
The Design and Realization of a Divider with 
Adjustable Precision in Fingerprint Enhancement 

Weina Zhou*† ,Shuai Wang* and Xiaoyang Zeng*  
*State Key Lab of ASIC &System, Fudan University, Shanghai

†Shanghai Maritime University, Shanghai
E-mail: 081021041@fudan.edu.cn  Tel: +86-021-51355322 

  
 

Abstract— The normalization of the fingerprint is an essential 
and important step in fingerprint enhancement, and its 
implementation needs some high speed dividers of different 
lengths and precisions. However, traditional division algorithm 
used many subtractions to get the result, and fix-point operations 
should also be implemented when either the divisor or the 
dividend is decimal, which both make the computation time 
consuming. A modified divider with adjustable precision and 
length based on Verilog is proposed in this paper. It can process 
both integer and decimal with any given precision conveniently, 
and its pipeline structure is also very useful to execute serials 
output of fingerprint data, which is very attractive to the 
normalization of the fingerprint. The paper described its 
operation and the data structure in detail, and the simulation 
result indicates that the velocity of the divider is quicker than 
other dividers, and it decreases the computation times efficiently. 

I. INTRODUCTION 

As a fundamental module of electronic technology field, 
divider has been broadly applied in many kinds of electronic 
and circuit design. Today, with the development of 
microelectronic technology and VLSI, it even becomes an 
indispensable component in ICs, FPGA and other 
programmable logic devices’ designs, and is one of the most 
resource consumption parts in them.  

In intelligent recognition fields, like fingerprint 
enhancement, divider is also a fundamental and important 
component. In fingerprint normalization, one of its five main 
steps of fingerprint enhancement [1], dividers with different 
lengths and precisions are needed in different procedure of the 
whole realization. If these dividers are implemented by 
traditional method, all the dividends and divisors should be 
fix-pointed respectively and their speed will be limited, thus 
greatly affect the efficiency of normalization. In that case, a 
high speed and precision adjustable divider is necessary in 
fingerprint normalization. 

Generally, there are two kinds of methods to realize the 
divider: hardware and software. Compared to software, 
divider realized in hardware has the advantage of high speed, 
but it still consumes huge power and area. Optimizing the 

algorithm of divider is an efficient method to improve it, for 
they can increase the work frequency of the operation, 
improve the flexibility of the design, and promote the design 
performance as a whole. Some researches have been done in 
these years for finding the efficient and practical algorithm. 

Minus [2] 、SRT algorithm [3-4] are commonly traditional 
divider algorithms, but their speed is still not very high. In 
papers [5-6], improved algorithms have been proposed to 
modify the minus algorithms, and they greatly decreased the 
working cycles. But when either the dividend or the divisor is 
decimal, it is need to change the decimal to an integer by a 
fixed-point implementation at advance, which is very 
troublesome and not mentioned in detail by these papers 
unfortunately. Another widespread divide algorithm is SRT 
algorithm. SRT is a linear convergent algorithm with high 
performance, and is able to get several bits of quotient by 
executing elementary operation, and it can even get the exact 
quotient and remainder at the same time. The main operation 
of SRT is to realize the minus circularly, so the efficient 
approach to improve its speed is to decrease its circular times. 
Increasing the bit number processed in an elementary 
operation can greatly raise its speed, but which will increase 
the complexity of the system as well. In this paper, we 
proposed a modified divider algorithm, which can directly 
process the decimal at any desired precision as easy as integer, 
and compared to [5-6], it needs fewer clock cycles. And its 
work frequency reaches 242.1MHz, which is higher than the 
divider with SRT algorithm proposed in paper [4], although 
its architecture is much simpler. In addition, its pipeline 
architecture is also very practical in serially outputting the 
normalized fingerprint data. 

The outline of the paper is arranged as follows: section II 
describes the proposed divider and its architecture. While 
section III introduces the application of it in the normalization 
module, section IV gives out the experimental results, and 
compares it with other methods describe in papers [4-5]. Then 
the last section makes a conclusion. 

 

II. THE PROPOSED DEVIDER 

This paper is supported by shanghai leading academic 
discipline project (S30602), innovation program of shanghai 
municipal education commission (09ZZ164/ 09YZ247), and 
science & technology program of shanghai maritime 
(20090131). 

We introduce the new divider from three sides: the 
initialization of the dividend and the divisor, the divide 
procedure and its structure. 

APSIPA ASC 2011 Xi’an



A. The Initialization of the Dividend and the Divisor 

The precision of the proposed divider can be adjusted 
easily, and it is realized by simple preprocess of changing the 
bits width of the dividend and divisor instead of fix point 
operation. The preprocessing, which we can also call as 
initialization, can be divided into three steps. First, determine 
the bit numbers of the integer and decimal part of the quotient, 
thus fixed the precision of the result. Second, enlarge the 
dividend by 2n, n is the sum of the bit numbers of the decimal 
part of divisor and quotient. Third, enlarged the divisor by 2m, 
m is the sum of the bit numbers of the quotient (including 
integer and decimal) and the decimal part of the divisor. The 
procedure can be explained by the example shown as below: 

 
aaaa / bb = cc.cccc 

 
“a”, “b”, “c” represent a bit of the dividend, the divisor and 

the quotient respectively. They can either be “1” or “0”, and 
the same character in different position can represent different 
digits in practice. In this example, the divider is supposed as 
an integer of 4 bits, divisor as an integer of 2 bits, and the 
decimal bit numbers of both of them are zeros. The bit 
numbers of the integer and decimal part of the quotient are 
determined as 2 and 4 as shown in formula (1). So, in the 
preprocess, the dividend will be enlarged by 24, because there 
are 4 bits in the decimal part of the divisor and the quotient (0 
bit in divisor and 4 bits in quotient). And the divisor will be 
enlarged by 26 (the sum of the bit numbers of the quotient and 
the decimal part of the divisor). So after initialization, the 
dividend is aaaa0000 and divisor is bbbb000000. 

  When the dividend or the divisor is not integer, they can 
be processed as the same. As the example shown in formula 
(2), the divisor has a two-bit decimal, and after initialization, 
the dividend will be aaaa000000, and the divisor will be 
ccdd000000. 

 
aaaa / cc.dd = ee.ffff 

 
In this way, the fixed point implementation of the dividend 

and divisor can be replaced by simple bit adding operation. 

B. The Divide Procedure 

The whole divide procedure can be described as follows: 
1. Right shift the divisor with one bit after initializing the 

dividend and the divisor. 
2. Compare the dividend with the divisor and right shift the 

divisor again. If the dividend is the bigger one, left shift the 
quotient and change the last bit of the quotient to digit “1”, 
and replace the dividend with the difference getting by 
subtracting the divisor from dividend. In other case, left shift 
the quotient and change the last bit of the quotient as “0” only. 

3. Repeat the step 2 until divisor changes to the 2K times of 
initial divisor. K is the decimal’s bit number of initial divisor. 
Then we will finally get the quotient of demanded precision.  

Taking 128/11 as an example, and the procedure can be 
described in Table I. 

The bit numbers of the integer and decimal part of the 

quotient are set as 4 and 7.  
 

TABLE   I 
THE  PROCEDURE OF THE DIVIDER 

 
 Dividend Divisor Quotient 
 1000,0000 1011 aaaa.aaaaaaa 

initilize 100,0000,0000,0000 101,1000,0000,0000  
step1 100,0000,0000,0000 10,1100,0000,0000 1 
step2 1,0100,0000,0000 1,0110,0000,0000 0 
step3 1,0100,0000,0000 1011,0000,0000 1 
step4 1001,0000,0000 101,1000,0000 1 
step5 11,1000,0000 10,1100,0000 1 
step6 1100,0000 1,0110,0000 0 
step7 1100,0000 1011,0000 1 
step8 1,0000 101,1000 0 
step9 1,0000 10,1100 0 
step10 1,0000 1,0110 0 
step11 1,0000 1011 1 
result   1011.1010001
 

(1) 

Here, “aaaa.aaaaaaa” represents the bit numbers of the 
integer and decimal of the determined quotient are 4 and 7. 
The divisor will right shift a bit every step until it is the same 
as it initially is. And the dividend will be minus by divisor in 
every step if it is bigger than the divisor, or it will hold the 
same. The bit of the quotient is also determined by the 
comparison of the dividend and the divisor, it will be 1 when 
the dividend is bigger than the divisor, or vice versa. And the 
final result is obtained by serially joining these bits in order. 

Carefully analysis the procedure, we will notice that the 
cycle number the procedure spent lies on the bit numbers of 
the quotient. the more bit numbers of the quotient the more 
clock cycle it needs, for we will get a bit of the quotient each 
clock. However, in other papers like [5-6], they usually need 
1-10 clocks to get a digit in decimal number. 

C. The Data Structure of the Divider 

The data structure of the divider is shown in Fig.1. At the 
beginning, dividend_in and divisor_in are the dividend and 
divisor after initialization respectively and the result_in is set 
as 0. The shifter_right can right shift the divisor by one bit 
every clock, and then compare it with the dividend_in. The 
result will determine whether to do the minus between them 
and whether the quotient should be left shift by 1 or 0.  

(2) 

 

 
Fig. 1   Data structure of the divide module 

 



Because the operation will repeat in every clock, the 
dividend_out, divisor_out, and result_out will then output to 
the dividend_in, divisor_in and the result_in to do the 
procedure again. And after n clocks (n is the bit number of the 
quotient), the result_out will output the final result we need. 
In addition, the subtraction in our structure is realized by a 
carry-look-ahead synthesis model which makes the operation 
much quicker. 
 

III. THE APPLICATION OF DIVIDER IN NORMALIZATION 

In fingerprint normalization, the normalized image is 
calculated by formula (3)[1] after getting the mean and 
variance of the input fingerprint image at advance: 
 



















otherwise
VAR

MjiIVAR
M

MjiI
VAR

MjiIVAR
M

jiN
2

0
0

2
0

0

)),((

),(
)),((

),(
 

 
In formula (3), N (i, j) represent the normalized gray-level 

value of pixel in the position (i, j), I (i, j) denotes the gray-
level value of pixel (i, j), M and VAR denote the mean and 
variance of Image I respectively, and M0 and VAR0 are 
respectively the predefined mean and variance values. In fact, 
formula (3) can be further simplified to formula (4), which 
could be much clearer about the operation happened in the 
normalization. 
 

VAR
VARMjiIMjiN

1
**)),((),( 00   

 
From the above formulate, we can see that the critical 
operations of normalization are the divide and square root 
computation which could also be implemented by several 
divide operations of different precisions. So divider with 
adjustable precision is very useful here. 

A. The implementation of square root operation 

As we know, the principle of the square root operation is 
just the divide operation, and its precision can be approached 
by dividers of different precisions.  
 

m’=(m+a/m)/2                
 

Formula (5) shows the computation of the square root 
operation. Here, “a” is the value to be calculated, m is the 
coarse value of the square root, and m’ is the more precise 
square root. The precision of the square root is just 
promoted by using several above operations which needs 
several dividers of different lengths and precisions. We will 
explain the procedure by computing the square root of 
number “5” as an example. 

 
(2+5/2)/2=2.25 

 
(2.25+5/2.25)/2=2.236 (7) 
 
(2.236+5/2.236)/2=2.2360679 (8) 
 
Before the divide operation, we should find an integer 

which is smaller but mostly approaches a . It is 2 in this 
example. From formula (6) to (8), the precision we defined 
is higher and higher, and the adjustable dividers we 
proposed above can just complete it conveniently. What’s 
more, the final result obtained by (8) also proves its 
efficiency, for it is very close to the real value.  

B. The pipeline structure of the divider 

 The fingerprint normalization belongs to point operation 
in image processing, which means that every pixel is 
implemented by the same normalization operation 
independently. To increase the efficiency, pipeline structure 
is very suitable. And the proposed dividers could also be 
implemented in pipeline structure, which is very useful for 
the continuous output of the normalized result when the 
fingerprint data are serially inputted. And after several 
clocks’ delay, we can get the result of a divider every one 
clock. The data structure of the pipeline divider module is 
shown in Fig.2. 

 

(3) 

 

(4) 

Fig.2 data structure of the pipeline divider module  
 

IV. THE EXPERIMENTAL RESULTS  

We realized the divider proposed above in hardware design 
language - Verilog, and simulated it in Modsim5.5. To prove 
its efficiency, we chose two typical impactful algorithms 
proposed in paper [4] and paper [5] to compare with it. So, in 
this section, two experiments are designed for the test and the 
same test data are used in them. 

(5) 
A. Compare by the Clock Cycle 

A divider with adjustable precision is also proposed in 
paper [5]. To compare, we used the same dividend (128) and 
divisor (11) as in paper [5], and the decimal bit number of the 
quotient is set as 7 in consider that the result precision is 
centesimal. The divide procedure has been shown in Table I, 
and the result is obtained as 1011.1010001 after 11 clocks, 
which is very close to the real value 11.63636…. However, 
paper [5] needs 12 clocks to complete the computation. The 
simulation wave is shown in Fig.3. 

(6) 



[6] W. H. Zhou, “Design of the decimal integer divider per-setting 
up precision in calculation based on VHDL”, Foreign Electronic 
Measurement Technology, Vol.27, No. 2, pp. 16-18, Feb. 2008. 

Fig. 3  The simulation waveform with precision of 7. 

[7] Takagi,  N., Kadowaki, S., and Takagi, K,” A hardware 
algorithm for integer division”, 17th IEEE Symposium on 
Computer Arithmetic, pp.140 – 146, Jun. 2005 

[8] Juang, T.-B, S. H. Chen, and S.M. Li, “A novel VLSI iterative 
divider architecture for fast quotient generation”, IEEE 
International Symposium on Circuits and Systems, pp.3358 – 
3361, May 2005 

Although it seems that, there is not much difference 
between our algorithm and the algorithm proposed in paper 
[5], after analysis it carefully, we will find out that, in paper 
[5] the clock cycles it needs is dependant on the value of the 
quotient, and in our method, it lies on the length of the 
quotient. As we know, the biggest number that n bits can 
represent is 2n-1, and which is always bigger than n except 
when n=1. So when the quotient is a big value, the number of 
clock cycles consumed will much more than the cycles we use 
in the proposed algorithm. 

[9] X.S.HUANG., Y.E. Qing, Y.L. QIU, “High Speed Divider and 
ASIC Implementation”, Microelectronics & Computer, Febrary, 
2008 

 
 

B. Compare by the Speed 

The divider is synthesized using Synopsys’ design 
compiler targeting SMIC 0.13um CMOS techniques. With 
32-bits-long dividend and divisor, the speed of our divider 
reaches 242.1MHz, and the area of the divider cost in our 
method is about 1.85k gates, which is relative small. 
Comparing with the paper [4], which proposed a modified 
SRT algorithm with double speed of radix-2, our divider is 
even much quicker. What’s more, its area is also much 
smaller than other divider with SRT algorithm, although 
the speed may be smaller than dividers of higher radix. 

 

V. CONCLUSIONS 

The paper proposed a divider with adjustable precision, 
and in it, fixed-point implementation has been replaced by 
simple shift operation, which makes the decimal be 
processed as easy as the integer. The divider is very 
efficient in the normalization procedure of the fingerprint 
enhancement, and the experiment result shows that it 
requires relative fewer cycles and has a higher speed 
compared with other methods. 

 

REFERENCES 

[1] L. Hong, Y. F. Wan and A. Jain, ”Fingerprint image 
enhancement: algorithm and performance evaluation”, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 
VOL.20, No.8, Aug. 1998 

[2] Y.D. Chen, J.L. Qi and J.S.Chen, “The design of 8 division with 
VHDL”, Control & Automatic, vol.22, no.13, pp. 277-278, 2006. 

[3] D. Hua, “Study on SRT divider and its algorithm,” Computer 
Engineering and Design, vol. 28, no. 1, pp. 248-249, Jan. 2007. 

[4] H. Y. Liu, “Simulating and implementation of high performance 
division,”  Instrument Technique and Sensor, Vol.6, pp.38-
39,70, Jan. 2006 

[5] X. Y. Ye, H. Y. Zhang, D. J. Pi, S. J. Qin, “Design of integer 
divider with adjustable precision based on Verilog”, Modern 
Electronics Technique, Vol.32, No. 3, pp.146-147, 2009. 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9902
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4534149
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4534149
http://en.cnki.com.cn/Article_en/CJFDTOTAL-WXYJ200802036.htm
http://en.cnki.com.cn/Article_en/CJFDTOTAL-WXYJ200802036.htm

