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Abstract—In conventional speaker identification methods
based on mel-frequency cepstral coefficients (MFCCs), phase
information is ignored. Our recent studies have shown that
phase information contains speaker dependent characteristics.
We propose a new extraction method to extract pitch synchronous
phase information from the voiced section only. Speaker identifi-
cation experiments were performed using the NTT clean database
and JNAS database. Using the new phase extraction method,
we obtained a relative reduction in the speaker error rate of
approximately 27% and 46%, respectively, for the two databases.
We also obtained a relative error reduction of approximately 52%
and 42%, respectively, when combining phase information with
the MFCC-based method.

I. I NTRODUCTION

In conventional speaker identification methods based on
mel-frequency cepstral coefficients (MFCCs), only the magni-
tude of the Fourier Transform in time-domain speech frames
is used. This means that the phase component is ignored.
Of course, MFCCs capture not only speaker-specific vocal
tract information, but also vocal source characteristics. Nev-
ertheless, feature parameters extracted from excitation source
characteristics are also useful for speaker identification [1], [4],
[5], [6], [7], [10]. Almost all of the existing methods are based
on Linear Predictive Coding (LPC) analysis. Markov and
Nakagawa proposed a Gaussian Mixture Model (GMM) based
text-independent speaker identification system that integrates
pitch and the LPC residual with the LPC-derived cepstral
coefficients [4]. Their experimental results show that using
pitch information is the most effective when the correlation
between pitch and the cepstral coefficients is taken into con-
sideration. An automatic technique for estimating and mod-
eling the glottal flow derivative source waveform of speech
and applying the model parameters to speaker identification
was proposed in [5]. The complementary nature of speaker-
specific information in the residual phase compared with
the information in conventional MFCCs was demonstrated in
[6]. The residual phase was derived from speech signals by
linear prediction analysis. Zheng et al. proposed a speaker
verification system using complementary acoustic features
derived from vocal source excitation and the vocal-tract system
[7]. A new feature set, called the wavelet octave coefficients
of residues (WOCOR), was proposed to capture the spectro-
temporal source excitation characteristics embedded in the
linear predictive residual signal [7]. Recently, many speaker
recognition studies using group delay based phase information

have been proposed [8], [9]. Wang et al. proposed phase-
related features for speaker recognition [11]. This type of
phase information considers all frequency ranges. We think
that phase information is valid for speaker identification, since
it captures the features of the source wave.

Previously, we proposed a speaker identification system
using a combination of MFCCs and phase information [1],
[2], directly extracted from the limited bandwidth of the
Fourier transform of the speech wave. We also showed that
the phase information is effective for speaker identification in
clean and noisy environments [1], [2], [3]. However, problems
occurred in extracting the phase information because of the
influence of the windowing position. Therefore, we propose
a new method to extract pitch synchronous phase information
in voiced sound only. Using the new extraction method, the
speaker identification rate improved by approximately 27%
and 46% for the NTT and JNAS databases, respectively.

The rest of this paper is organized as follows. Section
2 presents the phase information extraction method, while
Section 3 discusses combining the phase and MFCC methods.
The experimental setup and results are reported in Section 4,
and Section 5 presents our conclusions.

II. PHASE INFORMATION EXTRACTION

A. Formulas [1], [3]

The spectrumS(ω, t) of a signal is obtained by DFT of an
input speech signal sequence

S(ω, t) = X(ω, t) + jY (ω, t)

=
√
X2(ω, t) + Y 2(ω, t)× ejθ(ω,t). (1)

However, the phase changes, depending on the clipping po-
sition of the input speech even at the same frequencyω. To
overcome this problem, the phase of a certain basis frequency
ω is kept constant, and the phases of other frequencies are
estimated relative to this. For example, by setting the basis
frequencyω to π/4, we obtain

S′(ω, t) =
√
X2(ω, t) + Y 2(ω, t)× ejθ(ω,t) × ej(

π
4 −θ(ω,t)), (2)

whereas for the other frequencyω′ = 2πf ′, the spectrum
becomes

S′(ω′, t) =
√

X2(ω′, t) + Y 2(ω′, t)× ejθ(ω
′,t) × ej

ω′
ω (π

4 −θ(ω,t))

= X̃(ω′, t) + jỸ (ω′, t). (3)
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In this way, the phase can be normalized. Then, the real and
imaginary parts of (3) become

X̃(ω′, t) =
√
X2(ω′, t) + Y 2(ω′, t)× cos{θ(ω′, t)

+
ω′

ω
(
π

4
− θ(ω, t))} (4)

Ỹ (ω′, t) =
√
X2(ω′, t) + Y 2(ω′, t)× sin{θ(ω′, t)

+
ω′

ω
(
π

4
− θ(ω, t))}. (5)

In the experiments described in this paper, the basis fre-
quencyω is set to2π×1000Hz. In a previous study, to reduce
the number of feature parameters, we used phase information
in a sub-band frequency range only. However, a problem
arose with this method when comparing two phase values.
For example, for two valuesπ − θ1 and θ2 = −π + θ1,
the difference is2π − 2θ1. If θ1 ≈ 0, then the difference
≈ 2π, despite the two phases being very similar to each other.
Therefore, we modified the phase into coordinates on a unit
circle [3], that is,

θ → {cosθ, sinθ}. (6)

B. Improvement of phase information extraction

Using the relative phase extraction method that normalizes
the phase variation by cutting positions, we can reduce the
phase variation. However, the normalization of phase variation
is still inadequate. For example, for a 1000 Hz periodic wave
(16 samples per cycle for a 16 kHz sampling frequency), if
one sample point shifts in the cutting position, the phase shifts
only 2π

16 , while for a 500 Hz periodic wave, the phase shifts
only 2π

32 with this single sample cutting shift. On the other
hand, if the 17 sample points shift, their phases will shift
by 17·2π

16 (mod2π) = 2π
16 and 34π

32 , respectively, for the two
periodic waves. Therefore, the values of the relative phase
information for different cutting positions are very different
from those of the original cutting position. We have addressed
such variations using a statistical distribution model of GMM
[1], [2], [3].

If we could split the utterance by each pitch cycle, changes
in the phase information would be further obviated. Thus,
we propose a new extraction method that synchronizes the
splitting section with a pseudo pitch cycle.

With respect to how to unite the cutting sections in the
time domain, the proposed method looks for the maximum
amplitude at the center around the conventional target splitting
section of an utterance waveform, and the peak of the utterance
waveform in this range is adopted as the center of the next
window. Fig. 1 outlines how to synchronize the splitting
section.

C. Using only the voiced speech section

We think that the proposed phase information is useful for
speaker identification because it captures the features of the
source waveform. Thus, we extracted phase information from
the voiced speech section only. If the energy of the lower
spectral components (0 [Hz]∼ 2000 [Hz]) in a given frame is
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Fig. 1. How to synchronize the splitting section.

larger than that of the upper spectral components (2000 [Hz]
∼ 8000 [Hz]) and the frame’s power is larger than the average
of all the frame’s powers, we judge it to be a voice frame.

III. C OMBINATION METHOD AND DECISION METHOD

In this paper, the GMM based on MFCCs is combined with
the GMM based on phase information. When a combination of
the two methods is used to identify the speaker, the likelihood
of the MFCC-based GMM is linearly coupled with that of the
GMM based on phase information to produce a new score
Ln
conb given by

Ln
conb = (1− α)Ln

MFCC + αLn
phase, n = 1, 2, · · · , N, (7)

whereLn
MFCC andLn

phase are the likelihoods produced by
the n-th MFCC-based speaker model and phase information
based speaker model, respectively.N is the number of speak-
ers registered andα denotes the weighting coefficients, which
are determined empirically. The speaker (or speaker model)
with maximum likelihood is judged to be the target speaker.

IV. EXPERIMENTS

A. Databases and speech analysis

We used the NTT (Nippon Telegraph and Telephone) and
JNAS (Japanese Newspaper Article sentence) databases in the
experiments. The NTT clean database consists of recordings
of 35 speakers (22 males and 13 females), collected in five
sessions over 10 months (1990.8, 1990.9, 1990.12, 1991.3,
and 1991.6) in a sound-proof room [1], [3], [4]. To train the



models, the same five sentences were used for all speakers in
one session (1990.8). These sentences were uttered at a normal
speaking rate. Five different sentences at each of the other four
sessions were uttered at normal, fast, and slow speaking rates
and used as test data. In total, the test corpus consisted of 2100
trials (5×4×3×35) for speaker identification. The average
duration of the sentences was approximately four seconds.

The JNAS corpus consists of the recordings of 270 speakers
(135 males and 135 females). To train the models, 10 sentences
were used for all speakers. About ninety other sentences were
used as test data. In total, the test corpus consisted of about
24,000 (90×270) trials for speaker identification. The average
duration of the sentences was approximately three seconds.

The input speech was sampled at 16 kHz. A total of 25
dimensions (12 MFCCs, 12∆MFCCs and∆power) in the
both of JNAS database and NTT database were calculated
every 10 ms with a window of 25 ms. We also conducted the
experiment by using feature parameters of 12 dimensions (12
MFCCs), because the amount of training data is smaller for
its database. Unless otherwise noted, the experimental results
described below correspond to the case of 25 dimensions.

The spectrum with 128 components consisting of magnitude
and phase was calculated by DFT for every 256 samples. For
phase information, we used the first 12 phase components (24
feature parameters in total), that is, from the first to the 12th
component of the phase spectrum (frequency range: 60 Hz -
700 Hz), which achieved the best identification performance
in all the other sub-band frequency ranges [1].

A frame is judged to be a voiced sound frame, if the
ratio of the lower spectral components to the upper spectral
components is greater than 4 and the ratio of the frame’s power
to the average of all the frames’ powers is greater than 1/5.
Under this condition, about 70% of all the frames were judged
to be voiced sound frames.

B. Speaker identification results for NTT database

We conducted a speaker identification experiment using
phase information in the NTT database. GMMs with 32 mix-
tures were used as speaker models. The new phase extraction
method searches the peak amplitude point in the ranges±
0.5 ms, ± 2 ms, and± 5 ms in the center of the next
window. The speaker identification results obtained from the
individual methods are shown in Tables I, II, and Fig. 2. ”0 ms”
corresponds to the conventional extraction method in which
the recognition rate for normal speed utterances is 74.7%. On
the other hand, using the newly proposed extraction technique,
the recognition rate improves to 81.6%. Moreover, for the slow
speed, the rate using the proposed method (voiced sound,±
2ms) improved from 72.1% to 80.7%. Similarly, for fast speed,
the rate improved from 73.0% to 79.3%. Overall, the average
error reduction rate is 27.0% (73.3% to 80.5%). Using the
voiced sections only, the error reduction rate is 13.3% (77.5%
to 80.5%). By comparing 12 dimensions (MFCC) and 25
dimensions (MFCC), we found that the performance by using
12 dimensions was slightly superior to that of 25 dimensions.
It depends on the amount of training data.

This improvement is due to phase information was extracted
from only voiced section which vocal cords vibrate period-
ically. And in the improvement for every speed utterances,
these improvements have a relationship with adjusting the
cutting position to be roughly synchronized the pitch period.
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Fig. 2. Speaker identification results using phase with the proposed method
for NTT database.

TABLE I
Speaker identification results for NTT database (%).

(a) 12 dimensions of feature parameters (MFCC)
phase / phase & MFCC MFCC

search range (ms) 0 0.5 ± 2 ± 5

normal speed 74.7 / 99.0 73.3 / 99.1 80.6 / 99.4 79.1 / 99.3 98.9
slow speed 72.1 / 97.6 71.7 / 97.9 74.6 / 98.4 76.0 / 98.3 95.7
fast speed 73.0 / 98.1 71.6 / 98.1 77.3 / 98.4 77.6 / 98.7 96.6

average 73.3 / 98.2 72.2 / 98.4 77.5 / 98.7 77.6 / 98.8 97.1

(b) 25 dimensions of feature parameters (MFCC)
phase / phase & MFCC MFCC

search range (ms) 0 0.5 ± 2 ± 5

normal speed 74.7 / 98.7 73.3 / 99.0 80.6 / 99.0 79.1 / 98.9 97.3
slow speed 72.1 / 97.1 71.7 / 97.6 74.6 / 97.9 76.0 / 97.4 95.4
fast speed 73.0 / 98.1 71.6 / 98.6 77.3 / 98.4 77.6 / 98.6 95.6

average 73.3 / 98.0 72.2 / 98.4 77.5 / 98.4 77.6 / 98.3 96.1

TABLE II
Speaker identification results for NTT database using voiced sound only (%).

(a) 12 dimensions of feature parameters (MFCC)
phase / phase & MFCC

search range (ms) 0 ± 0.5 ± 2 ± 5

normal speed 74.7 / 99.0 74.9 / 99.1 81.6 / 99.1 81.4 / 99.1
slow speed 74.1 / 98.6 74.1 / 98.4 80.7 / 98.1 77.9 / 98.0
fast speed 73.3 / 98.1 75.0 / 98.7 79.3 / 99.0 79.4 / 99.0

average 74.0 / 98.6 74.7 / 98.7 80.5 / 98.7 79.6 / 98.7

(b) 25 dimensions of feature parameters (MFCC)
phase / phase & MFCC

search range (ms) 0 ± 0.5 ± 2 ± 5

normal speed 74.7 / 99.0 74.9 / 99.4 81.6 / 98.9 81.4 / 98.7
slow speed 74.1 / 97.9 74.1 / 97.9 80.7 / 98.1 77.9 / 97.1
fast speed 73.3 / 98.4 75.0 / 98.6 79.3 / 98.3 79.4 / 98.7

average 74.0 / 98.4 74.7 / 98.6 80.5 / 98.4 79.6 / 98.2

The speaker identification results obtained from the combi-
nation method are shown in Figs. 3-6. The improvement using



this method is remarkable. For example, when the MFCC-
based method is compared with the combination method, the
rate improves from 97.3% to 99.1% (a relative error reduction
of 66.7%) for normal speed utterances. By combining phase
information with the MFCCs, the average error reduction
rate is 64.1% (from 96.1% to 98.6%). This suggests that
the proposed phase information extraction method is more
effective than the conventional extraction method. Moreover,
we clarified that phase information is dependent on the sound
source waveform.
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Fig. 3. Speaker identification results using combination of MFCCs and phase
for NTT database.

C. Speaker identification results for JNAS database

We also conducted a speaker identification experiment using
phase information in the JNAS database. GMMs with 128
mixtures were used as speaker models. The new phase ex-
traction method searches for the peak amplitude point in the
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Fig. 4. Speaker identification results using combination of MFCCs and phase
for NTT database (normal speed). -25 dimensions-
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Fig. 5. Speaker identification results using combination of MFCCs and phase
for NTT database (slow speed). -25 dimensions-
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Fig. 6. Speaker identification results using combination of MFCCs and phase
for NTT database (fast speed). -25 dimensions-



range±.0.5 ms,±2 ms, and±5 ms in the center of the next
window. The speaker identification results obtained from the
individual methods are shown in Table III and Fig. 7. ”0 ms”
corresponds to the conventional extraction method in which
the recognition rate is 88.8%. On the other hand, using the
newly proposed extraction technique (voiced sound,±2 ms),
the recognition rate improves to 93.9%; that is, an average
error reduction rate of 45.5%.

TABLE III
Speaker identification results for JNAS database using voiced sound only

(%).

All sections Voiced sound only

MFCC 98.8

search range (ms) phase / phase & MFCC
0 88.8 / 99.0 88.3 / 99.1

±0.5 92.8 / 99.2 90.6 / 99.1
±2 92.8 / 99.2 93.9 / 99.3
±5 92.4 / 99.2 93.8 / 99.2
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Fig. 7. Speaker identification results using phase in the JNAS database.
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Fig. 8. Speaker identification results using combination of MFCC and phase
in the JNAS database.

The speaker identification results obtained from the combi-
nation method are shown in Figs. 8-10. The improvement us-
ing this method is remarkable. For example, when the MFCC-
based method is compared with the combination method, the
rate improves from 98.8% to 99.1% (a relative error reduction
of 25%) for the old phase extraction method, and from 98.8%
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Fig. 9. Speaker identification results using combination of MFCC and phase
in the JNAS database (all sound section).
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Fig. 10.Speaker identification results using combination of MFCC and phase
in the JNAS database (voiced sound only).

to 99.3% (a relative error reduction rate of 41.7%) for the new
phase extraction method. This result suggests that the proposed
phase information extraction method is more effective than the
conventional extraction method.

V. CONCLUSIONS

In this paper, we proposed a new phase extraction method
that extracts pseudo-pitch synchronous phase information from
voiced sound sections only. Using the proposed method, the
speaker recognition rate for the NTT database improved from
73.3% to 80.5%. Moreover, the recognition rate using the
MFCC model improved remarkably when combined with the
phase information (from 96.1% to 98.6%). For the JNAS
database, the speaker recognition rate improved from 88.8% to
93.9% using only phase information. Moreover, the recogni-
tion rate using the MFCC model also improved remarkably
when combined with the phase information (from 98.8%
to 99.3%). These results confirm that the proposed phase
information is most useful for speaker identification.
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