
A Comparative Performance Evaluation of Multi
Processor Multi Core Server Processor Architectures

on Enterprise Middleware Performance
 W.M. Roshan Weerasuriya and D.N. Ranasinghe

University of Colombo School of Computing, Colombo, Sri Lanka
E-mail: {wmr, dnr}@ucsc.lk Tel: +94-112-158978

Abstract-In this paper we describe the performance evaluation
and comparison of server based “Enterprise Middleware”
frameworks on multi-processor multi-core server processor
architectures. We experimented a 'single processor quad core
Intel Xeon' server processor and a 'dual processor dual core
multiprocessor AMD Opteron'. Also we discuss the expected
enterprise middleware framework execution performance of the
two micro-architectures by analyzing the statistics obtained
from the respective microprocessor technical data sheets. Our
experiment results show that the “single processor Xeon” gives a
better throughput than the “multiprocessor Opteron”. With this
study we found that the 'single processor quad core Intel Xeon'
server processor outperforms the 'dual core dual processor
AMD Opteron' server processor in executing server based
enterprise middleware applications. Hence we see that out of
the two evaluated server processor architectures the single
processor multi-core architecture is giving better performance
than the multi-processor multi-core architecture, in executing
enterprise middleware frameworks.

I. INTRODUCTION

In this study we compare and analyzed the performance of
executing enterprise middleware applications by two server
microprocessors namely the Dual-Core AMD Opteron 2220
SE microprocessor [2,7] and the Quad Core Intel Xeon
E5506 [4,5]. The AMD server contained two Dual-Core
AMD Opteron 2220 SE microprocessors (i.e. a total of four
cores), which makes it a suitable competitor with the four
core Intel Xeon E5506.

We developed our benchmark testing programs using the
Java language [13], Java Beans, and using Enterprise
Middleware frameworks: JavaEE (JSP, Session Beans,
Entities) [14], Struts[15], Spring[16], Hibernate[17]. Apache
commons DBCP[18] was used to handle database connection
pooling. The test programs were compiled using Sun Java
1.6.0_20 on Ubuntu 10.04 kernel (Linux 2.6.32), 64 bit
operating system. The application server used is JBossAS
6.0.0.Final [19]. The Java Runtime is OpenJDK Runtime
Environment (build 1.6.0_20-b20).

For load generation and load testing we used Apache
JMeter [12] Load Testing tool. We stressed the server
processors running the enterprise middleware, by generating
different levels of HTTP loads.

Our approach for evaluating the server processor
performance is to analyze the statistics obtained from Apache

JMeter. Also we analyze the enterprise middleware execution
performance with respect to the microprocessor hardware
statistics which we have obtained from the microprocessor
technical data sheets.

Our findings revealed that the “single processor quad core
Intel Xeon” microprocessor performs better than the “dual
core multiprocessor (dual processor) AMD Opteron”
microprocessor, with respect to executing enterprise
middleware frameworks. Hence we see that out of the two
evaluated server processor architectures the single processor
multi-core architecture is giving better performance than the
multi-processor multi-core architecture, in executing
enterprise middleware frameworks.

II. MICROPROCESSOR ARCHITECTURAL SPECIFICATIONS

In this section we summarize the micro architectural level
details of the two microprocessors, which we gathered by
going through the microprocessor data sheets and technical
documents of the two microprocessors. This summarization
helps the researchers to know as of what micro architectural
level parameters are important to look in to, when it comes to
analyzing the performance of microprocessors.

TABLE I
MICROPROCESSOR DETAILS [1,2,3,4,5,6,7,8,9]

Process
or

Code Name
Release Date,
Price at
introduction

Multi
Core

64bit
(x86
64)

Dual-
Core
AMD
Opteron

2220
SE

Santa Rosa
Aug 15, 2006,
$1165

Dual
(2)

y

Intel
Xeon
Quad
Core

E5506 Nehalem-
EP,
Gainestown

March 30,
2009, $266

Quad
(4)

y

APSIPA ASC 2011 Xi’an

TABLE II
MICROPROCESSOR DETAILS [1,2,3,4,5,6,7,8,9]

Out-of-
order
execution,
speculative
execution

Super-
scalar
execution

Hyper
Threade
d (SMT)

Hyper
Transp
ort

SIMD

Dual-
Core
AMD
Opteron

y y n y y

Intel
Xeon
Quad
Core

y y n n y

TABLE III
MICROPROCESSOR DETAILS [1,2,3,4,5,6,7,8]

speed(
GHz)

L1 cache
(KB)

L2 cache L3 cache
Bus
Speed

Dual-
Core
AMD
Opteron

2.8

(64 data +
64instru =
128) x per
core

1MB x
per core

no
1000
(MT/s)

Intel
Xeon
Quad
Core

2.13 (32 data +
32instru =
64) x per
core

256 KB x
per core

4 MB (Intel
Smart
Cache,
Shared)

2400
MHz
QPI

TABLE IV
MICRO-ARCHITECTURE PARAMETERS [3, 9, 10, 11]

AMD Opteron 2220 SE
Intel Xeon
E5506

3 way super-scalar
processor

No of pipeline stages
12 for integer
17 for floating-point

14

Reorder buffer 72 entry 128 entry

No of decoders 3 (“fastpath” decoders) 4

can decode up to how
many instructions in one
cycle?

3 instructions (Fastpath
decoder)
1 instruction (Microcode
decoder)

4 μops

can issue \ dispatch up to
how many μops per cycle

11 micro-ops (The
schedulers and the
 load/store unit can
dispatch
). 3 micro-ops to the
instruction control unit

6 μops

can retire up to how many
instructions per cycle?

3

4 μops (or up
to 5 with
macro-
fusion)

No of arithmetic logical
units
 (ALU)

3 integer, 3 floating-point 3, 3

Up to how many floating-
point operations per cycle

3 floating-point units,
which each can retire 1
instruction

8

No of issue ports available
to dispatching SIMD
instructions for execution

3

No of integer general 16

purpose registers (GPRs)

No of streaming SIMD
extension (SSE) registers

16

TABLE V
INTEGRATED MEMORY CONTROLLER [3, 8]

AMD Opteron 2220 SE Intel Xeon E5506

Dual channel 128-bit
wide

6-channel

333 MHz DDR memory
800 MHz DDR
memory

Peak memory
bandwidth

5.3 Gbytes/s up to 25.6 GB/sec

TABLE VI
MEMORY ACCESS: LOAD AND STORE OPERATION ENHANCEMENTS [3, 10 PG 88]

AMD Opteron 2220 SE Intel Xeon E5506

Address support \
size

40 bits physical

48 bits virtual

40 bits physical

48 bits virtual
Peak issue rate
operation per cycle

Two 64-bit loads or
stores

one 128-bit load
one 128-bit store

Load-to-use latency 3 cycles

Load/ store queue 44-entry

Deeper buffers for
load and store
operations:
48 load buffers
32 store buffers
10 fill buffers

The above summarized architectural specifications from
Table I to VI shows that configuration wise each
microprocessor has its own strengths compared to the other.

III. IMPLEMENTATION

We implemented six benchmark testing programs using
different enterprise middleware solutions as following:

− a JSP, Java Beans test (Program 1)
− a JSP, JavaEE Session Beans test (Program 2)
− a JSP, JavaEE Session Beans, JPA Entity

 classes test (Program 3)
− a Struts MVC test (Program 4)
− a Struts MVC, Hibernate test (Program 5)
− a Spring MVC, Hibernate test (Program 6)

TABLE VII
CODE SEGMENTS FROM THE TESTING PROGRAM 2 WRITTEN

From the .jsp
<%

InitialContext ic = new InitialContext();
SaveSessionBeanLocal saveLocal = (SaveSessionBeanLocal)

ic.lookup("TestProject2Ear/SaveSessionBean/local");

boolean bStatus = saveLocal.save();
…

%>
From the Session Bean
@Stateless
public class SaveSessionBean implements SaveSessionBeanLocal {

private Employee employee = new Employee();
private EmployeeDAO employeeDAO = …;

…
public boolean save() {

employee.setName("taro");
employee.setSalary(20000.0);
bStatus = employeeDAO.saveEmployee(employee);
if (bStatus) {

return true;
} else {
setErrorMessage(employeeDAO.getErrorMessage());
…

From the Data Access Object
public class EmployeeDAOImpl implements EmployeeDAO {

public EmployeeDAOImpl() {
Class.forName("com.mysql.jdbc.Driver");
con =

DriverManager.getConnection("jdbc:mysql://localhost:3306/middleWareR
esearch" ,"root", "");
…
public boolean saveEmployee(Employee employee) {

stmt.executeUpdate("insert into employee2 (name, salary)
values (…);

…
From the Domain class
public class Employee implements Serializable {

public Employee(Integer empNo, String name, double salary)
 {

this.empNo = empNo;
…

TABLE VIII
CODE SEGMENTS FROM THE TESTING PROGRAM 3 WRITTEN

From the Session Bean
@Stateless
public class SaveSessionBean implements … {

@PersistenceContext
EntityManager em;

…
From the Data Access Object
public boolean saveEmployee(Employee employee, EntityManager em) {

em.persist(employee);
 …
From the Domain class
import javax.persistence.*;
@Entity
@Table(name="employee3")
@SequenceGenerator(name = "emp_sequence", …)
public class Employee implements Serializable {

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY,

generator = "emp_sequence")
public Integer getEmpNo() {

return empNo;
From the Data Source configuration
<?xml version="1.0" encoding="UTF-8"?>

<datasources>
 <local-tx-datasource>
 <jndi-name>MySQL_DS</jndi-name>
 <connection-
url>jdbc:mysql://localhost:3306/middleWareResearch</connection-url>
 …

TABLE IX
CODE SEGMENTS FROM THE TESTING PROGRAM 5 WRITTEN

From the JSP
<%@taglib uri="/struts-tags" prefix="s"%>
<s:action name="addEmployee" executeResult="true"></s:action>
From the struts.xml file
<struts>
<package name="default" extends="hibernate-default">

<action name="addEmployee" method="add"
class="pk1.web.EmployeeAction">

<result name="success">save.jsp?
status=afterSave</result>
…
From the hibernate.cfg.xml file
<hibernate-configuration>
<session-factory>

<property
name="hibernate.connection.driver_class">com.mysql.jdbc.Driver</proper
ty>

<property
name="hibernate.connection.url">jdbc:mysql://localhost:3306/middleWare
Research</property>

<property
name="hibernate.dialect">org.hibernate.dialect.MySQLDialect</property>

<mapping class="pk1.domain.Employee" />
…

From the Action class
import com.opensymphony.xwork2.ActionSupport;
public class EmployeeAction extends ActionSupport {

public String add(){
employeeDAO.saveEmployee(employee);

…
From the Data Access Object
import org.hibernate.Session;
import
com.googlecode.s2hibernate.struts2.plugin.annotations.SessionTarget;
public class EmployeeDAOImpl implements EmployeeDAO {

@SessionTarget
Session session;
@TransactionTarget
Transaction transaction;
@Override
public void saveEmployee(Employee employee) {

session.save(employee);
 ...

TABLE X
CODE SEGMENTS FROM THE TESTING PROGRAM 6 WRITTEN

From the dispatcher-servlet.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans …>

<bean id="viewResolver"
class="org.springframework.web.servlet.view. …>

<bean id="myDataSource"
class="org.apache.commons.dbcp.BasicDataSource" …>

…
</bean>
<bean id="mySessionFactory"

class="org.springframework.orm.hibernate3.annotation.AnnotationSession
FactoryBean">

<property name="dataSource"
ref="myDataSource" />

<property name="annotatedClasses">
<list>
<value>pk1.domain.Employee</value>
</list>

</property>
…

</bean>
<bean id="myEmployeeDAO"

class="pk1.dao.EmployeeDAOImpl">
<property name="sessionFactory"

ref="mySessionFactory"/>
</bean>
<bean name="/*.htm" class="pk1.web.EmployeeController" >

<property name="employeeDAO"
ref="myEmployeeDAO" />

</bean>
</beans>

We deployed our packaged Web Archive (.war) and
Enterprise Archive (.ear) modules to the JBoss Application
Server.

MYSQL was used as the database server.
Apache commons DBCP was used as the database

connection pooling library to handle the concurrent requests
to the database.

We used Apache JMeter as our load testing tool. In order
assess the middleware performance we generated the
following different types loads to stress the middleware
frameworks running on JBoss Application Server:

− 500 concurrent requests within 1 second ramp
up time period

− 1000 concurrent requests within 1 second ramp
up time period

− 1500 concurrent requests within 1 second ramp
up time period

− 1500 concurrent requests within 5 seconds ramp
up time period

For the above different loads we accessed the following
server statistics:

− average time taken to handle a request
− standard deviation of request handling
− error % of request handling
− throughput of request handling

IV. RESULTS, EVALUATION, ANALYSIS AND DISCUSSION

TABLE XI
PERFORMANCE STATISTICS OBTAINED FOR PROGRAM 1

Processor, No of
concurrent requests,
Ramp up time

Average Std Dev Error %
Throughput
/ Sec

Opteron, 500req, in1Sec 71 129 0 239.46

Xeon, 500req, in1Sec 17 40 0 317.66

Opteron,1000req, in1Sec 5 6 0 604.59

Xeon, 1000req, in1Sec 2 8 0 739.09

Opteron,1500req, in1Sec 4036 3878 6.8 136.68

Xeon, 1500req, in1Sec 0 0.65 0 1076.81

Opteron,1500req, in5Sec 44 128 0 270.12

Xeon, 1500req, in5Sec 0 0.58 0 285.33

TABLE XII
PERFORMANCE STATISTICS OBTAINED FOR PROGRAM 2

Processor, No of
concurrent requests,
Ramp up time

Average Std Dev Error %
Throughput
/ Sec

Opteron, 500req, in1Sec 27 46 0 341.29

Xeon, 500req, in1Sec 405 346 0 341.99

Opteron,1000req, in1Sec 57 59 0 505.05

Xeon, 1000req, in1Sec 10 24 0 740.74

Opteron,1500req, in1Sec 212 205.72 0 321.4

Xeon, 1500req, in1Sec 1541 1452 0 338.6

Opteron,1500req, in5Sec 82 191.49 0 262.51

Xeon, 1500req, in5Sec 2144 2821 0 135.18

TABLE XIII
PERFORMANCE STATISTICS OBTAINED FOR PROGRAM 3

Processor, No of
concurrent requests,
Ramp up time

Average Std Dev Error %
Throughput
/ Sec

Opteron, 500req, in1Sec 70 45 0 361.53

Xeon, 500req, in1Sec 20 35 0 340.13

Opteron,1000req, in1Sec 2956 1480 0 93.53

Xeon, 1000req, in1Sec 1127 1362 0 211.32

Opteron,1500req, in1Sec 3203 2899 27 128.27

Xeon, 1500req, in1Sec 2930 3108 35 152.06

Opteron,1500req, in5Sec 2962 3524 0 104.34

Xeon, 1500req, in5Sec 2717 3968 0 108.57

TABLE XIV
PERFORMANCE STATISTICS OBTAINED FOR PROGRAM 4

Processor, No of
concurrent requests,
Ramp up time

Average Std Dev Error %
Throughput
/ Sec

Opteron, 500req, in1Sec 82 97 0 245.94

Xeon, 500req, in1Sec 21 37 0 374.53

Opteron,1000req, in1Sec 1265 1441 0 201.12

Xeon, 1000req, in1Sec 1 2 0 779.42

Opteron,1500req, in1Sec 2006 1990 0 121.77

Xeon, 1500req, in1Sec 2070 1997 0 142.45

Opteron,1500req, in5Sec 4357 4711 6 66.72

Xeon, 1500req, in5Sec 1929 3051 0 126.89

TABLE XV
PERFORMANCE STATISTICS OBTAINED FOR PROGRAM 5

Processor, No of
concurrent requests,
Ramp up time

Average Std Dev Error %
Throughput
/ Sec

Opteron, 500req, in1Sec 321 211 0 297.08

Xeon, 500req, in1Sec 73 58 0 298.68

Opteron,1000req, in1Sec 9274 7727 25 44.22

Xeon, 1000req, in1Sec 3662 3310 0 95.48

Opteron,1500req, in1Sec 933 1043 0 220.07

Xeon, 1500req, in1Sec 8066 8942 56 67.86

Opteron,1500req, in5Sec 13754 11482 78 43.79

Xeon, 1500req, in5Sec 8146 7793 47 60.98

TABLE XVI
PERFORMANCE STATISTICS OBTAINED FOR PROGRAM 6

Processor, No of
concurrent requests,
Ramp up time

Average Std Dev Error %
Throughput
/ Sec

Opteron, 500req, in1Sec 46 60 0 321.33

Xeon, 500req, in1Sec 3 6 0 418.06

Opteron,1000req, in1Sec 1638 1459 0 206.99

Xeon, 1000req, in1Sec 1 2 0 711.23

Opteron,1500req, in1Sec 264 367 0 348.27

Xeon, 1500req, in1Sec 1786 1421 27 364.25

Opteron,1500req, in5Sec 9383 8357 40 59.01

Xeon, 1500req, in5Sec 4500 5599 6 64.02

Table V summarizes few parameters of the Integrated
Memory Controllers of the two server microprocessors. By
analyzing the Integrated Memory Controllers of the two
microprocessors we could see the Intel Xeon has the better
unit out of the two microprocessors, which will make the
Xeon to perform well in executing enterprise middleware
frameworks.

Analyzing Table VI we could see that when looking at
Memory access: Load and Store Operation Enhancements,

the Xeon parameters are ahead than the Opteron
enhancements, which will make the Xeon to perform well.

Analyzing Table III we could see that marginally the
Opteron has the better cache parameters out of the two
processors. Also the Opteron has the higher clock speed out
of the two processors. This should make the enterprise
middleware to perform well on dual processor Opteron
server. But looking at our final results we see that the
enterprise middleware has performed well on the single
processor Xeon server.

Our results from Table XI to XVI shows that in executing
enterprise middleware frameworks, in overall the single
processor quad core Xeon processor gives a better throughput
than the dual processor dual core Opteron processor.

When the processing loads of the enterprise middleware
frameworks were increased (i.e. the number of concurrent
requests were increased) the performance of the Xeon
degraded by a visible margin and the performance of Opteron
came very close to the performance of the Xeon. I.e the
enterprise middleware running on Opteron server processor
starts to give similar performance as with the enterprise
middleware running on Xeon server processor, for higher
workloads. But still for higher workloads the throughput of
enterprise middleware running on Xeon is better than the
Opteron.

V. CONCLUSIONS

In our previous work done [20,21] we carried out a series
of performance evaluation experiments using the server based
microprocessors: 'dual processor dual core AMD Opteron
2220 SE' and 'single processor quad core Intel Xeon E5506',
in order to analyze their performance in executing different
software application types such as: thread based, matrix
multiplication, processing intensive, system call intensive
applications, file reading and writing, socket based, message
passing middle ware based and memory intensive
applications. Our previous work findings did show that the
Opteron perform better in the application categories: memory
intensive applications and processing intensive applications.
Xeon performed better in the application categories: system
call applications, file reading and writing, socket based
applications and in thread based applications. In executing
server based enterprise middleware frameworks the single
processor Xeon clearly outperformed the dual processor
Opteron.

This research paper summarizes our research findings with
respect to executing server based enterprise middlware
frameworks by multi-processor multi-core server processors.
The research findings of this paper shows us that the single
processor quad core Xeon gives a better throughput than the
dual processor dual core Opteron, in executing server based
enterprise middlware applications, hence we see that out of
the the two evaluated server processor architectures the single
processor multi-core architecture is better than the multi-
processor multi-core architecture, for executing enterprise
middleware frameworks.

ACKNOWLEDGMENT

We thank AMD cooperation for their generosity in
providing us the Opteron server resources for this research.
This work is supported by the Large Scale Enterprise
Applications research group and High Performance
Computing research group.

REFERENCES

[1] AMD processors for servers and workstations,
http://products.amd.com/en-ca/OpteronCPUDetail.aspx?
id=319&f1=&f2=&f3=&f4=&f5=&f6=&f7=&f8=&f9=&f10=
&

[2] Builder’s guide for AMD OpteronTM processor-based servers
and workstations

[3] Chetana N. Keltcher, Kevin J. McGrath, Ardsher Ahmed, Pat
Conway, “The AMD Opteron processor for multiprocessor
servers”, IEEE Micro archive, Volume 23 Issue 2, March 2003

[4] Intel Xeon processor E5506, http://ark.intel.com/Product.aspx?
id=37096

[5] Intel Xeon processor 5500 series datasheet, volume 1
[6] Billy Brennan, Christopher Ruiz, Kay Sackey, “Intel Xeon

Nehalem architecture”, University of Virginia.
www.cs.virginia.edu/~skadron/cs433_s09_processors/nehalem.
ppt

[7] AMD second generation Opteron 2220 SE, http://www.cpu-
world.com/CPUs/K8/AMD-Second%20Generation
%20Opteron%202220%20SE%20-%20OSY2220GAA6CQ
%20%28OSY2220CQWOF%29.html

[8] Intel Xeon E5506, http://www.cpu-
world.com/CPUs/Xeon/Intel-Xeon%20E5506%20-
%20AT80602000798AA%20%28BX80602E5506%29.html

[9] Henry Cook, Kum Sackey, Andrew Weatherton, “The AMD
Opteron”,
www.cs.virginia.edu/~skadron/cs451/opteron/opteron.ppt

[10] Intel 64 and IA-32 architectures optimization reference manual,
Order Number: 248966-023a, January 2011

[11] Understanding the detailed architecture of AMD's 64 bit core,
http://www.chip-
architect.com/news/2003_09_21_Detailed_Architecture_of_A
MDs_64bit_Core.html

[12] Apache JMeter, http://jakarta.apache.org/jmeter/
[13] Java Language, http://www.java.com/en/
[14] Java Enterprise Edition, http://download.oracle.com/javaee/
[15] Struts Framework, http://struts.apache.org/2.x/index.html
[16] Spring Framework, http://www.springsource.org/
[17] Hibernate Framework, http://www.hibernate.org/
[18] Apache Commons DBCP, http://commons.apache.org/dbcp/
[19] JBoss Application Server, http://www.jboss.org/
[20] W.M.R. Weerasuriya and D.N. Ranasinghe, “Older Opteron

Outperforms the Newer Xeon: A Memory Intensive
Application Study of Server Based Microprocessors”, 21st
International Conference on Systems Engineering (ICSEng
2011), Las Vegas, NV, USA.

[21] W.M.R. Weerasuriya and D.N. Ranasinghe, “Performance
Analysis of System Call Intensive Software Application
Execution on Server Processor Architectures: Opteron and
Xeon”, 2nd International Conference on Emerging Trends in
Engineering and Technology (IETET-2011), Kurukshetra
(Haryana) India. in press.

