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Abstract—Many speech enhancement methods have been pro-
posed to suppress the effect of either background noise or
reverberation for automatic speech recognition (ASR) systems.
However, most of these methods cannot simultaneously reduce
the effects of both, and no method reduces the effects of both
in a unified strategy for ASR systems in noisy reverberant
environments. We previously proposed a method for restoring the
speech power envelope from noisy reverberant speech based on a
simple modulation transfer function (MTF) concept. The method
does not require the impulse response and noise conditions of the
room acoustics to be measured. In this study, we further tested
the proposed method as a front-end for ASR systems in noisy
reverberant environments. Noisy reverberant speech signals were
obtained by adding white noise to reverberant speech produced
by convoluting clean speech signals (from the AURORA-2J, a
continuous Japanese digit speech) with artificially-made impulse
response of room acoustics. The recognition performance based
on the conventional Mel frequency cepstral coefficient feature
was used as a baseline. Compared with the baseline, the pro-
posed method obtained 12.19 % relative improvement in the
error reduction rate (averaged of all tested noisy reverberant
environments).

I. INTRODUCTION

The speech recognition rate of automatic speech recognition
(ASR) systems is drastically reduced in real environments due
to degradation of the speech features caused by reverberation
and background noise. Achieving robust speech recognition
in a noisy reverberant environment is therefore an important
issue. Several well-known suppression methods are used to
remove the effects of either background noise or reverberation,
e.g., the spectral subtraction method [1], minimum-phase
inverse filtering method [2], and RASTA filtering [3]. These
methods work well in either noisy or reverberant environ-
ments, but they do not work well when background noise and
reverberation exist simultaneously in the environment.

Kinoshita et al. have proposed a method to enhance speech
recorded in a noisy reverberant environment. Two sequential
processes were considered in their method: noise reduction
using spectral subtraction, and then dereverberation using

linear prediction for noise-reduced reverberant speech [4]. This
method could restore the spectrogram of noisy reverberant
speech with consideration of the different effects of back-
ground noise and reverberation. On the other hand, Houtgast
and Steeneken have proposed a method to predict the speech
intelligibility in an enclosure as a noisy and reverberant envi-
ronment, and they unified the effects by using the modulation
transfer function (MTF) concept [5]. Unoki et al. proposed the
use of a power envelope inverse filtering method based on the
MTF concept [6]; they obtained 30% relative improvement in
the error reduction rate for ASR in reverberant environments
[7]. Recently, the power envelope restoration method based
on the MTF concept was proposed for noisy reverberant
speech [8]. However, it is not clarified the performance of
the method as applicative system in noisy and/or reverberant
environments. In this study, we applied the method as a
front-end processor for ASR, therefore we investigate the
performance of the method to clarify its effectiveness in noisy
and/or reverberant environments.

II. MTF-BASED MODELING IN NOISY REVERBERANT

ENVIRONMENTS

A. Modulation transfer function concept

The MTF concept was proposed by Houtgast and Steeneken
to predict speech intelligibility in room acoustics [5]. It is
used as a modulation index accounting for the relationship of
the degree of modulation of the temporal envelopes between
input and output signals in an enclosure. The input and output
temporal power envelopes are defined as

Input: I2

i (1 + cos(2πfmt)) (1)

Output: I2
o{1 + m(fm) cos(2πfm(t − θ))}, (2)

where I2

i and I2
o are the input and output intensities, fm is the

modulation frequency, and θ is the phase information. m(fm)
is the modulation index of the temporal power envelope that
is referred to as MTF.
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Fig. 1. Theoretical representation of MTF, m(fm) in both noisy and/or reverberant environments. Bold solid line indicates MTF with TR=0.5 s and SNR =
10 dB.

B. Signal modeling based on MTF

We assume the input, output, impulse response, and noise
signal to be x(t), y(t), h(t), and n(t), respectively. They are
modeled based on the MTF as

y(t) = h(t) ∗ x(t) + n(t) (3)

x(t) = ex(t)cx(t) (4)

h(t) = eh(t)ch(t) = a exp(−6.9t/TR)ch(t) (5)

n(t) = en(t)cn(t), (6)

where ex(t), eh(t), and en(t) are the temporal envelopes of
x(t), h(t), and n(t) respectively. cx(t), ch(t), and cn(t) are
the carrier of x(t), h(t), and n(t) (a Gaussian white noise)
respectively. TR is the reverberation time. Based on stochastic
analysis, the following is derived [6]:

〈

y2(t)
〉

=
〈

h2(t) ∗ x2(t)
〉

+
〈

n2(t)
〉

(7)

e2

y(t) = e2

h(t) ∗ e2

x(t) + e2

n(t). (8)

In the derivation, 〈cl(t), cl(t − τ)〉 = δ(τ) with cl ∈
{cx, ch, cn}, and 〈·〉 is an ensemble average operation.

C. MTF in noisy and/or reverberant environments

The complex MTF in reverberant environment is defined as

mR(fm) =

∣

∣

∣

∣

β

α

∣

∣

∣

∣

=

[

1 +

(

2πfm
TR

13.8

)2
]−1/2

, (9)

where α =
∫ ∞

0
h2(t)dt and β =

∫ ∞

0
h2(t) exp(−jωmt)dt. fm

is the modulation frequency and TR is the reverberation time.
The theoretical analysis is shown in Fig. 1(a). The complex
MTF in noisy environments is defined as

mN (fm) =
e2

x

e2
x + e2

n

=
1

1 + 10−
SNR
10

, (10)

where SNR = 10 log
10

(e2
x/e2

n) in dB. The theoretical analysis
is shown in Fig. 1(b). The MTF in noisy reverberant environ-
ments can be represented as

m(fm) = mR(fm) · mN(fm)

=
1

√

1 +
(

2πfm
TR

13.8

)2
(

1 + 10−
SNR
10

)

. (11)

The MTF in noisy reverberant environments depends on fm,
TR, and SNR. It means the low-pass characteristics result from
reverberation as a function of TR and the constant attenuation
results from noise as a function of SNR. An example is shown
in Fig. 1(c). In this figure, TR = 0.5 s, SNR = 10 dB, and
m(fm) at fm = 10 Hz is 0.365 (= 0.402×0.909). Hence, the
effect of noise and reverberation can be suppressed by using
the inverse filtering of MTF formulated in Eq. (11).

III. SUB-BAND POWER ENVELOPE RESTORATION BASED

ON MTF

We previously explained the MTF-based sub-band power
envelope restoration method [8]. A block-diagram of the
method is shown in Fig. 2. It consists of (i) power envelope
extraction, (ii) power envelope subtraction, and (iii) power
envelope inverse filtering with parameter estimation. The con-
stant bandwidth filterbank is used in the signal analysis. The
sub-band power envelope e2

y(t) is extracted by

e2

y(t) = LPF
[

|y(t) + jHilbert(y(t))|2
]

, (12)

where Hilbert(·) is the Hilbert transform and LPF[·] is low-
pass filtering with a cut-off frequency of 20 Hz [6].

The power envelope subtraction is used to suppress the
additive noise effect. The first term in Eq. (8) is estimated
as

ê2

x(t) = e2
x

(

1 + mN (fm) cos(2πfmt) ×
1

mN (fm)

)

= e2

y − e2
n. (13)

In the estimation, a robust VAD algorithm is used to calculate
the average power of noise e2

n from the observed e2

y(t).
On the basis of these results, e2

x can be recovered by inverse
filtering ê2

y(t) = e2

x(t)∗e2

h(t) in Eq.(8) with e2

h(t). The transfer
functions of power envelope Ex(z), Eh(z), and En(z) are
assumed to be the z-transforms of e2

x(n), e2

h(n), and e2

n(n),
respectively. Thus, Ex(z) can be determined as

Ex(z) =
Ex(z)

a2

{

1 − exp

(

−
13.8

TR · fs

)

z−1

}

, (14)

where fs is the sampling frequency. The power envelope e2

x(n)
can be obtained from the inverse z-transform of Ex(z). Two
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Fig. 2. MTF-based sub-band power envelope restoration method.
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Fig. 3. Improvement of restored power envelopes in noisy reverberant envi-
ronments: (a) improved SNR, (b) improved Corr.

parameters in Eq. (14) are estimated as follows [6]:

T̂R = arg min
0≤TR≤TR,max

{

dTP (TR)

dTR

}

, (15)

TP (TR) = min

(

argmin
tmin≤t≤tmax

∣

∣êx,n,TR
(t)2 − θ

∣

∣

)

, (16)

â =

√

1/

∫ T

0

exp(−13.8t/T̂R)dt. (17)

IV. EVALUATIONS

A. Evaluation of power envelope restoration

Simulations were carried out to evaluate the proposed
method in artificial noisy reverberant environments, because
to make sure of processing based on the basic principle of
the method. We used 100 clean speech sentences from the
AURORA-2J, a continuous Japanese digit speech (denoted
as x(t)). 10 artificial impulse responses of room acoustics
(denoted as h(t)) and 10 Gaussian white noise signals were
used to make the noisy reverberant speech. Five reverberation
conditions were simulated with reverberation time (TR) of
0.3, 0.5, 1.0, 1.5, and 2.0 s. Signal to noise ratios (SNRs)
between x(t) and n(t) were fixed at 20, 10, and 0 dB. All
reverberant signals (5, 000 = 100 × 5 × 10) were generated
by convoluting x(t) with h(t). All noisy reverberant signals
y(t)(15, 000 = 100×5×3×10) were generated by convoluting
x(t) with h(t) and adding n(t). The sampling frequency of
signal fs was 8 kHz. 40 sub-band filters (100 Hz band width)
were used for signal decomposition.

To measure the accuracy of the speech power envelope
restoration, we used (i) SNR (ratio between power envelope of
original signal and restored power envelope as SNR(e2

x, ê2

x)),

and (ii) Corr. (correlation between power envelope of original
signal and restored power envelope as Corr(e2

x, ê2

x)). The im-
provements are calculated as SNR(e2

x, ê2
x)−SNR(e2

x, e2

y) and
Corr(e2

x, ê2
x)−Corr(e2

x, e2

y), respectively.
The average improvements in SNR and Corr. are shown

in Figs. 3(a) and (b), respectively. From these figures, the
trend in a reverberant environment (SNR = ∞), which is
the improvement in Corr., increased as reverberation time
increased, and the trend in noisy environment (TR = 0),
which is the improvement in SNR, increased as the power
of additive noise increased. We can see that the trend in a
noisy reverberant environment is a combination of the trends in
noisy environments and reverberant environments. Thus, this
result confirmed that our proposed method can simultaneously
reduce the effects of reverberation and additive noise.

B. ASR experiments on noisy reverberant speech

1) Feature extraction: The effectiveness of the proposed
method was tested for simultaneous noise reduction and dere-
verberation as a front-end processor for ASR in noisy rever-
berant environments. The AURORA-2J database was used as
speech material [9].We used 8,840 clean speech utterances
to train the acoustic models. In addition, 100 clean speech
sentences were used to produce noisy reverberant speech to
simulate the noisy reverberant environments (convolution with
RIRs and Gaussian white noise addition).

The restored sub-band temporal power envelope was ob-
tained, and then the features were processed. The feature
extraction includes a frame integration and log compression
after the sub-band temporal power envelope extraction. Low-
pass filtering with a forgotten parameter λ was used to smooth
the envelope dips:

ex,k[p] = λex,k[p − 1] × (1 − λ)êx,k[p], (18)

where êx,k[p] is the original restored sub-band power envelope,
and ex,k[p] is the smoothed output (k is the sub-band index,
and p is the time frame index). In this study, λ was set
to 0.99. In frame integration, a 32 ms frame length with
a Hamming window and a 16 ms frame rate were used.
After the integrated spectrum was obtained, log compression
was carried out followed by the discrete cosine transform
(DCT) for dimensional decorrelation. The first 12 dimension
coefficients of the decorrelated log power spectrum were
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Fig. 4. Comparative evaluations of noisy and/or reverberant speech: (a)
word recognition rates (WRR) using feature MFCC as baseline, (b) word
error reduction rate (WERR) using feature CBFB, (c) WERR using feature
CBFB_RASTA, and (d) WERR using feature CBFB_IMTF.
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Fig. 5. Close-up of Fig. 4 as high noisy reverberant environments

used. By combining the log power energy, we obtained 13
dimensional static feature sets. Together with their first and
second order delta dynamic values, 39 dimensional feature
vectors were formed. HTK was used for training the HMM
acoustic models, which were configured in the same way as
in the AURORA-2J experiments [9].

2) Recognition results: The features extracted based on
the proposed processing (Fig. 2), denoted as CBFB_IMTF,
were tested for ASR. For comparison, the conventional Mel
frequency cepstral coefficient (MFCC) feature was also tested
under the same conditions; it served as the baseline. In
addition, for a better understanding of the contribution of
each stage in the proposed processing (Fig. 2), the sub-
band (constant bandwidth filter) power envelope based cepstral
feature (denoted as CBFB) [7] and the RASTA filtering on the
CBFB feature (denoted as CBFB_RASTA), were also tested.
The results are shown in Fig. 4 as MFCC is shown in the
word recognition rate (WRR) and the another features are
shown in the word error reduction rate (WERR) in noisy
and/or reverberant environments. From this figure, we can see

that CBFB, CBFB_RASTA, and CBFB_IMTF improved the
recognition performance compared with the baseline (MFCC).
Figure 5 showed close-up results of Fig. 4 to clarify the
effectiveness of CBFB_IMTF in high noisy reverberant envi-
ronments. From Figure 5, we can see that WRR of MFCC is
considerable degraded, the other thing, the IMTF performed
better than the RASTA filtering, while the RASTA filtering
improved the CBFB. This figure shows proposed method is
robust in high noisy reverberant environments. From Figure
5(d), WERR of TR = 1.0 s are high level compared with
the other feature that mean dereverberation is work well.
Quantitatively, compared with the baseline, 6.28, 11.24, and
12.19 % relative improvements in the WERR were obtained
for CBFB, CBFB_RASTA, and CBFB_IMTF, respectively
(average of all tested noisy reverberant conditions).

V. CONCLUSION

We proposed a unified noise reduction and dereverberation
framework based on the concept of MTF [8] in order to reduce
background noise and reverberation. We then systematically
evaluated the proposed method to restore the power envelope
in a noisy and/or reverberant environment. Our results showed
that the proposed method could reasonably restore the power
envelope from noisy reverberant speech, based on the SNR
and correlation improvement criteria described in section 4.1.
When the proposed method was applied as a front-end for
ASR systems in noisy and/or reverberant environments, it
obtained a relative improvement of 12.19 % compared with
a baseline performance in the error reduction rate (average
of all tested noisy reverberant environments). In the future,
we will evaluate the proposed method as a front-end for ASR
systems in real noisy reverberant environments.
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