i

T P           (9) 

 

In (9), P is the image feature space, and T is the space of tags. 

The function Φ is a number of 1-vs-all classifiers that 

determine if an input image has the corresponding label. The 

function Φ is employed for certain mappings and  is a 

parameter in the function φ. In this case, we only assign a 

binary output to the function φ, and we learn a weighting 

function for each exemplar. 

Having determined the mapping function for each exemplar, 

we can formalize the Δ-matrix as [Φ1(Δ1), Φ2(Δ2),…, 

Φm(Δm)]T. Then, we can use a single SVM classifier to train a 

classifier for each class. At this stage, we know that the key 

point is to find a mapping for each single exemplar of each 

class. Next, we will show how to determine the parameter , 

and then how to learn an individual classifier for each 

exemplar. 

 

C. The Rank-SVM-Based Learning Algorithm 

Our target is to learn an optimal value of  such that the 

distance between the exemplar and all positive samples in the 

corresponding class are as small as possible, while the 

distance between the exemplar and all negative samples in the 

other classes is as large as possible, i.e. 

 
221 1

arg min[ ( ) ( ) ],
i ipe ne

p qp q
         (10) 

where p is the number of positive samples, and q is the 

number of negative samples corresponding to the exemplar ei. 

i
pe

 represents the Δ-vector between the positive samples and 

the exemplars, and 
i

ne
 is the Δ-vector between the negative 

samples and the exemplars. 

To solve  to minimize (10), we can transform this 

formulation into a ranking problem. This means that we can 

interpret the formulation as the projection of a Δ-vector onto a 

vector . After the projection, the ranking of 
ipe  should 

always be higher than that of 
ine . Specifically, we convert 

the problem into: 

 
1 1

1
arg min[ ( , , ) ( )],

i i

p q

pe ne
f F

i j

f l f N f
pq




 

      (11) 

where l( ) is the convex upper bound on 1 (
i ipe ne   ), N( ) 

is a regularizer, λ > 0 is the regularization parameter, and F is 

a ranking function. There are many learning algorithms that 

can solve (11). 

We introduce some slack variables and take the Lagrangian 

dual results in the following convex quadratic program (QP) 

over pq variables {αij: 1 ≤ i ≤ p, 1 ≤ j ≤ q}: 

 

1 1 1 1 1 1

1
min[ ( , , , ) ]

2

                   subject to 0 , .

i i i i

p q p q p q

ij kl pe ne ke le ij

i j k l i j

ij
C i j



   


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    

  

 

   

(12) 

where 
pq

C


1 , and  

( , , , ) ( ( , ) ( , )

( , ) ( , ))

i i i i i i i i

i i i i

pe ne ke le pe ke pe le

ne ke ne le

K K

K K

          

     
 

This formulation can be solved using a standard QP solver, or 

other more efficient methods [20]. 

V.  

The experiments are divided into two parts. First, we will 

construct the exemplars for each class and show the image 

patches that are chosen as the exemplars of some classes. 

Then, we will evaluate the performance of our image-

annotation framework using the Corel 5K dataset. 

Corel 5K contains 5,000 images comprising 4,500 training 

and 500 testing samples. Each image in the dataset is 

annotated with about 3.5 keywords on average, and the 

dictionary has a total of 374 words or labels. 

As described previously, different types of features are first 

subtracted from 5 sub-windows. Fig. 3 shows examples of the 

patches/sub-windows used. 

 

 

Fig.3. Five sub-windows chosen as image patches for feature extraction. 

 

The first experiment will show the kinds of image patches 

to be chosen as exemplars for different classes. The images in 

Corel 5K have significant differences for different classes, but 

also have large variations within images in the same class. 

Thus, it is useful to find the “good exemplars” for each class. 

In this experiment, we have employed the Colored Pattern 

Appearance Model (CPAM) feature only, which has been 

proven to be simple and efficient [11].  

Table 1 illustrates some of the patches chosen as exemplars 

for some classes. We can see that some classes have very 

good and representative exemplars, even though every image 

instance is simply divided into 5 sub-windows. However, 

some patches may not clearly reflect some of the classes. 

Indeed, a big semantic gap obviously exists between the low-

level features and the class labels like “market”. Nevertheless, 

our method can identify good exemplars in most cases. We 
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believe that identifying good exemplars plays an important 

role in the research of image retrieval. 

 
Table 1. Some exemplar patches chosen by our method. 

sun 
     

people 
     

tree 
     

building 
     

market 
     

 

We have evaluated the performance of our algorithm with 

an increase in the number of exemplars used. By considering 

the average number of examplars for each class, we have 

experimented with the mean precision (which is the key 

measurement for image annotation) for the 500 testing images 

based on 1, 3, 5, 7, and 9 exemplars. Table 2 shows that using 

five exemplars can result in the best performance in our 

method. So we choose 5 as the number of exemplars for each 

class in the experments that follow.  
 

Table 2. The mean precision rates (P%) for using different numbers of 

exemplars. 

No. of exemplars 1 3 5 7 9 

(P%) 14.1 21.3 32 26.5 23.3 

 

Next, we will evaluate the performance of our algorithm 

and compare it with other state-of-the-art annotation 

algorithms. After choosing the exemplars for each class, our 

algorithm computes the Δ-vectors and then performs 

classification. 

Similar to [14], different feature descriptors, and a 

combination of these features, were used in our experiments. 

The following features are used for each image patch. We 

compute the Δ-vectors as the differences between the input 

patches and each of the exemplars. 

 

(1) Color feature: RGB color moment (3×3 grid, color mean, 

variance, skewness for R, G, B), 

(2) Edge histogram (edge-orientation histogram, Canny edge 

detector), 

(3) Gabor wavelets transform (5 scales and 8 orientations, 3 

moments for each sub-image), 

(4) Local binary pattern (a 59-d LBP histogram), and 

(5) GIST (a complex and popular feature descriptor). 

We choose three measurements to evaluate the 

performances of our proposed method and other methods. 

Three performance indices are measured: the mean precision 

rates (P%), the mean recall rates (R%), and the number of 

total keywords recalled (N+). 

 

Table 3. Performances based on the Corel5K dataset for some existing 

methods and our proposed method. 

Methods P% R% N+ 

CRM [5] 16 19 107 

InfNet [6] 17 24 112 

NPDE [7] 18 21 114 

MBRM[10] 24 25 122 

SML [8] 23 29 137 

TGLM [9] 25 29 131 

JEC [11] 27 32 139 

LASSO[11] 24 29 127 

TagProp[4] 33 42 160 

Proposed 32 38 151 

 

 

Table 3 shows the performances of our proposed kernel-

based discriminative model versus some existing methods 

using Corel 5K. Our method outperforms most of the other 

methods, and is comparable to TagProp; in particular, in 

terms of the mean precision rate, which is the most important 

measurement. 

Learning an individual classifier for each class is 

complicated and time consuming work for image annotation. 

However, this work presents an efficient algorithm that 

formalizes a kernel mapping task into a ranking problem. We 

make use of the hypergraph, and extract a new feature vector 

after obtaining the exemplars for each class. After the 

classifiers have been learnt for each exemplar, a simple 

sigmoid function is used to combine the results of various 

exemplar classifiers to make a decision about the image label. 

The experiments on Corel 5K provide quite promising results.  

Fig. 4 shows that our algorithm has a higher probability 

than TagProp of containing at least one correct label than 

TagProp. Although TagProp has a slight better performance 

in terms of the mean precision rates, our method achieves a 

higher efficiency in finding the correct labels. That means, 

TagProp sacrifice more time in finding the correct labels 

comparing with our work. 

Table 4 shows some results for the labels obained from our 

algirothm and the ground-truth. We see that our algorithm can 

achieve at least one correct label in most cases.  

 

 

Fig.4. Percentages of number of testing images correctly annotated by at least 

one word among the top n words using the discriminative model “TagProp” 

and our proposed method. 

2 4 6 8 10
0

20

40

60

80

100

Number of words

P
e
rc

e
n
ta

g
e
s
 (

%
)

 

 

Tagprop

Proposed Method



Table 4. Predicted labels versus ground-truth (difference are marked in italic) 

 

VI. C  

This paper presents an efficient algorithm for learning a 

kernel-based discrimantive model for image annotation. We 

define a new feature repesentation by taking the exemplars of 

each class label into consideration. Based on that, we convert 

the feature-to-label mapping task into a ranking problem. A 

rank-SVM-based learning algorithm is introduced, and the 

convex optimization method is used to solve the aglorithm. 

Our method is very straightforward, and the experiments have 

proven that our new discrimantive model can achieve 

comparable performances with the state-of-the-art approach 

but consumes less time in finding the correct labels. 
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