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Abstract—In conventional speaker identification methods have been proposed [8], [9]. Wang et al. proposed phase-
based on mel-frequency cepstral coefficients (MFCCs), phaserelated features for speaker recognition [11]. This type of
information is ignored. Our recent studies have shown that phase information considers all frequency ranges. We think

phase information contains speaker dependent characteristics. . S . 4 A .
We propose a new extraction method to extract pitch synchronous that phase information is valid for speaker identification, since

phase information from the voiced section only. Speaker identifi- it captures the features of the source wave.
cation experiments were performed using the NTT clean database  Previously, we proposed a speaker identification system

and JNAS database. Using the new phase extraction method, ysing a combination of MFCCs and phase information [1],
we obtained a relative reduction in the speaker error rate of [2], directly extracted from the limited bandwidth of the
approximately 279 and 46%, respectively, for the two databases. Fourier transform of the speech wave. We also showed that
We also obtained a relative error reduction of approximately 52% . o . : . Lo
and 42%, respectively, when combining phase information with the phase information is effective for speaker identification in
the MFCC-based method. clean and noisy environments [1], [2], [3]. However, problems
occurred in extracting the phase information because of the
influence of the windowing position. Therefore, we propose
In conventional speaker identification methods based amew method to extract pitch synchronous phase information
mel-frequency cepstral coefficients (MFCCs), only the magriin voiced sound only. Using the new extraction method, the
tude of the Fourier Transform in time-domain speech framepeaker identification rate improved by approximately 27%
is used. This means that the phase component is ignoradd 46% for the NTT and JNAS databases, respectively.
Of course, MFCCs capture not only speaker-specific vocalThe rest of this paper is organized as follows. Section
tract information, but also vocal source characteristics. Ne®- presents the phase information extraction method, while
ertheless, feature parameters extracted from excitation souBeetion 3 discusses combining the phase and MFCC methods.
characteristics are also useful for speaker identification [1], [4lhe experimental setup and results are reported in Section 4,
[5], [6], [7], [10]. Almost all of the existing methods are base@nd Section 5 presents our conclusions.
on Linear Predictive Coding (LPC) analysis. Markov and
Nakagawa proposed a Gaussian Mixture Model (GMM) based
text-independent speaker identification system that integrafesFormulas [1], [3]
pitch_ z_ind the LPC _residual_ with the LPC-derived ceps';ral The spectrums(w, ) of a signal is obtained by DFT of an
cgefﬁqents [4]. The|r expenmentallresults show that uglquut speech signal sequence
pitch information is the most effective when the correlation
between pitch and the cepstral coefficients is taken into con-  S(w,t) = X(w,t)+jY(w,t)
sideration. An automatic technique for estimating and mod- = VX%(w, 1) + Y2(w,t) x 278 (1)
eling the glottal flow derivative source waveform of speech
and applying the model parameters to speaker identificatiigwever, the phase changes, depending on the clipping po-
was proposed in [5]. The complementary nature of speaké&ition of the input speech even at the same frequencyo
specific information in the residual phase compared wif@vercome this problem, the phase of a certain basis frequency
the information in conventional MFCCs was demonstrated in iS kept constant, and the phases of other frequencies are
[6]. The residual phase was derived from speech signals @§timated relative to this. For example, by setting the basis
linear prediction analysis. Zheng et al. proposed a speakegquencyw to 7 /4, we obtain
verification system using complementary acoustic featur 0wt (Z 0wt
derived from vocal source excitation and the vocal-tract systegni(w’ t)= \/XQ(w’t) +Y2(w, 1) x Px /G, (2)
[7]. A new feature set, called the wavelet octave coefficienghereas for the other frequency = 2xf’, the spectrum
of residues (WOCOR), was proposed to capture the spectiecomes
temporal source excitation characteristics embedded in the 0w 1) o 39T 0(wt))
linear predictive residual signal [7]. Recently, many speakert) = VX2, 1)+ Y2(w' 1) x /701 5 o S E -0
recognition studies using group delay based phase information X(w’, t) + jf/(wﬂ t). 3)

I. INTRODUCTION

Il. PHASE INFORMATION EXTRACTION




In this way, the phase can be normalized. Then, the rea amring window

imaginary parts of (3) become | / I
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Y(W,t) = VX2, 1)+ Y2(w,t) x sin{f(w, 1) NJ\V
+2 (G - 0wt} ® e 2

Utterance
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B. Improvement of phase information extraction Adiusiment o /wl |
Using the relative phase extraction method that norme cutting section Proposed
the phase variation by cutting positions, we can reduct cutting section
phase variation. However, the normalization of phase vari
is still inadequate. For example, for a 1000 Hz periodic v Fig. 1. How to synchronize the splitting section.

(16 samples per cycle for a 16 kHz sampling frequency), if

one sample point shifts in the cutting position, the phase shiftsger than that of the upper spectral components (2000 [Hz]
only 2%, while for a 500 Hz periodic wave, the phase shifts. 8000 [Hz]) and the frame’s power is larger than the average
only 23 with this single sample cutting shift. On the otheof all the frame’s powers, we judge it to be a voice frame.
hand, if the 17 sample points shift, their phases will shift 1. COMBINATION METHOD AND DECISION METHOD
by 127 (mod2r) = 3% and 4T, respectively, for the two - _ : _
periodic waves. Therefore, the values of the relative phaseln this paper, the GMM based on MFCCs is combined with
information for different cutting positions are very differenthe GMM based on phase information. When a combination of
from those of the original cutting position. We have addresséte two methods is used to identify the speaker, the likelihood

such variations using a statistical distribution model of GMNf the MFCC-based GMM is linearly coupled with that of the
[1]. [2]. [3]. GMM based on phase information to produce a new score

1

If we could split the utterance by each pitch cycle, changés.,.;, diven by
in the phase information would be further obviated. Thus,;» _ ,; _ n n _
we propose a new extraction method that synchronizes thgeonb = (=) lirree + alppase, m =122+, N, (7)
splitting section with a pseudo pitch cycle. whereL}, pcc and Ly, ... are the likelihoods produced by

With respect to how to unite the cutting sections in ththe n-th MFCC-based speaker model and phase information
time domain, the proposed method looks for the maximub@ased speaker model, respectiveélyis the number of speak-
amplitude at the center around the conventional target splittiags registered and denotes the weighting coefficients, which
section of an utterance waveform, and the peak of the uttera@ce determined empirically. The speaker (or speaker model)
waveform in this range is adopted as the center of the naxith maximum likelihood is judged to be the target speaker.
window. Fig. 1 outlines how to synchronize the splitting

section IV. EXPERIMENTS

A. Databases and speech analysis

C. Using only the voiced speech section We used the NTT (Nippon Telegraph and Telephone) and
We think that the proposed phase information is useful fANAS (Japanese Newspaper Article sentence) databases in the
speaker identification because it captures the features of éxperiments. The NTT clean database consists of recordings
source waveform. Thus, we extracted phase information frawh 35 speakers (22 males and 13 females), collected in five
the voiced speech section only. If the energy of the lowsessions over 10 months (1990.8, 1990.9, 1990.12, 1991.3,
spectral components (0 [Hz} 2000 [Hz]) in a given frame is and 1991.6) in a sound-proof room [1], [3], [4]. To train the



models, the same five sentences were used for all speakers ifihis improvement is due to phase information was extracted
one session (1990.8). These sentences were uttered at a nofroal only voiced section which vocal cords vibrate period-
speaking rate. Five different sentences at each of the other faally. And in the improvement for every speed utterances,
sessions were uttered at normal, fast, and slow speaking rdtesse improvements have a relationship with adjusting the
and used as test data. In total, the test corpus consisted of 2¢0tling position to be roughly synchronized the pitch period.
trials (5x4x3x35) for speaker identification. The average
duration of the sentences was approximately four second: ® Phase(old)
The IJNAS corpus consists of the recordings of 270 speal
(135 males and 135 females). To train the models, 10 sente
were used for all speakers. About ninety other sentences \
used as test data. In total, the test corpus consisted of a
24,000 (90<270) trials for speaker identification. The avera
duration of the sentences was approximately three secont
The input speech was sampled at 16 kHz. A total of
dimensions (12 MFCCs, 12AMFCCs andApower) in the
both of JNAS database and NTT database were calcul;
every 10 ms with a window of 25 ms. We also conducted !
experiment by using feature parameters of 12 dimensions
MFCCs), because the amount of training data is smaller
its database. Unless otherwise noted, the experimental re
described below correspond to the case of 25 dimensions Speaking speed
The spectrum with 128 components consisting of magnit
and phase was calculated by DFT for every 256 samples. Fig. 2. Speaker identification results using phase with the proposed method
. . . for NTT database.
phase information, we used the first 12 phase components
feature parameters in total), that is, from the first to the 1
component of the phase spectrum (frequency range: 60 |
700 Hz), which achieved the best identification performar
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TABLE |
Speaker identification results for NTT database (%).

(a) 12 dimensions of feature parameters (MFCC)

in all the other sub-band frequency ranges [1]. \ [ phase / phase & MFCC [ MFCC |
A frame is judged to be a voiced sound frame, if tl LSeah fane (;"5) 747‘; 990‘ — ;'/5991‘ — :/2994‘ — ffggs“ — |
- normal spee . . . . . K . R .
ratio of the lower spectral components to the upper spec Slow speed | 72.1/97.6] 71.7/979] 74.67984] 76.0/983| 95.7
components is greater than 4 and the ratio of the frame’s pc fastspeed | 7307981 716/98.1] 77.3/984] 77.6/987| 9656
to the average of all the frames’ powers is greater than : [ avwrage [ 7337982 722/984] 77.5/98.7] 77.67988] 97.1 |
Under this condition, about 70% of all the frames were judc (b) 25 dimensions of feature parameters (MFCC)
to be voiced sound frames. \ [ phase / phase & MFCC [[ MFCC |
| search range (ms) 0 [ 0.5 [ +2 ] +5 | |
B. Speaker identification results for NTT database normal speed | 74.7/98.7] 73.3799.0] 80.6/99.0] 75.1798.9] 97.3

slow speed | 72.0797.1| TL.7797.6| 746 /97.9] 76.0/974] 954
We conducted a speaker identification experiment using fastspeed [ 730/981] 716/98.6] 77.3/984] 776/986] 956

phase information in the NTT database. GMMs with 32 mix-__2ea0e [ 733798.0] 7227984] 77.57/984] 77.67983]] 961 |

tures were used as speaker models. The new phase extraction

method searches the peak amplitude point in the ranges TABLE Il

O'_5 ms, £ 2 ms, and_i 5_ ms .m the center (_)f the next Speaker identification results for NTT database using voiced sound only (%).

window. The speaker identification results obtained from the () 12 dimensions of feature parameters (MECC)

H HYH H H ” ” | I u

individual methods are shown in Tables |, Il, and Fig. 2. "0 ms | phase / ghase 2 MECC ‘

corresponds to the conventional extraction method in which_search range (ms) 0 [ £05 | £2 [ £5 |

the recognition rate for normal speed utterances is 74.7%. Op_normal speed | 74.7/99.0| 749/99.1] 81.6/99.1] 81.4/99.1

. . : Slow speed | 74.1798.6| 74.1/98.4| 80.7/98.1] 77.9798.0
the other hand, using the newly proposed extraction technique,fastspeed | 73.3798.1] 75.0/98.7| 79.3/99.0| 79.4799.0

the recognition rate improves to 81.6%. Moreover, for the slow| average 74.0/98.6] 74.7198.7] 80.5/98.7] 79.6/98.7
g p \ \ \ \ \ |
speeo_l, the rate using the proposed m_etr_\od (voiced saund, (b) 25 dimensions of feature parameters (MECC)
2ms) improved from 72.1% to 80.7%. Similarly, for fast speed, | [ phase / phase & MFCC \
the rate improved from 73.0% to 79.3%. Overall, the average Searchrange(ms) 0 | £05 [ *2 [ £5 |

error reduction rate is 27.0% (73.3% to 80.5%). Using the ”;g\:,a'ssgzgd ;ﬂfg?:g ;ﬁfg?:g gé:?fggj’ ?%13?3311
voiced sections only, the error reduction rate is 13.3% (77.59 fast speed | 73.3/98.4| 75.0/98.6| 79.3/983| 79.4/98.7
to 80.5%). By comparing 12 dimensions (MFCC) and 25| average | 740/984] 747/986] 8057984] 79.6/982]
dimensions (MFCC), we found that the performance by using

12 dimensions was slightly superior to that of 25 dimensions. The speaker identification results obtained from the combi-

It depends on the amount of training data. nation method are shown in Figs. 3-6. The improvement using




this method is remarkable. For example, when the MFCC-
based method is compared with the combination method, the +0.5ms(99.4%)
rate improves from 97.3% to 99.1% (a relative error reduction
of 66.7%) for normal speed utterances. By combining phase
information with the MFCCs, the average error reductiorg gs.o ]
rate is 64.1% (from 96.1% to 98.6%). This suggests thaf 0ld(99.0%) \\
the proposed phase information extraction method is morg %%

effective than the conventional extraction method. Moreovei’é 85.0

100.0

we clarified that phase information is dependent on the sourgl “eold(al(z2ms) \\Y\
source waveform. s 800 [ T *0msluoiced)
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C. Speaker identification results for INAS database 0 01 02 03 04 05 06 07 08 09 1

We also conducted a speaker identification experiment using Weighting coeficient a
phase information in the JNAS database. GMMs with 128
mixtures were used as speaker models. The new phase é?(N‘sTTS%Z"’t‘;g;;:e?fgfs'fﬁ%lé?s“g; gﬁ'r?gngfgﬂs_mat'o” of MFCCs and phase
traction method searches for the peak amplitude point in the



range+.0.5 ms,+2 ms, and+5 ms in the center of the next
window. The speaker identification results obtained from the
individual methods are shown in Table Ill and Fig. 7. "0 ms”
corresponds to the conventional extraction method in which
the recognition rate is 88.8%. On the other hand, using the
newly proposed extraction technique (voiced souhd, ms),

the recognition rate improves to 93.9%; that is, an average

error reduction rate of 45.5%.

TABLE Il

Speaker identification results for INAS database using voiced sound only
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Fig. 7. Speaker identification results using phase in the JNAS database.
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to 99.3% (a relative error reduction rate of 41.7%) for the new
phase extraction method. This result suggests that the proposed
phase information extraction method is more effective than the
conventional extraction method.

V. CONCLUSIONS

In this paper, we proposed a new phase extraction method
that extracts pseudo-pitch synchronous phase information from
voiced sound sections only. Using the proposed method, the
speaker recognition rate for the NTT database improved from
73.3% to 80.5%. Moreover, the recognition rate using the
MFCC model improved remarkably when combined with the
phase information (from 96.1% to 98.6%). For the JNAS
database, the speaker recognition rate improved from 88.8% to
93.9% using only phase information. Moreover, the recogni-

Fig. 8. Speaker identification results using combination of MFCC and phadton rate using the MFCC model also improved remarkably

in the JNAS database.

when combined with the phase information (from 98.8%
to 99.3%). These results confirm that the proposed phase

The speaker identification results obtained from the combiformation is most useful for speaker identification.

nation method are shown in Figs. 8-10. The improvement us-
ing this method is remarkable. For example, when the MFCC-
based method is compared with the combination method, the
rate improves from 98.8% to 99.1% (a relative error reducti&wl
of 25%) for the old phase extraction method, and from 98.8%
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