
Audio-visual Interaction in Model Adaptation for
Multi-modal Speech Recognition

Satoshi Tamura, Masanao Oonishi and Satoru Hayamizu
Department of Information Science, Gifu University, Japan

E-mail: {tamura@info., oonishi@asr.info., hayamizu@} gifu-u.ac.jp

Abstract—This paper investigates audio-visual interaction, i.e.
inter-modal influences, in linear-regressive model adaptation for
multi-modal speech recognition. In the multi-modal adaptation,
inter-modal information may contribute the performance of
speech recognition. Thus the influence and advantage of inter-
modal elements should be examined. Experiments were con-
ducted to evaluate several transformation matrices including or
excluding inter-modal and intra-modal elements, using noisy data
in an audio-visual corpus. From the experimental results, the
importance of effective use of audio-visual interaction is clarified.

I. INTRODUCTION

In order to enhance the robustness of Automatic Speech
Recognition (ASR) in noisy or real environments, multi-modal
speech recognition (or bimodal ASR, audio-visual ASR) is
often employed [1], [2], [3]. In the typical multi-modal ASR,
speech signals as well as lip images, that are not affected by
any acoustic noises, are used together. The multi-modal ASR
has achieved the better performance than the conventional
audio-only ASR in acoustically noisy environments.

On the other hand, model adaptation technique has been
widely used by many ASR methods. In the model adaptation,
model parameters in acoustic models are modified so as to
decrease the mismatch between the model parameters and
adaptation features. Maximum Likelihood Linear Regression
(MLLR) [4] is one of the major adaptation methods for speech
processing; MLLR updates model parameters such as mean
vectors in Gaussian distributions by linear transformation.

In multi-modal ASR, MLLR is also used in order to
further improve recognition accuracy, and actually achieving
high performances [1]. Since the basic MLLR method adapts
model parameters assuming a single modality, there may be
mutual influences between modalities in multi-modal ASR:
e.g. contributions of audio features to visual adaptation and
visual effect to audio model parameters. Regarding adaptation
for multi-modal ASR, there is a related work in which several
adaptation techniques were used in order to convert features
[5]. However, there are few researches investigating inter-
modal or intra-modal influences and the audio-visual inter-
action.

In this paper, we investigate the inter-modal effects in linear-
regressive adaptation for audio-visual ASR. Several MLLR
transformation matrices are analyzed by evaluating the perfor-
mance of multi-modal ASR.

This paper is organized as follows: Section II introduces
multi-modal speech recognition and its corpus used in this
paper. The principle of model adaptation is described in

TABLE I
Specification of CENSREC-1-AV.

(A) speech data
Sampling freq. 16 kHz
Bit rate 16 bit/sample
File format RIFF Waveform Audio (.wav)
Noise Interior car noises

(driving on city road and expressway)

(B) image data
Color image Infrared image

Frame rate 29.97 Hz (NTSC)
Pixel data 24bit RGB color 8bit grayscale
Image size width 81 pixel × height 55 pixel
File format Windows Bitmap Image (.bmp)
Distortion Driving simulation —

(gamma transformation)

(C) data set
Training set Test set (adaptation set)

# spkr. 20 females and 26 females and
22 males 25 males

# utter. 3,234 utterances 1,963 utterances
Acoustic clean clean,

city-road noise (6 SNRs),
expressway noise (6 SNRs)

Visual clean/color, clean/color, clean/infrared,
clean/infrared gamma/color

Section III. Experimental setup, result and discussion are
shown in Section IV. Finally Section V concludes this paper.

II. MULTI-MODAL SPEECH RECOGNITION

A. CENSREC-1-AV
A corpus “CENSREC-1-AV” (CENSREC: Corpora and

Environments for Noisy Speech RECognition) is utilized in
this paper [6]. CENSREC-1-AV includes not only speech data
and mouth pictures but also a baseline system and its result.
By comparing the baseline result, we can easily evaluate our
own multi-modal ASR system.

B. Data and features
The data specifications are summarized in Table I (A)

and (B). There are approximately 5,200 utterances in total,
which consists of Japanese connected digits. Speech signal
was recorded in office environment. Two kinds of movies were
captured for each utterance: color (optical) and infrared pic-
tures. Infrared pictures are helpful when illumination (visible
spectrum) condition is “noisy,” e.g. in a driving car.

A 39-dimensional acoustic vector consisting of 12 MFCCs,
an energy coefficient, and their first and second derivatives
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is extracted from an audio frame, of which frame length is
25ms. A 30-dimensional visual feature is also computed, that
includes 10-dimensional “eigenlip” components [3] and their
∆ and ∆∆ coefficients. The frame shift of acoustic and visual
features is 10ms.

C. Model training and recognition

Hidden Markov Model (HMM) is employed as acoustic,
visual, and audio-visual models. Data set specification is
summarized in Table I (C). The training set is used for training,
then the test set is also utilized for testing. The model training
method in this paper is the same as that of CENSREC-1-AV.
Each digit HMM had 16 states respectively, and an HMM for
silence had three. A multi-stream HMM consisting of an audio
stream derived from the acoustic HMM and a visual stream
derived from the visual HMM is employed. In this HMM, an
output log likelihood is computed as:

bav(oav) = λaba(oa) + λvbv(ov) (1)

where oa and ov are acoustic and visual features respectively,
and oav =(oa

T ov
T )T . Audio and visual log likelihoods are

denoted by ba(oa) and bv(ov), respectively. Finally λa and
λv are stream weighting factors. When recognition, the stream
weights are optimized manually under the constraint:

λa + λv = 1 (2)

The audio stream weight λa are tested at intervals of 0.1.
CENSREC-1-AV provides a baseline result in several noisy

conditions: two in-car noises recorded on city roads and
expressways. Every noises are respectively added to clean
speech data in a test set, at six SNRs (−5 to 20dB). As visual
distortion, gamma transformation is applied to color pictures
in the test set in order to simulate car-driving condition.
Thus three kinds of visual data are available: clean/color,
clean/infrared and gamma/color.

III. MODEL ADAPTATION

A. MLLR

Maximum Likelihood Linear Regression (MLLR) is widely
used in ASR, that can improve the performance particularly
in noisy or real environments. In this paper, a simple HMM
in which each state has only one Gaussian pdf is considered.
Let us denote an N -dimensional average vector of a Gaussian
distribution by µ. MLLR projects the mean vector into an
adapted vector µ̂ by the following linear regression:

µ̂ = Hµ + b (3)

where H is an N -dimensional square matrix and b is an N -
dimensional bias vector. The equation (3) can be rewritten as:

µ̂ = W ξ (4)

where ξ = (1 µT )T and W = (b H). The matrix W can be
determined using adaptation features [4].
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Fig. 1. MLLR transformation matrices for audio-only and visual-only ASRs.

B. Adaptation in unimodal ASR

The basic MLLR method explained above is applied to
audio-only ASR:

µ̂(a) = W (a) ξ(a) (5)

where ξ(a) is an extended average vector, W (a)=(b(a)H(a)).
Similarly, MLLR is also applied to visual ASR (lipreading):

µ̂(v) = W (v) ξ(v) (6)

where ξ(v) and µ̂(v) are an extended visual mean vector and
its adapted vector respectively, and W (v)=(b(v)H(v)). Figure
1 depicts the matrices W (a) and W (v). In this figure, Na and
Nv indicate audio and visual dimensions respectively.

C. Adaptation in multi-modal ASR

For multi-modal ASR, the conventional MLLR has been
used. However, it is not investigated and clarified how the
adaptation method should deal with multiple modalities, or
how inter-modal information affects the performance; e.g.
whether audio information is effective to adapt visual model
parameters or not, and visual features contribute audio adap-
tation or not. In order to further examine the adaptation for
multi-modal ASR, therefore, this paper evaluates the following
five MLLR schemes (transformation matrices W1, W2, W3,
W4 and W5 illustrated in Figure 2 and explained in Table II):

1) Conventional audio-visual adaptation
The conventional MLLR is applied; a full transforma-
tion matrix W1 = (b(av)H(av)) is obtained using 69-
dimensional audio-visual features. Then H(av) can be
expressed as:

H(av) =

(
H

(av)
aa H

(av)
av

H
(av)
va H

(av)
vv

)
(7)

In the following explanation, let us denote H
(av)
xy by

Hxy. In this case, audio adaptation is conducted using
not only audio but also visual information. Visual adap-
tation is also accomplished in the same way.

2) Intra-modal adaptation obtained by multi-modal data
A transformation matrix W2 is derived from W1, how-
ever, only intra-modal elements (Haa and Hvv) remain
and inter-modal elements (Hav and Hva) are discarded.

3) Intra-modal adaptation obtained by unimodal data
Similar to W2, a matrix W3 has only intra-modal trans-
formation. The audio part is equivalent to the audio-
only matrix H(a), and the visual part is as same as the
visual one H(v). The difference between W2 and W3 is
that, the intra-modal elements are computed using audio-
visual data in the former, while the elements are obtained
using audio and visual data respectively in the latter.

4) Multi-modal audio adaptation / visual-only adaptation
An audio mean vector is adapted using audio-visual
information (Haa and Hav), whereas a visual mean
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Fig. 2. MLLR transformation matrices for multi-modal ASR (see also Table II).

TABLE II
Audio and visual adaptation in MLLR for multi-modal ASR.

Audio adaptation Visual adaptation
W1 AV (Haa Hav) AV (Hva Hvv)
W2 AV(a) (Haa) AV(v) (Hvv)
W3 A (H(a)) V (H(v))
W4 AV (Haa Hav) V (H(v))
W5 A (H(a)) AV (Hva Hvv)

AV · · · multi-modal (audio and visual) transformation,
AV(a) · · · only audio part in multi-modal transformation,
AV(v) · · · only visual part in multi-modal transformation,

A · · · audio-only transformation,
V · · · visual-only transformation.

vector is affected only by visual parameters (H(v)) in
a matrix W4. By comparing this matrix with W1 and
W3, inter-modal effect can be further investigated.

5) Audio-only adaptation / multi-modal visual adaptation
A matrix W5 adapts audio mean parameters using only
acoustic data. Visual adaptation is then performed us-
ing audio and visual information. This matrix is also
designed to analyze the audio-visual interaction.

IV. EXPERIMENT

A. Experimental setup

In the following experiments, a simple HMM having only
one audio mixture and one visual mixture was employed. Two
kinds of models were built using clean audio and color visual
data, as well as clean audio and infrared visual data.

For each speaker, the global unsupervised adaptation was
applied; one transformation matrix was shared by all states
in all HMMs. 10 utterances (equivalent to roughly 30-second
utterances) in subject’s data in the test set were used for adap-
tation, all the subject’s utterances were then recognized. The
mean values were adapted whereas no adaptation was applied
for covariance and transition matrices, and mixture weights.
Three audio noise conditions were used: expressway 20dB,
10dB and 0dB. All the three visual conditions were employed
for testing. Therefore, every adaptation methods were tested in
nine audio-visual conditions. Recognition parameters, i.e. an
insertion penalty and stream weights, were optimized manually
to achieve the best performance for each condition. Any other
experimental conditions (features, training, recognition, and
noises) are the same as those of CENSREC-1-AV.

TABLE III
Recognition accuracies of audio and visual ASRs.

(A) audio-only ASR (conventional ASR)
w/o MLLR MLLR

20dB 92.60% 95.78%
10dB 71.47% 95.05%
0dB 51.61% 91.58%

(B) visual-only ASR (lipreading)
clean/color clean/infrared gamma/color

w/o MLLR 36.02% 37.56% 34.24%
MLLR 35.60% 38.63% 34.49%

B. Experimental result of unimodal ASR
Table III shows recognition accuracies of audio-only and

visual-only unimodal ASRs in noisy environments. Recogni-
tion results before and after MLLR are listed for comparison.
W (a) was used for audio adaptation, and W (v) was used for
visual adaptation. According to Table III, it is obvious that the
audio-only MLLR is much successful. This phenomenon was
caused because the acoustic noises used in the experiments
have less magnitudes in the frequency domains that are domi-
nated by speech. In contrast, the advantage of visual adaptation
is limited. Since the original accuracy is not sufficient, the
adaptation might not work well. Infrared results are slightly
better than color ones. This may be because the number of
mixtures is insufficient for color pictures: eight mixtures for
color whereas one mixture for infrared in CENSREC-1-AV.

C. Experimental result of multi-modal ASR
Table IV represents recognition accuracies of the multi-

modal ASR. The first result (0) is obtained without using
MLLR, and the other results (1)−(5) are given by MLLR
adaptation. The conventional adaptation (1) achieved better
performance than the baseline result (0), however, no sig-
nificant difference is observed when comparing to the result
of audio-only MLLR in Table III (A). On the other hand,
the following remarkable result is observed; comparing to the
result of visual-only MLLR shown in Table III (B), the multi-
modal MLLR method using W1 and λV = 1 achieved better
performance of 41−45% recognition accuracy shown in Table
V. This means that it is effective to use audio-visual adaptation
even in lipreading, and maybe in audio-only ASR in some
situations where visual performance is superior to audio one.

Comparing the result (2) with (1), audio-visual interaction
plays a certain role in improving the performance. Figure 3



TABLE IV
Recognition accuracies of multi-modal ASR.

(0) without MLLR adaptation
clean/color clean/infrared gamma/color

20dB 93.13% 93.58% 92.88%
10dB 71.59% 71.59% 71.59%
0dB 51.52% 53.13% 51.74%

(1) MLLR (W1: conventional adaptation)
clean/color clean/infrared gamma/color

20dB 95.04% 96.08% 95.04%
10dB 92.40% 94.68% 92.29%
0dB 89.53% 92.85% 89.37%

(2) MLLR (W2: using Haa and Hvv)
clean/color clean/infrared gamma/color

20dB 92.83% 95.64% 92.65%
10dB 89.44% 93.64% 89.53%
0dB 86.24% 91.39% 86.30%

(3) MLLR (W3: using H(a) and H(v))
clean/color clean/infrared gamma/color

20dB 96.51% 96.51% 96.34%
10dB 95.41% 95.66% 95.24%
0dB 92.68% 93.24% 92.43%

(4) MLLR (W4: using Haa, Hav and H(v))
clean/color clean/infrared gamma/color

20dB 95.04% 96.11% 95.04%
10dB 92.40% 94.68% 92.29%
0dB 89.53% 92.85% 89.37%

(5) MLLR (W5: using H(a), Hva and Hvv)
clean/color clean/infrared gamma/color

20dB 96.65% 96.60% 96.51%
10dB 95.56% 95.64% 95.35%
0dB 93.00% 93.22% 92.60%

TABLE V
Visual recognition accuracies (λA = 0, λV = 1) in the condition (1) in

Table IV.
clean/color clean/infrared gamma/color

42.44 45.31 41.03

illustrates an absolute value of each element in the matrix W1.
In this figure, white means a small value, and black indicates a
large value. Inter-modal effects are easily observed, and such
the interaction might engage recognition performance.

The intra-modal adaptation method (3), that is one of the
normal model adaptation schemes, is significantly superior to
the methods (1) and (2). However, it is also shown in the
first paragraph that visual performance can be improved by
using audio-visual information, i.e. inter-modal information.
Therefore, it is predicted that “in the modality that has
relative low accuracy, using the another modality that achieves
relatively high performance is crucial and effective.”

In order to investigate the prediction, the MLLR schemes
(4) and (5) are further examined and compared. The method
(5) has slightly better results compared to the method (3):
for example, approximately 5% relative error reduction using
gamma visual features in SNR=20dB audio condition. Visual
performance is not significant as described, however, it is
turned out that visual information plays a role in improving
audio-visual recognition performance to an extent. This is
because the best recongition results are observed when using
λV = 0.2 or 0.1. On the other hand, the result of the method
(4) is not superior to that of the method (3) and is almost the
same as that of the method (1). Note that the audio stream

Fig. 3. A sample of transformation matrix W1.

weights in the methods (1) and (4) were almost 1.0, hence,
visual adaptation cannot be evaluated by using these results.

V. CONCLUSION

We investigate audio-visual interaction, or inter-modal
influences, in MLLR adaptation for multi-modal speech
recognition. Experiments were conducted using several
MLLR transformation matrices, the following conclusion is
then turned out.

It is effective and essential for a modality to use the other
modalities that have better performance than the modality.
It is thus crucial to adopt effective inter-modal information
according to conditions of every modalities. And even for
a unimodal ASR, there is a great possibility to improve the
performance by using the other modalities in adaptation.

Our future work includes automatic stream-weight optimza-
tion for adaptation and recognition, further evaluation of the
inter-modal effect using the other corpora, the same investiga-
tion to the other adaptation techniques, and development of a
high-performance multi-modal ASR system using the results
obtained in this paper.
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