
Learning a Discriminative Model for Image

Annotation

Jiwei Hu, Chensheng Sun, and Kin Man Lam
Centre for Signal Processing, Department of Electronic and Information Engineering,

The Hong Kong Polytechnic University, Hong Kong

E-mail: {07901714r, 07900270r, enkmlam} @ polyu.edu.hk

Abstract—This paper introduces a new discriminative model for

image annotation. To learn the discriminative model, our

method divides each training image into patches, and embeds the

patches into a hypergraph, so as to find the representative

instances (also called exemplars) for every single class by solving

the graph. Then, the feature differences between the training

samples and the exemplars are used to form new feature vectors

for the training process. We aim to prune the specific features

for each single label and formalize the annotation task as a

discriminative classification problem. The kernel methods are

also employed to solve the problem. Experiments are performed

using the Corel5K dataset, and provide a quite promising result

when comparing with other existing methods.

I. I

Nowadays, an increasing number of people enjoy taking

photos and browsing pictures on the Internet. With the huge

development in computer science, it is more convenient to

store and manage a large number of digital images, not only

on our computer hard disk but also in cyberspace. However, it

is not always easy to find a target image in a short time

without the knowledge of the tag of that image. If we can

successfully use some text keywords to reflect the content of

every single image, image management and browsing will

become an easy task. Image annotation is the right method to

solve this problem, as it assigns relevant keywords to images,

representing their content. However, automatic image

annotation is a very difficult task because of the lack of a

direct relationship between the keywords and the image

content. The so-called semantic gap problem always results in

a bad performance for image-to-word mapping.

In recent years, various learning methods have been

proposed by many researchers for automatic image annotation.

These methods have in common that they all rely on a set of

labeled pictures to learn a model, which can then predict the

labels for the unlabeled data. The literature can be grouped

based on three models: generative models, discriminative

models and nearest-neighbor-based models. Most generative

models [17,18] construct a joint distribution over image

contents and the keywords while finding a mapping between

the image features and annotation keywords. These generative

models aim to learn a single model for all the vocabulary

terms, which yields a better modeling in terms of

dependencies. Some methods treat the task of image

annotation as several binary classification problems. This

means that the joint distribution of the unobserved variables

and the observed variables is not needed. In this situation,

discriminative models [3,4] can generally yield a superior

performance. These discriminative models learn a separate

classifier for each single label, and use the classifier to judge

whether the test image belongs to this class or not. Although

the training process is complicated and time consuming, this

approach can, with a smart design, achieve more promising

performances than the generative models. The third model, as

one of the oldest, simplest, and most effective methods for

pattern classification, is the KNN-based model [19], which is

accurate, especially with an increasing number of training

data. Recently, a NN-based keyword transfer approach was

proposed in [11]. In this method, the labels are transferred

from neighbors to a given image after a simple distance

calculation. The nearest neighbors are determined using the

Joint Equal Contribution (JEC) only, which finds the average

distance obtained from the differences in image features. The

method was extended [13] to filter out most irrelevant labels,

with a promising result obtained.

The representations of image features play an important

role in the abovementioned models. In [1], a graph structure

was proposed to describe the relations of the features. In this

approach, a pair-wise graph is constructed, with each vertex

representing a single image that may be labeled or unlabeled.

Two similar images are connected by an edge, and the edge

weight is calculated as an image-to-image distance. [2]

extended the concept of a simple graph to a hypergraph. The

main argument is that the simple graph cannot completely

represent the relations among images. Actually, the

hypergraph can contribute to a better representation of the

relations among images by considering not only the local

grouping information, but also the similarities between the

hyperedges that involve more than two images.

This paper proposes a method to learn a discriminative

model using the knowledge of KNN-based distance

measurement for image annotation. In our algorithm, we

divide each image instance into 5 windows (including 2 by 2

non-overlapping windows and a window of the same size

located at the image center), and embed these windows or

patches of the training samples into a hypergraph. Then, the

exemplars of each class can be derived from the hypergraph.

NTRODUCTION

APSIPA ASC 2011 Xi’an

The feature differences of the training samples and the

exemplars are computed, and a similarity vector is then

constructed. The kernel-based method is further introduced

for training the classifier for each exemplar, and the combined

classifiers are trained for each label. For a query image, the

best few labels will be selected as the final results based on

the trained classifiers.

The remainder of this paper is organized as follows. In

Section Ⅱ , we give an overview of our method. Then, a brief

introduction of related works will be described in Section Ⅲ.

We present our proposed method in detail in Section Ⅳ. The

experiment set-up and results, and a conclusion, are given in

Sections Ⅴand Ⅵ, respectively.

II. N VERVIEW OF OUR RAMEWORK

In this section, an overview of our algorithm will be given.

Our algorithm is divided into a training stage and a testing

stage, as shown in Fig. 1 and Fig. 2, respectively.

Fig.1. The training procedures of our proposed algorithm.

III. ELATED ORK ON THE H

EATURE ELECTION

A. Hypergraph

In the field of machine learning, the pairwise relationships

among different objects are always considered. These

relationships are often embedded into a graph. A vertex can

represent an object, and the different vertices can be

connected by edges directly or indirectly. Since the pairwise

relationships can be represented quite well by a simple graph,

graph-based representation has recently attracted more and

more attentions. However, this simple graph representation

will inevitably result in a loss of information if only pairwise

Fig. 2. The testing procedures of our proposed algorithm.

information is used to describe the complicated relationships

among the objects. [2] introduced the concept of the

hypergraph, which can more completely represent the

relationships among objects. In a hypergraph, an edge can

connect more than two vertices. This edge is called a

hyperedge, which can be considered as a set of several

vertices, rather than two vertices only. In other words, a set of

vertices is defined as a weighted hyperedge; and the weight of

a hyperedge can, to a certain extent, represent the degree of

the vertices in this hyperedge belonging to one cluster.

When a hypergraph has been constructed, the next problem

is how to solve it. In [15], Zhou et al. employed a spectral

clustering technique to partition the graph, similar to the

normalized cut approach in [16]. Furthermore, the concept of

hypergraph Laplacian has been introduced, which is derived

by relaxation to approximately obtain the hypergraph

normalized cuts.

Let V denote a finite set of image instances (also represented

as a set of vertices of a hypergraph), and E denote a subset of

V such that =
e E

V


. A hypergraph is constructed as G= (V,

E, W) with the vertices V, the hyperedge E, and the weight W

for each hyperedge. A hypergraph can be represented by a

|V|×|E| incidence matrix H with entries h(v,e) = 1 if v e , and

0 otherwise. In this model, all the vertices in a hyperedge are

treated equally; this inevitably results in the loss of

information. [2] proposed a softmax probability model to

replace the binary assignments to the entries. In the model,

each vertex is taken as a „centroid‟ node in turn, and the

hyperedge is formed by the vertex concerned and its k nearest

neighbors. The incidence matrix H is defined by a distance

measurement D(j, i) for the ith vertex and the jth hyperedge as

follows:

(,) if

(,)
0, otherwise.

i j

i j

D j i v e
h v e


 


，
 (2)

In this formulation, the vertex vi is softly assigned to the

hyperedge ej based on the similarity measurement D(j, i). In

this hyperedge, vj is the centroid and vi is the k-nearest

neighbor of vj. This probability model not only considers local

grouping information, but also presents the probability that a

vertex belongs to a hyperedge. The correlations among

Training

Input: Training images In (training images are

categorized as 1, 2, 3, …, n classes)

Step 1: Divide the training images into 5 sub-windows

(including 2 by 2 non-overlapping windows and a

window of the same size located at the image center),

and extract the CPAM features [12] and other features

of each patch (denoted as In
i).

Step 2: Embed all the patches into a hypergraph (see the

details in Section 3), and obtain the representative

exemplars for each label class.

Step 3: Compute the feature differences between the

patches of the training images and the exemplars so as

to form delta-vectors (25 delta-vectors generated for

each image pair).

Step 4: Use a kernel-based method to train a classifier

for each exemplar, such that

2

2argmin | |w wx y


  , (1)

where x is the delta-vector and y is the observation.

Testing

Input: Testing image Iq

Step 1: Use the same procedures as in the training stage

to extract the delta-vector of Iq.

Step 2: Use the classifier to output the score of each

patch of the query image with respect to the exemplars

of the corresponding class, and then sum the total value

of the 5 patches.

Step 3: Choose the highest 5 and 10 scores, and select

the labels of these classes as the final labels of the

query image.

A O F

F S

R W YPERGRAPH AND

different vertices can be well presented using this model. This

also means that the structure of the vertices can be explored

conveniently by referring to the probabilistic hypergraph

model. For each hyperedge, we have a hyperedge weight

computed as follows:

 () (,).
j i

i

v e

w e D i j


  (3)

Unlike [2], our aim is not to solve the hypergraph for image

retrieval. In other words, we need not partition the hypergraph

for training. We simply embed the feature instances into the

graph, and then we make use of the spatial structure to find

the most representative patches for each label class. The

hyperedge is the correlation between the centroid vertex and

its k nearest neighbors. More specifically, assume that we

have two vertices va and vb belonging to the same class m. If

the hyperedge weight related to the centroid vertex va is

greater than that related to the centroid vertex vb, we can say

that the vertex va has more representative power than the

vertex vb has for the class m, to some extent. From this point

of view, we can use the knowledge of the hyperedge weight to

identify the most representative instances for each class, and

the so-called exemplars can be found for each class by solving

the following formulation:

 * arg max ().i
i

i w e (4)

This formulation means that, for each class, we indentify

the k-nearest neighbors of each class sample that will form the

most compact cluster. The compactness is measured by the

sum of the similarity between the centroid sample and its

neighbors.

B. Exemplar-derived Features

Although many image features have been proposed for image

annotation, the properties of the different features and the

combination of the features have not been well investigated.

Moreover, the selected features may contribute unequally or

even negatively to the performance. In [1], Zhang et al.

presented a group-sparsity-based method to solve the feature

related problems in the image-annotation tasks. The features

used in our paper are inspired by [1], but the features are used

in a different way.

In the Section Ⅲ.A , we have described how to construct

the exemplars of each class. An exemplar represents the

properties of the label class concerned, and we generate a new

feature vector by computing the difference between the

training samples and the exemplars. This new feature vector is

called a delta-vector (Δ-vector). We assign the labels y of Δ (i,

j) as a binary number:

1 if and belong to same class
(,)

1 otherwise.

i j
y i j


 


 (5)

IV.

BASED ON A M

A. Formalizing the annotation problem

In the image-annotation problem, an annotation system

receiving a query image Iq will output its corresponding labels

l(q, t), where l(q, t) refers to the set of tags t related to the

query image q. Assume that the label set L contains n classes,

and l(q, t) is a subset L. An exemplar image is denoted as n

eI ,

where n is the class index. The aim of the system is to find the

tags t* that maximize the conditional distributions p(t| Iq).

In our algorithm, the Δ-vector is used instead of the

traditional feature vector that directly describes an image

instance. The Δ-vector is obtained by comparing the training

images to the exemplars as follows:

 () ()m n

eI I    (6)

where
mI represents the mth image in the dataset, and γ(I)

represents the feature set of image I. Now, the following

formulation is used to obtain the output tags.

* arg max (|)

arg max (|)

arg max (|).

q
t

t

i
t

i

t p t I

p t

p t



 

 

 (7)

Thus the annotation task is performed in a new feature space

composed of the difference vectors Δi instead of the original

image feature space.

B. Model Parameterization

In our algorithm, an image-annotation model is to be learned

as discriminatively as possible. In order to achieve this, a

separate classifier is learned for each keyword, and is used to

decide whether a query image belongs to the class or not. In

our case, we change the traditional image-to-tags problem to a

new feature-weighting problem. An image is described by

dividing it into regions, with each region represented by a Δ-

vector. Then, a classifier is trained for each label class; the

input to the classifier is the Δ-vectors, and the output is a

probability value ranging from 0 to 1. In other words, a

scoring function that measures the match between the visual

differences and the high-level concept is designed.

Specifically, we design the classifier thus:

     ,() ,q i q i
i

F f    (8)

where Δq,i represents the differences between the query image

q and the ith exemplar, the function f is the classifier to be

designed (details will be shown in Section Ⅳ .C), and the

function Ψ is used to replace the simple summation of all the

outputs of the classifier in (7).
In the training steps, for any training image, the Δ-vector is

firstly obtained by comparing the image I and the exemplars

of that class, and then we compute the softmax probability of

this vector belonging to the mth class. However, the

differences between the image I and the different exemplars

may contribute unequally to the final Δ-vector. More

specifically, assume that we have a number of k exemplars for

each class; the Δ-vectors obtained from the image I and the k

AN IMAGE-ANNOTATION RAMEWORKF

ISCRIMIATIVE D ODEL

exemplars form a Δ-matrix, [|Δ1|, |Δ2|, … |Δk|]
T. Then, we

explore the relationship among the different Δ-vectors. In

other words, we want to find a mapping from each Δ-vector

space to the tag space, i.e. minimizing the differences between

the positive samples in a class and its corresponding

exemplars with respect the observations. Now, we have

converted the mapping problem into a metric-learning

approach.

The parameterization of the mapping is inspired by [3]:

 : {0,1}, where (,).
i

T P        (9)

In (9), P is the image feature space, and T is the space of tags.

The function Φ is a number of 1-vs-all classifiers that

determine if an input image has the corresponding label. The

function Φ is employed for certain mappings and  is a

parameter in the function φ. In this case, we only assign a

binary output to the function φ, and we learn a weighting

function for each exemplar.

Having determined the mapping function for each exemplar,

we can formalize the Δ-matrix as [Φ1(Δ1), Φ2(Δ2),…,

Φm(Δm)]T. Then, we can use a single SVM classifier to train a

classifier for each class. At this stage, we know that the key

point is to find a mapping for each single exemplar of each

class. Next, we will show how to determine the parameter ,

and then how to learn an individual classifier for each

exemplar.

C. The Rank-SVM-Based Learning Algorithm

Our target is to learn an optimal value of  such that the

distance between the exemplar and all positive samples in the

corresponding class are as small as possible, while the

distance between the exemplar and all negative samples in the

other classes is as large as possible, i.e.

221 1

arg min[() ()],
i ipe ne

p qp q
        (10)

where p is the number of positive samples, and q is the

number of negative samples corresponding to the exemplar ei.

i
pe

 represents the Δ-vector between the positive samples and

the exemplars, and
i

ne
 is the Δ-vector between the negative

samples and the exemplars.

To solve  to minimize (10), we can transform this

formulation into a ranking problem. This means that we can

interpret the formulation as the projection of a Δ-vector onto a

vector . After the projection, the ranking of
ipe should

always be higher than that of
ine . Specifically, we convert

the problem into:

1 1

1
arg min[(, ,) ()],

i i

p q

pe ne
f F

i j

f l f N f
pq




 

    (11)

where l() is the convex upper bound on 1 (
i ipe ne  ), N()

is a regularizer, λ > 0 is the regularization parameter, and F is

a ranking function. There are many learning algorithms that

can solve (11).

We introduce some slack variables and take the Lagrangian

dual results in the following convex quadratic program (QP)

over pq variables {αij: 1 ≤ i ≤ p, 1 ≤ j ≤ q}:

1 1 1 1 1 1

1
min[(, , ,)]

2

 subject to 0 , .

i i i i

p q p q p q

ij kl pe ne ke le ij

i j k l i j

ij
C i j



   



     

    

  

 

(12)

where
pq

C


1 , and

(, , ,) ((,) (,)

(,) (,))

i i i i i i i i

i i i i

pe ne ke le pe ke pe le

ne ke ne le

K K

K K

          

     

This formulation can be solved using a standard QP solver, or

other more efficient methods [20].

V.

The experiments are divided into two parts. First, we will

construct the exemplars for each class and show the image

patches that are chosen as the exemplars of some classes.

Then, we will evaluate the performance of our image-

annotation framework using the Corel 5K dataset.

Corel 5K contains 5,000 images comprising 4,500 training

and 500 testing samples. Each image in the dataset is

annotated with about 3.5 keywords on average, and the

dictionary has a total of 374 words or labels.

As described previously, different types of features are first

subtracted from 5 sub-windows. Fig. 3 shows examples of the

patches/sub-windows used.

Fig.3. Five sub-windows chosen as image patches for feature extraction.

The first experiment will show the kinds of image patches

to be chosen as exemplars for different classes. The images in

Corel 5K have significant differences for different classes, but

also have large variations within images in the same class.

Thus, it is useful to find the “good exemplars” for each class.

In this experiment, we have employed the Colored Pattern

Appearance Model (CPAM) feature only, which has been

proven to be simple and efficient [11].

Table 1 illustrates some of the patches chosen as exemplars

for some classes. We can see that some classes have very

good and representative exemplars, even though every image

instance is simply divided into 5 sub-windows. However,

some patches may not clearly reflect some of the classes.

Indeed, a big semantic gap obviously exists between the low-

level features and the class labels like “market”. Nevertheless,

our method can identify good exemplars in most cases. We

0 50 100 150

0

50

100

0 50 100 150

0

50

100

XPERIMENTS AND ESULTSE R

believe that identifying good exemplars plays an important

role in the research of image retrieval.

Table 1. Some exemplar patches chosen by our method.

sun

people

tree

building

market

We have evaluated the performance of our algorithm with

an increase in the number of exemplars used. By considering

the average number of examplars for each class, we have

experimented with the mean precision (which is the key

measurement for image annotation) for the 500 testing images

based on 1, 3, 5, 7, and 9 exemplars. Table 2 shows that using

five exemplars can result in the best performance in our

method. So we choose 5 as the number of exemplars for each

class in the experments that follow.

Table 2. The mean precision rates (P%) for using different numbers of

exemplars.

No. of exemplars 1 3 5 7 9

(P%) 14.1 21.3 32 26.5 23.3

Next, we will evaluate the performance of our algorithm

and compare it with other state-of-the-art annotation

algorithms. After choosing the exemplars for each class, our

algorithm computes the Δ-vectors and then performs

classification.

Similar to [14], different feature descriptors, and a

combination of these features, were used in our experiments.

The following features are used for each image patch. We

compute the Δ-vectors as the differences between the input

patches and each of the exemplars.

(1) Color feature: RGB color moment (3×3 grid, color mean,

variance, skewness for R, G, B),

(2) Edge histogram (edge-orientation histogram, Canny edge

detector),

(3) Gabor wavelets transform (5 scales and 8 orientations, 3

moments for each sub-image),

(4) Local binary pattern (a 59-d LBP histogram), and

(5) GIST (a complex and popular feature descriptor).

We choose three measurements to evaluate the

performances of our proposed method and other methods.

Three performance indices are measured: the mean precision

rates (P%), the mean recall rates (R%), and the number of

total keywords recalled (N+).

Table 3. Performances based on the Corel5K dataset for some existing

methods and our proposed method.

Methods P% R% N+

CRM [5] 16 19 107

InfNet [6] 17 24 112

NPDE [7] 18 21 114

MBRM[10] 24 25 122

SML [8] 23 29 137

TGLM [9] 25 29 131

JEC [11] 27 32 139

LASSO[11] 24 29 127

TagProp[4] 33 42 160

Proposed 32 38 151

Table 3 shows the performances of our proposed kernel-

based discriminative model versus some existing methods

using Corel 5K. Our method outperforms most of the other

methods, and is comparable to TagProp; in particular, in

terms of the mean precision rate, which is the most important

measurement.

Learning an individual classifier for each class is

complicated and time consuming work for image annotation.

However, this work presents an efficient algorithm that

formalizes a kernel mapping task into a ranking problem. We

make use of the hypergraph, and extract a new feature vector

after obtaining the exemplars for each class. After the

classifiers have been learnt for each exemplar, a simple

sigmoid function is used to combine the results of various

exemplar classifiers to make a decision about the image label.

The experiments on Corel 5K provide quite promising results.

Fig. 4 shows that our algorithm has a higher probability

than TagProp of containing at least one correct label than

TagProp. Although TagProp has a slight better performance

in terms of the mean precision rates, our method achieves a

higher efficiency in finding the correct labels. That means,

TagProp sacrifice more time in finding the correct labels

comparing with our work.

Table 4 shows some results for the labels obained from our

algirothm and the ground-truth. We see that our algorithm can

achieve at least one correct label in most cases.

Fig.4. Percentages of number of testing images correctly annotated by at least

one word among the top n words using the discriminative model “TagProp”

and our proposed method.

2 4 6 8 10
0

20

40

60

80

100

Number of words

P
e
rc

e
n
ta

g
e
s
 (

%
)

Tagprop

Proposed Method

Table 4. Predicted labels versus ground-truth (difference are marked in italic)

VI. C

This paper presents an efficient algorithm for learning a

kernel-based discrimantive model for image annotation. We

define a new feature repesentation by taking the exemplars of

each class label into consideration. Based on that, we convert

the feature-to-label mapping task into a ranking problem. A

rank-SVM-based learning algorithm is introduced, and the

convex optimization method is used to solve the aglorithm.

Our method is very straightforward, and the experiments have

proven that our new discrimantive model can achieve

comparable performances with the state-of-the-art approach

but consumes less time in finding the correct labels.

Acknowledgement: The work described in this paper was

fully supported by a grant from the Research Grants Council

of the HKSAR, China (Project No. PolyU 5192/07E).

R

[1] Shaoting Zhang, Junzhou Huang and etc, “Automatic Image

Annotation Using Group Sparisty,” CVPR 2010, pp.3312-3373.

[2] Yuchi Huang, Qingshan Liu and etc, “Image Retrieval via

Probabilistic Hypergraph Ranking,” CVPR 2010, pp.3376-3383.

[3] David Grangier and Samy Bengio, “A Discriminative Kernel-

Based Model to Rank Images from Text Queries,” IEEE TPAMI,

vol.30, no.8, pp. 1371-1384, Aug. 2008.

[4] M.Grubinger, T.Mensink, J.Verbeek, and C.Schmid “Tagprop:

Discriminative Metric Learning In Nearest Neighbor Models

for Image Auto-Annotations,” ICCV 2009, pp. 309-314.

[5] V.Lavrenko, R.Manmatha and J.Jeon. “A Model For Learning

the Semantic of Pictures,” NIPS 2003

[6] D. Metzler and R. Manmatha, “An Inference Network

Approach to Image,” CIVR 2004, pp. 42-50.

[7] A. Yavlinsky, E. Schofield, and S. Ruger. “Automatic Image

Annotation Using Global Features and Robust Nonparametric

Density Estimation,” CIVR2005, pp.507-517.

[8] G. Carneiro, A.B. Chan et al., “Supervised Learning of

Semantic Classes For Image Annotation and Retrieval,” IEEE

TPAMI, vol.29, no 3, pp. 394-410, 2007;

[9] J. Liu, M. Li, Q. Liu, et al., “Image Annotation via Graph

Learning,” Pattern Recogn, vol.42, no2, pp.218-228, 2009

[10] S.L. Feng, R. Manmatha, and V. Lavrenko, “Multiple Bernoulli

Relevance Models for Image and Video Annotation.” CVPR

2004, vol.2, pp.1002-1009.

[11] A. Makadia, V. Pavlovic, and S. Kumar, “A New Baseline for

Image Annotation,” ECCV 2008.

[12] G. Qiu, “Image indexing using a coloured pattern appearance

model,” Proc. Storage and Retrieval for Media Databases 2001.

[13] Jiwei Hu, Kin-Man Lam, and Guoping Qiu, “A Hierarchical

Algorithm for Image Multi-labeling,” ICIP 2010.

[14] Jianke Zhu, Steven C.H.Hoi, Michael R. Lyu and Shuicheng

Yan, “Near-Duplicate Keyframe Retrieval by Nonrigid Image

Matching,” ACM Multimedia 2008,

[15] D. Zhou, J.Huang, and B.Scholkopf, “Learning with

Hypergraphs: Clustering, Classification, and Embedding,”

NIPS2006.

[16] Jianbo Shi and Jitendra Malik, “Normalized Cuts and Image

Segmentation,” IEEE TPAMI, vol.22, no.8, pp.888-905 Aug.

2000.

[17] K.Barnard, P.Duygulu and etc, “Matching Words and Pictures,”

Journal of Machine Learning Research, vol.3, pp.1107-1135,

2003.

[18] F.Monay and D.Gatica-Perez, “Plsa-Based Image Auto-

Annotation: Constraining the Latent Space,” ACM Multi-media,

pp. 348-351, 2004

[19] H.Zhang, A.Berg, M.Maire, and J.Mailik, “SVM-KNN:

Discriminative Nearest Neighbor Classification for Visual

Category Recognition” CVPR 2006, pp.2126-2136.

[20] Le, Q. V., Smola, A., Chapelle, O., & Teo, C. H., “Optimization

of Ranking Measures,” accepted by Journal of Machine

Learning Research, 2010

Predicted

labels

tree sky sun

clouds

shadow

tree beach

sky sea

clouds

snow cat

tree

cliff stone

sea sky waves

water boats

Ground

Truth

clouds sky

sun tree

beach palm

people tree

fox snow

tree

wood

Beach

Water

boats

Predicted

labels

building

sky tree

street

people

tree sky

water house

building

building

house

water tree

market

horses

tree bush

foals

fields

Ground

Truth

building

sculpture

street tree

boats

house

tree water

canal house

people

water

foals horses

mare tree

ONCLUSIONS

EFERENCES

http://www.cs.nott.ac.uk/~qiu/Online/PCAM-Indexing.pdf
http://www.cs.nott.ac.uk/~qiu/Online/PCAM-Indexing.pdf

