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Abstract—In this paper a novel speech feature generation-
based acoustic model training method is proposed. For decades,
speaker adaptation methods have been widely used. All existing
adaptation methods need adaptation data. However, our proposed
method creates speaker-independent acoustic models that cover
not only known but also unknown speakers. We do this by
adopting inverse maximum likelihood linear regression (MLLR)
transformation-based feature generation, and then train our
models using these features. First we obtain MLLR transfor-
mation matrices from a limited number of existing speakers.
Then we extract the bases of the MLLR transformation ma-
trices using PCA. The distribution of the weight parameters
to express the MLLR transformation matrices for the existing
speakers are estimated. Next we gener ate pseudo-speaker MLLR
transformations by sampling the weight parameters from the
distribution, and apply the inverse of the transformation to the
normalized existing speaker features to generate the pseudo-
speakers features. Finally, using these features, we train the
acoustic models. Evaluation results show that the acoustic models
which are created are robust for unknown speakers.

I. INTRODUCTION

A method for speaker-independent robust speech recogni-
tion with limited speech resources is proposed. The degra-
dation of speech recognition performance is often due to
the mismatch between the training and test conditions. There
are many reasons for such mismatches: differences between
individual speakers, recording equipment, surrounding noise,
etc. To compensate for such mismatches, adaptation techniques
are often used. Model-based adaptation, such as maximum
a posteriori (MAP) adaptation [1] and maximum likelihood
linear regression (MLLR) [2], transform acoustic modd s (usu-
aly hidden Markov models (HMMs)) to fit the target speaker
or environment. These techniques, however, need a certain
amount of adaptation data to estimate the parameters of the
models.

Speaker adaptive training (SAT)[3] has also been proposed.
In SAT, training data are normalized to a “virtua” average
speaker for whom the acoustic models are trained. In the
recognition stage, input speech is aso normalized and rec-
ognized using the acoustic models for the average speaker.

Adaptation techniques which only need a small amount
of target speech data, such as those used by inter-spesker
adaptation methods like Eigenvoice [4] have been proposed.
In this framework, the super vectors of the mean parameters of
the speaker-dependent acoustic models are used as bases, and

the super vector of the new speaker-specific acoustic models is
expressed as a linear combination of these bases. Eigenvoice
needs a small amount of target speech because the variety in
the speech and environments is expressed in alow dimensional
sub-space. Eigen-MLLR, which is a combination of MLLR
and eigenvoice, was proposed in [5]. Principa component
analysis (PCA) is applied to the MLLR transformation ma-
trices to obtain bases, and then a new speaker’s MLLR matrix
is expressed as a linear combination of the matrices.

All adaptation methods need adaptation data. We can only
use limited speech data from the environment where the
system is to be used, because the cost of collecting data in
realistic environmentsis very high. We believe this assumption
is redlistic during the early use of such a speech application.

In this paper, we propose a novel speech feature generation-
based speaker-independent model training method to compen-
sate for the variation in limited speech resources. We do this by
reversing the concept of adaptation. In the proposed method,
we do not remove the speaker variations; we add them to the
averaged speech features. We assume that individual speech
variation is generated by adding the individual differences to
an “average’ person. Speaker recognition using the MLLR
transformation matrix [6] suggests that the linear transforma
tion matrix expresses individuality. We first obtain the MLLR
transformation matrices from a limited amount of speech data
and apply PCA to it to extract a small number of bases. Then
we generate pseudo-speaker transformation matrices from the
statistical linear combination of the bases. Finaly, the speech
features are generated by applying the inverse transformation
matrices to the normalized speech features to train the speaker-
independent (but environment adapted) acoustic models. Using
this technique, we can easily obtain a huge amount of speech
variations from a limited number of speakers in the target
environments, and make the acoustic models robust to the
inter-speaker variations.

Il. ACOUSTIC MODEL TRAINING BASED ON FEATURE
GENERATION USING INVERSE MLLR TRANSFORMATION

Our proposed method consists of five steps: (1) estimation
of the MLLR transformation matrices of speaker utterances
recorded in the target environments; (2) extraction of the
bases of the MLLR transformation matrices; (3) estimation of
the basis weight distributions; (4) speech feature generation



Extraction of bases

R training data
Training R CMLLR Transformatign & PCA Bases for
| > j |:|'> matrices W, 2.] I:> Matrices | ,
1 1

Estimation of weight parameter distribution

a,, : Basis weight parameters
for transformation matrix

O~a®D+a? O -+ay ]

O o+ a® M-+ P

M-dimensional Gaussian
distribution of &,

Generation of pseudo transformation

N transformation matrices
for pseudo training speakers

| H=a"[+a® [J+-+a
O~ & [+ & [+ +a™[]

Distribution of d,,

Sampling

Pseudo training data generation

R training data

~R| + Transformati

matrix W,
1
N generated

6, =W(, ‘ .
transformation matrices

[-R |Inverse transformation| TrERSEEEh
2 I matrix W; |,
1

Pseudo training data j,i

Pseudo training !m = = =« |Pseudo training QM
dataN N1

data1 11
Fig. 1. Flow of the proposed feature generation-based acoustic model training
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applying the inverse transformation matrix to the speaker-
normalized speech data; (5) acoustic model training with
generated features. The flow of the proposed method is sum-
marized in Fig. 1. Here, we assume that we can use a certain
amount of the training data in the target environments, but
the data do not include the test speakers. This was necessary
because we just developed this new application and were only
able to collect a small amount of data in the field where the
application was used.

A. Normalization of training speech

We adopted Constrained MLLR (CMLLR)[7], [8] to nor-
malize the training speech:

6=Ao+b=W(, (1)

where o and 6 express an n-dimensional input feature vector
and a normalized one, W = [ b” AT}T e R(»+1) js a
transformation matrix, and ¢ = [ 1 oT]T e RO+Dx1 jsan
extended feature vector including a bias.

We obtain transformation matrix W,, (i = 1,--- , R) for
speaker ¢ of R speakers in the training data.

B. Basis extraction using PCA

We assume that transformation matrix W consists of a
linear combination of bases. One could use all the W, (i =
1,---) as bases, but the number of componentsin W ; islarge
(n x (n+ 1)). However, speech production is constrained by
physical limitations such asvocal tract length. Such constraints
should be reflected in the range of individual differencesin the
transformation matrix.

Thus, we apply PCA to then x (n+1)-dimensional R super
vectors V; (i = 1, - - - R), which are the concatenations of the
columns in W;s, and obtain M eigen vectors V(Em) (m =
1,--+ M) with the largest M eigenvalues as bases. This means
that the transformation expressing individual differences is
constrained as a linear combination of the basis super vectors.
We also consider basis extraction as the blind estimation of
speaker variances.

C. Edtimation of distribution of weight parameters

Using the bases extracted in the previous section, we
express the individuality of a certain spesker V; =
a(])T(Vg), . 7V(EIV[)), where ali) = (agj)g .. 7@5\]4))T(i =
1,---, R). We estimate the distribution of a’.

Each training speaker’s super vector derived from the trans-
formation matrix is approximated by a linear combination
of V; = a®T(VL ... VM) Weight a® is obtained by
the square error minimization criterion. With a¥)s for some
training speakers and an assumption of atype of distribution of
al?)| we can estimate the distribution parameters. We assume
that a¥) is distributed as an M-dimensional Gaussian.

D. Speech feature generation by inverse MLLR transformation

Once we obtain the distribution of a(?), we randomly pick

N samples, a’("), (n = 1,---N), from the distribution.
Using a’"™, we generate N MLLR transformations, W', =
[bé’ )A;], by linear combination of the bases weighted by
a’\",
Each generated transformation corresponds to a pseudo-
speaker. We reverse the SAT technique [3] to obtain a variety
of speakers by applying the transformation to the normalized
speech features. We first apply the normalization matrix for
training speaker ¢, W, to the speech features of speaker i
and then apply the inverse of the generated transformation,
W’S;l), to them to generate the speech feature of pseudo-
speaker n:

o, = A','6;— A’ @)

= Wil ©

6n = WiCi, (4)
(i =1,--- ,R)

where 6,, is a generated feature of speaker n and ¢, =
[1 of]" and ¢, = [1 6T]" are extended feature vectors
of training speech uttered by speaker ¢ before and after



normalization, respectively. Note that speaker n, who is not
included in the training data, is a generated pseudo-speaker.
Applying this procedure using the training speech of speakers
i = 1---R and pseudo-speakers n = 1---N, we can
obtain much more training data for the acoustic models. These
pseudo-speakers are obtained from the distribution of original
training speakers. If there are training speakers enough to
estimate the “correct” acoustic models, the results should be
better than our method. Here, we assume the situation that
we cannot use enough data to train acoustic models and thus
we try to “interpolate” or “extra-polate” the parameters of
speakers.

E. Training acoustic models using generated speech

Finally, we use the feature vectors generated by the tech-
nique described in the previous section to train the acoustic
models. The training data consist not only of existing speaker
utterances but also the utterances of other generated speakers.
As a result the acoustic models are expected to be robust at
recognizing unknown speaker utterances.

I1l. EXPERIMENTS

A. Experimental conditions

We collected rea-field speech data using the MusicNavi2
[9] spoken dialog-based music retrieval system. This system
obtains user utterances from the Internet using loss-less speech
compaction. Many anonymous users can use this system.

For recognition, we used a word-loop grammar with a
vocabulary including all the words in the test utterances. There
were no unknown words. We randomly selected 50 males and
50 females as training speakers. Utterances spoken by each
training speaker were used as the training data. Training set
1 was 10 utterances from each subject (100 x 10 = 1000
utterances), and training set 2 was 30 utterances from each
subject (100 x 30 = 3000 utterances).

We used test utterances from 250 speakers (160 males and
90 females). Fifty utterances from each speaker were used
as test data. A feature vector consisted of a 12-dimensional
MFCC, their first and second derivatives, and the first and sec-
ond derivatives of the power. Experimental setup conditions,
including these, are summarized in Table I.

For comparison, we performed MAP adaptation using all
the training utterances, which is the adaptation for the envi-
ronment, and SAT in the way of [2].

B. Evaluation results

1) Basis extraction: We set the cumulative proportions to
80%, 90%, and 95% to extract the bases. The relation between
the cumulative contribution ratios and the number of bases is
shown in Table Il. With a cumulative proportion of 80%, we
need approximately half of the bases that are extracted from
the number of training speakers.

TABLE |
EXPERIMENTAL SETUP

# Training speakers
# Training uttrerances

100 (50 males and 50 females)
Set 1: 1000 (10 uttr. per person)
Set 2: 3000 (30 uttr. per person)
250 (160 males and 90 females)
Exclusive with training sets
12500 (50 uttr. per person)

# Test speakers

Amount of test data

Features 12MFCC + 12 A + 12 AA
+Apower + AApower
Speech recognizer Julius-4.1[10]
Acoustic model Gender-independent triphone HMM
structure 3000 states, 16 mixtures per state
Language model Word loop grammar
Dictionary Words for MusicNavi2

(approx. 8000 words)

TABLE Il
RELATION BETWEEN CUMULATIVE PROPORTIONS AND NUMBER OF BASES

Cumulative contribution ratio [%] | 80 | 90 | 95
# of Bases | Training set 1 50| 75| 86
Training set 2 56 | 73| 84

2) Recognition results: Using our proposed method, we
generated 1000 pseudo-speakers from the bases described in
Table 11, randomly selected 600 real training speaker utter-
ances from the training data, and converted these utterances
for each pseudo-speaker. Thus we were able to obtain 60,000
training utterances. We trained the acoustic models using
these utterances. For comparison, we also adapted the acoustic
models trained using the Corpus of Spontaneous Japanese
(CSJ))[11] with the rea training data described in Table I.
The average recognition rates and the standard deviations are
shown in Table Ill. The test speakers were all different from
the training speakers, so the recognition rates in Table I11 can
be seen as the recognition rate without any speaker adaptation
(but with environmental adaptation).

The table shows that the larger the number of the bases,
the better the recognition rates, especialy regarding Training
set 1, which consisted of 10 utterances by 100 speakers. The
recognition rate for Training set 1, using the proposed method,
is comparable to the rate using MAP adaptation. With Training
set 2, the proposed method outperforms MAP adaptation. Note
that the standard deviations of the recognition rates with the
proposed method are smaller than those with MAP, suggesting
that the acoustic models were robust for handling speaker
variations. The cumulative test speaker frequencies and the
recognition rates are shown in Fig. 2. The numbers of speakers
with low recognition rates are significantly smaller using the

1We have to note that we should compare these results with the case we
train acoustic models using original training data, but we could not do on
the same condition because of the lack of training data. We conducted a
preliminary experiments with small size of acoustic models and obtained that
even using the training set 2 and HMMs with 500 states, the result of our
method outperformed that by HMMs trained using original data because of
the over-training. Using HMMs with 300 states, training original data were
comparable with our method.



TABLE 111
RECOGNITION RATES [%] AND STANDARD DEVIATIONS USING ACOUSTIC
MODELS TRAINED USING PSEUDO-SPEAKER UTTERANCES AND THOSE
ADAPTED BY MAP

Methods! Proposed MAP

Cumu. contrib. ratio 80% | 90% | 95%
Training set 1 | Recog. rate | 64.1 | 655 | 66.5 | 67.9
Std. dev. 173 | 172 | 169 | 196
Training set 2 | Recog. rate | 70.5 | 70.7 | 70.8 | 69.2
Std. dev. 164 | 164 | 16.7 | 195
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Fig. 2. Cumulative speaker frequency against recognition rates. CPn expresses
the cumulative contribution ratio of n in the proposed method. The nearer to
the X-axis the line is, the better the recognition performance.

proposed method than with MAPR. This suggests that speaker
generation produces a wide range of speaker variations. For
this reason, the proposed training feature generation method
works robustly for unknown speakers, especially those with
low recognition rates. Inversely, our method did not perform
well for the speakers originally with high recognition rates.
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Fig. 3. Comparison of proposed method and SAT. CPn expresses cumulative
proportion of n in the proposed method. In the figure, al the lines for CPns
overlaps.

This may be the effect of pseudo-speakers which were far
from real humans, resulting that the distributions in HMM
states were too broad than they need to be.

C. Comparison with SAT

The method proposed in this paper is inspired by SAT,
in which all the training speech is normalized and used for
training, and in which the test utterances are normalized as
well. However, our method generates speaker variation to train
the acoustic models.

The crucia difference between SAT and our method is
that SAT needs adaptation data for a specific speaker but our
method does not.

We also compared the performance of SAT and our method.
In the SAT framework, we assume that the normalization
parameters of the transformation matrix are estimated from
1, 3, 5, 10, and 30 input utterances with which to normalize
the test data. The recognition results are shown in Fig. 3. SAT
performs better with more than ten adaptation utterances, but
our method performs well without adaptation data.

IV. CONCLUSION

In this paper, we proposed generative acoustic model train-
ing based on the generation of pseudo speech features us
ing a linear combination of principal components of MLLR
transformation matrices. Our method outperforms adaptation-
based methods when the amount of training data in the test
environments is limited, especially for speakers with low
speech recognition rates.

In the future, we will use more real speech datato generate
a huge amount of feature vectors to produce an accurate and
robust acoustic model. Currently we only use PCA to constrain
the freedom of combination, but we need to investigate an
appropriate constraint for speech generation. In an appropriate
constraint subspace, we can generate a huge number of more
accurate unknown speaker utterances to train a universal
model.
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