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Abstract—A blind dereverberation method based on power
spectral subtraction (SS) using a multi-channel least mean
squares algorithm was previously proposed. The results of
isolated word speech recognition experiments showed that this
method achieved significant improvement over conventional cep-
stral mean normalization (CMN). In this paper, we propose
a blind dereverberation method based on generalized spectral
subtraction (GSS), which has been shown to be effective for
noise reduction, instead of power SS. Furthermore, we extend
the missing feature theory (MFT), which was initially proposed
to enhance the robustness of additive noise, to dereverberation.
The reliability of each spectral component is calculated through
the signal-to-reverberation ratio obtained from the spectrum
of dereverberant speech based on GSS. The proposed derever-
beration method based on GSS with MFT is evaluated on a
large vocabulary continuous speech recognition task. The dere-
verberation method based on GSS with MFT and beamforming
achieves a relative word error reduction rate of 11.4% and 32.6%
compared to the dereverberation method based on power SS
with beamforming and the conventional CMN with beamforming,
respectively.

I. INTRODUCTION

In a distant-talking environment, channel distortion dras-
tically degrades speech recognition performance due to a
mismatch between the training and testing environments.
Compensating an input feature is the main method for reduc-
ing the mismatch. Cepstral mean normalization (CMN) has
been especially employed as a simple and effective way of
normalizing the cepstral feature to reduce channel distortion.
However, the impulse response of reverberation in a distant-
talking environment usually has a much longer tail than the
window length of the short-term spectral analysis. Therefore,
conventional CMN is not totally effective under these condi-
tions. Several studies have focused on mitigating this problem.
Raut et al. [2] used preceding hidden Markov model (HMM)
states as units of preceding speech segments, and they adapted
models accordingly by estimating their contributions to the
current state using a maximum likelihood function. However,
model adaptation using a priori training data makes the models
less practical to use because the true impulse response or
matched reverberant utterance is not always as expected in var-
ious environments. A reverberation compensation method for
speaker recognition using spectral subtraction, in which late
reverberation is treated as additive noise, was proposed in [3].
However, the drawback of this approach is that the optimum

parameters for spectral subtraction are empirically estimated
from a development dataset and the late reverberation cannot
be subtracted correctly as it is not modeled precisely.

In previous work [1], we proposed a robust distant-talking
speech recognition method based on power spectral subtrac-
tion (SS) employing the adaptive multi-channel least mean
squares (MCLMS) algorithm (see Fig. 1(a)). We treated the
late reverberation as additive noise, and a noise reduction
technique based on power SS was proposed to estimate the
power spectrum of the clean speech using an estimated power
spectrum of the impulse response. To estimate the power
spectra of the impulse responses, we extended the variable
step-size unconstrained MCLMS (VSS-UMCLMS) algorithm
for identifying the impulse responses in a time domain [7] to a
frequency domain. The early reverberation was normalized by
CMN. By combining the proposed method with beamforming,
a relative error reduction rate of 24.5% compared to the
conventional CMN with beamforming was achieved on an
isolated word recognition task.

Power spectral subtraction is the most commonly used
spectral subtraction method. A previous study has shown that
generalized SS (GSS) with a lower exponent parameter is more
effective than power spectral subtraction for noise reduction
[4]. In this paper, instead of using power SS, GSS is employed
to suppress late reverberation. We also investigate the use of
missing feature theory (MFT) [5] to enhance the robustness to
noise, in combination with GSS, since the reverberation cannot
be suppressed completely owing to the estimation error of the
impulse response. Soft-mask estimation based MFT calculates
the reliability of each spectral component from the signal-to-
noise ratio (SNR). This idea is applied to reverberant speech.
However, the reliability estimation is complicated in a distant-
talking environment. In [6], reliability is estimated from the
time lag between the power spectrum of the clean speech
and that of the distorted speech. In this paper, reliability is
estimated by the signal-to-reverberation ratio (SRR) since the
power spectra of clean speech and the reverberation signal can
be estimated by power SS or GSS using MCLMS. A diagram
of the modified proposed method combining GSS with MFT
is shown in Fig.1(b).
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Fig. 1. Schematic diagram of blind dereverberation methods.

II. OUTLINE OF BLIND DEREVERBERATION

A. Dereverberation based on power spectral subtraction

If speech ���� is corrupted by convolutional noise ���� and
additive noise ����, the observed speech ���� becomes

���� � ���� � ���� � ����� (1)

In this paper, additive noise is ignored for simplification, so
(1) becomes ���� = ���� � ����.

If the length of the impulse response is much smaller than
the size � of the analysis window used for short time Fourier
transform (STFT), the STFT of the distorted speech equals
that of the clean speech multiplied by the STFT of the impulse
response ����. However, if the length of the impulse response
is much greater than the analysis window size, the STFT of
the distorted speech is usually approximated by

���� �� � ���� �� �����

� ���� ������ �� �

����
���
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where � is the frame index, 	�
� is the STFT of the impulse
response, ���� 
� is the STFT of clean speech �, and 	�
� 
�
denotes the part of 	�
� corresponding to the frame delay 
.
That is, with a long impulse response, the channel distortion is
no longer of a multiplicative nature in a linear spectral domain,
but is rather convolutional [2].

In [1], we proposed a dereverberation method based on
power spectral subtraction to estimate the STFT of the clean
speech ����� 
� based on (2). The spectrum of the impulse
response for the spectral subtraction is blindly estimated
using the method described in Section II-C. Furthermore,
we compensate the early reverberation by subtracting the
cepstral mean of the utterance. If we assume that phases of
different frames are noncorrelated for simplification, the power
spectrum of (2) can be approximated as [1]
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where � ����� ���� � ���������

� ���������
� � ����� 
��� is the power

spectrum of reverberant speech after early reverberation nor-
malization and 	���� 
� is the mean vector of ���� 
�. The
power spectrum of clean speech � ����� 
��� can be estimated
as
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where � is the noise over estimation factor, � is the spectral
floor parameter to avoid negative or under flow values, and
	�
� 
�� 
 � 
� ������� is the STFT of the impulse response,
which can either be calculated from a known impulse response
or be blindly estimated. � is the number of reverberation
windows.

B. Dereverberation based on generalized spectral subtraction

Previous studies have showed that GSS with an arbitrary
exponent parameter is more effective than power SS for noise
reduction. In this paper, we extend GSS to suppress late
reverberation. Instead of the power SS based dereverberation
given in (4), GSS based dereverberation is modified as
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where � is the exponent parameter. For power SS, the exponent
parameter � is equal to 1. In this paper, the exponent parameter
� is set to 0.1 as this value yielded the best results in [4].

The methods given in (4) and (5) are referred to as SS-based
(original) and GSS-based (proposed) dereverberation methods,
respectively.

C. Compensation parameter estimation for spectral subtrac-
tion by multi-channel LMS algorithm

In [7], an adaptive multi-channel LMS algorithm for blind
Single-Input Multiple-Output (SIMO) system identification
was proposed.

In the absence of additive noise, we can take advantage of
the fact that

�� � �	 � � � �� � �	 � �	 � ��� �� 	 � �� �� � � � � 
� � �� 	� (6)

and have the following relations at time �:

x���� � ������ ����� �� ��� ����� �� ���	 � (7)

h���� � ������ 
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� � �� �� ���� ��

where � is the channel index, x���� is the speech signal
received at time �, h���� is the impulse response at time �,
����� �� is the l-th tap of the impulse response at time �, and
� is the number of taps of the impulse response.

An estimated error vector at time � is expressed as

�
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This error can be used to define a cost function at time �
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By minimizing the cost function � of (10), the impulse
response can be blindly derived. We extended this VSS-
UMCLMS algorithm [7], which identifies the multi-channel
impulse responses, for processing in a frequency domain with
SS applied in combination [1].



III. MISSING FEATURE THEORY FOR DEREVERBERATION

Missing feature theory (MFT) [5] enhances the robustness
of speech recognition to noise by rejecting unreliable acoustic
features using a missing feature mask (MFM). The MFM
is the reliability corresponding to each spectral component,
with 0 and 1 being unreliable and reliable, respectively. The
MFM is typically a hard and a soft mask. The hard mask
applies binary reliability values of 0 or 1 to each spectral
component and is generated using the signal-to-noise ratio
(SNR). The reliability is 0 when the SNR is greater than a
manually-defined threshold, otherwise it is 1. The soft mask
is considered a better approach than the hard mask and applies
a continuous value between 0 and 1 using a sigmoid function.

In a distant-talking environment, it is difficult to estimate the
reliability of each spectral component since it is difficult to es-
timate the spectral components of clean speech and reverberant
speech. Therefore, in [6], the reliability was estimated from �
������ information by measuring the difference between the
spectral components of clean speech and reverberant speech
at given times. In this paper, a soft mask is calculated using
the SRR. From (5) the SRR is calculated as
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The reliability ���� 
� for the soft mask is generated as

���� 
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�
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� (12)

where � and � are the gradient and center of the sigmoid
function, respectively, and are empirically determined. Finally,
the estimated spectrum of clean speech from (5) is multiplied
by the reliability ���� 
�.

IV. EXPERIMENTS

A. Experimental setup

Multi-channel distorted speech signals simulated by con-
volving multi-channel impulse responses with clean speech
were used to evaluate our proposed algorithm. Seven kinds of
multi-channel impulse responses measured in various acous-
tical reverberant environments were selected from the Real
World Computing Partnership (RWCP) sound scene database
[8] and the CENSREC-4 database [9]. Table I lists the condi-
tions for the seven recordings using a two-channel microphone
array. For the RWCP database, two-channel microphones were
taken from a circular microphone array (16 channels), with
the two microphones located at 5.85 � intervals. Impulse
responses were measured at several positions 2  from the
microphone array. For the CENSREC-4 database, two-channel
microphones were taken from a linear microphone array (7
channels) with the two microphones located at 2.125 � in-
tervals. Impulse responses were measured at several positions
0.5  from the microphone array. The Japanese Newspaper
Article Sentences (JNAS) corpus was used as clean speech.
100 utterances from the JNAS database convolved with the
multi-channel impulse responses shown in Table I were used

TABLE I
DETAILS OF RECORDING CONDITIONS FOR IMPULSE RESPONSE

MEASUREMENT. “RT60 (SECOND)”: REVERBERATION TIME IN ROOM.
“S”: SMALL, “L”: LARGE.

array no database room RT60

1 RWCP echo room (cylinder) 0.38
2 RWCP tatami-floored room (S) 0.47
3 RWCP tatami-floored room (L) 0.60
4 CENSREC-4 lounge 0.50
5 CENSREC-4 Japanese style bath 0.60
6 CENSREC-4 living room 0.65
7 CENSREC-4 elevator hall 0.75

TABLE II
CONDITIONS FOR SPEECH RECOGNITION.

sampling frequency 16 kHz
frame length 25 ms
frame shift 10 ms
acoustic model 5 states, 3 output probability

left-to-right triphone HMMs
feature space 25 dimensions with CMN

(12MFCCs + � + �power)

TABLE III
CONDITIONS FOR SPECTRAL SUBTRACTION BASED DEREVERBERATION.

analysis window Hamming
window length 32 ms
window shift 16 ms
number of reverberant windows 
 6

(192 ms)
noise overestimation factor 	 1.0 (Power SS)

0.1 (GSS)
spectral floor parameter � 0.15 (both)
soft mask gradient parameter � 0.05 (Power SS)

0.01 (GSS)
soft mask center parameter � 0.0 (both)

as test data. The average time for all utterances was about 5.8
s.

Table II gives the conditions for speech recognition. The
acoustic models were trained with the ASJ speech databases
of phonetically balanced sentences (ASJ-PB) and the JNAS.
In total, around 20K sentences (clean speech) uttered by
132 speakers were used for each gender. Table III gives the
conditions for spectral subtraction based dereverberation. The
parameters shown in Table III were determined empirically.
For the proposed dereverberation method based on spectral
subtraction, the previous clean power spectra estimated with
a skip window were used to estimate the current clean power
spectrum since the frame shift was half the frame length in
this study. The spectrum of the impulse response 	�
� 
� was
estimated for each utterance to be recognized. The word accu-
racy rate for large-vocabulary continuous speech recognition
(LVCSR) with clean speech was 92.59%.

B. Experimental results and discussion

In both our SS-based and GSS-based dereverberation meth-
ods, speech signals from two microphones were used to
estimate blindly the compensation parameters for the power
SS and GSS (that is, the spectra of the channel impulse



TABLE IV
WORD ACCURACY RATES FOR LVCSR (%). DELAY-AND-SUM

BEAMFORMING WAS PERFORMED FOR ALL METHODS.

Distorted CMN Power SS GSS (proposed)
Speech # only w/o MFT MFT w/o MFT MFT

1 44.35 63.34 65.15 65.95 66.47
2 27.59 40.79 44.03 49.16 47.56
3 25.61 42.55 45.75 49.29 48.31
4 73.90 79.26 78.17 80.77 80.96
5 27.06 42.28 44.91 45.38 47.83
6 29.62 50.78 54.60 56.13 58.87
7 65.24 71.67 68.31 74.35 75.93

Ave. 41.91 55.81 57.27 60.15 60.85

TABLE V
BREAKDOWN OF SPEECH RECOGNITION ERRORS (%).

CMN Power SS GSS (proposed)
only w/o MFT MFT w/o MFT MFT

Sub 40.61 30.48 29.37 27.39 27.42
Del 13.82 9.27 9.26 8.99 8.06
Ins 3.67 4.44 4.10 3.47 3.67

responses), and then reverberation was suppressed by SS and
the spectrum of dereverberant speech was inverted into a time
domain. Finally, delay-and-sum beamforming was performed
on the two-channel dereverberant speech. The schematic of
dereverberation is shown in Fig. 1.

Table IV shows the speech recognition results for the
original and proposed methods. “Distorted speech #” in Table
IV corresponds to “array no” in Table I. The word accuracy
rate by CMN without beamforming was 40.46%. The speech
recognition performance was drastically degraded under re-
verberant conditions because the conventional CMN did not
suppress the late reverberation. Delay-and-sum beamforming
with CMN (41.91%) could not improve the speech recognition
performance markedly because of the small number of micro-
phones and the small distance between the microphone pair.
On the other hand, the power SS based dereverberation using
(4) markedly improved the speech recognition performance.
The GSS-based dereverberation using (5) improved speech
recognition performance significantly compared with the orig-
inal proposed (power SS based dereverberation) method and
CMN for all reverberant conditions. The GSS-based method
without MFT achieved an average relative word error reduc-
tion rate of 31.4% compared to the conventional CMN and
9.8% compared to the power SS-based method without MFT.
When MFT was combined with both our methods, a further
improvement was achieved. Finally, the GSS-based method
with MFT achieved an average relative word error reduction
rate of 32.6% compared to conventional CMN and 11.4%
compared to the original proposed method [1].

Table V gives a breakdown of the word error rates obtained
by the power SS- and GSS-based methods. The power SS-
based method improved the substitution and deletion error
rates, but degraded the insertion error rate compared with
CMN. The GSS-based method improved all error rates com-
pared with the power SS-based method, and achieved almost

the same word insertion error as CMN.

V. CONCLUSIONS AND FUTURE WORK

Previously [1], we proposed a blind dereverberation method
based on power SS employing the multi-channel LMS algo-
rithm for distant-talking speech recognition. Previous studies
showed that GSS with an arbitrary exponent parameter is more
effective than power SS for noise reduction. In this paper,
instead of power SS, GSS is applied to suppress late reverber-
ation. However, reverberation cannot be completely suppressed
owing to the estimation error of the impulse response. MFT is
used to enhance the robustness of noise. Soft-mask estimation
based MFT calculates the reliability of each spectral compo-
nent from SNR. In this paper, reliability was estimated through
the signal-to-reverberation ratio. Furthermore, delay-and-sum
beamforming was also applied to the multi-channel speech
compensated by the reverberation compensation method. Our
SS and GSS-based dereverberation methods were evaluated
using distorted speech signals simulated by convolving multi-
channel impulse responses with clean speech. The GSS-based
method without MFT achieved an average relative word error
reduction rate of 31.4% compared to conventional CMN and
9.8% compared to the power SS-based method without MFT.
When MFT was combined with both our methods, further
improvement was obtained. The GSS-based method with MFT
achieved average relative word error reduction rates of 32.6%
and 11.4% compared to conventional CMN and the original
proposed method, respectively.

So far, additive noise has been ignored in our study for the
sake of simplicity, but background noise cannot be ignored in a
real environment. In the future, we will attempt to extend our
proposed methods to real-world speech data simultaneously
degraded by additive noise and convolutional noise.
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