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Abstract— Apple internal quality classification is fairly 
important in fruit sales, packing and storage for producers and 
sellers. But internal properties like firmness, ascorbic acid 
content, and Ethylene production rate are difficult to measure 
without damaging the tested apples. Therefore, we propose a 
damage-free apple internal quality approach using such 
electronic signals as impedance, admittance, conductance, etc. 
With these multidimensional electronic signals, we adopt 
Principal Component Analysis (PCA), Sparse Principal 
Component Analysis (SPCA), and Gray Relational Analysis 
(GRA) to classify apple internal quality. According to three 
sets of our experiments, it is verified that PCA, SPCA and 
GRA all work well, and that SPCA outperforms the other two 
in terms of requirement of electronic signals and classification 
accuracy. 

I. INTRODUCTION 

Apple internal quality classification is fairly important in 

fruit industries, including packing, distribution and storage 

for producers and sellers. For example, apples with high 

quality should be packed more carefully and stored together 

to guarantee freshness and delay deterioration. There have 

been some external apple quality detection systems detecting 

surface defects[1,2]. The internal quality properties like 

firmness, ascorbic acid content, and Ethylene production rate 

are difficult to measure without damaging the tested apples. 

Some researches show that apple dielectric properties are 

correlated with their internal quality[3]. In this paper, we 

propose a novel damage-free apple internal quality 

classification system based on electric signals analysis. For 

each apple testing sample, we extract 14 electronic signals 

including impedance, admittance, and conductance, etc. and 

7 internal quality features such as firmness, vitamin, etc. 

All testing samples are grouped into different quality 

categories based on their internal quality properties using 

hierarchical clustering. We apply Principal Component 

Analysis (PCA), Sparse Principal Component Analysis 

(SPCA), and Gray Relational Analysis (GRA) using 

electronic signals to predict the sample’s quality categories. 

This paper is organized as follows. Both the electronic 

signals and internal features to be measured are described in 

Section 2. Section 3 elaborates on the three algorithms of 

PCA, SPCA, and GRA. Section 4 continues to compare their 

internal quality classification performances. To conclude, 

Section 5 analyzes and summarizes the three sets of our 

experiments. 

II. ELECTRONIC SIGNAL AND INTERNAL QUALITY FEATURE 

DEFINITION 

We obtained the apple quality classification experimental 

data set which consists of 36 observations every 20 days 

from day 1 to day 220. And each observation includes 14 

electronic signals and 7 internal quality features as defined in 

Table I and Table II respectively. As displayed in Fig. 1, 

biological device cannot provide damage-free measurements 

as electronic device do, but its measuring results can give 

credible classification of apples using clustering methods. 

Here, we explore techniques to predict the classification 

results only by electronic signals. 
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III. ELECTRONIC SIGNAL EXTRACTION 

In apple quality degeneration each feature seems to rise or 

fall in value, but there is no unified integral variation trend. It 

will be irrational to review and categorize this batch of 

apples only by one or some of these features, but there is a 

great possibility that some of these indicators may perform 

as redundant or negative factors in classification. Then an 

efficacious and scientific algorithm is in urgent need to 

rationally classify these apples and identify their 

corresponding quality levels. 

A. Principal Component Analysis 

Principal Component Analysis (PCA)[4] is a classical 

multivariate method used frequently in many fields for its 

simplicity. It is usually used to reduce dataset dimension. 

PCA transforms linearly a number of correlated variables to 

a smaller number of uncorrelated variables called principal 

components. The first principal component best describes the 

variability in the data, and each succeeding component best 

describes the remaining variability. All these principal 

components form a projection in which the dataset is most 

informative[5]. And the results of the analysis largely depend 

on the scaling of the specified data matrix[6]. Here we will 

introduce the derivation of PCA by using the covariance 

method[7]. 

Let the data set X={x1, x2, …xn} be an mn matrix, where 

m is the number of features, n is the number of observations, 

and xi(i=1,2,…,n) is one of the observations. The average 

observation and the difference  after subtraction of the mean 

can be defined as  
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The goal is summarized as follows. Find a certain orthogonal 

matrix P so that the covariance matrix is 
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and the m  orthogonal row vectors in P are the principal 

components  If X'TX' is a rank r, square, symmetric mm 

matrix, we can use singular value decomposition [8] to solve 

the following equation:  

' ' , 1, 2,...,T
i i iX X v v i r    (3)

 

The final form of the decomposition is: X'=UVT which  

 

TABLE II. Apple internal quality features 

 

Signal No. Symbol Property 

15 H firmness (kg•cm-2) 

16 T total soluble solid admittance (%) 

17 A titirable acid (%) 

18 r ratio = T/A 

19 Vc ascorbic acid (mg•kg-1) 

20 ri respiration intensity (mgCO2•kg-1•

h-1) 

21 E ethylene (μL•kg-1•h-1) 

 

TABLE I. Apple electronic signals 

 

Signal No. Symbol Property 

1 Z impedance () 

2 Cs static capacitance in series equivalent 

circuit mode (F) 

3 Ls inductance in series equivalent circuit 

mode (H) 

4 Rs effective resistance in series equivalent 

circuit mode () 

5 Cp static capacitance in parallel equivalent 

circuit mode (F) 

6 Lp inductance in parallel equivalent circuit 

mode (H) 

7 Rp effective resistance in parallel 

equivalent circuit mode () 

8 G conductance (S) 

9 Y admittance (S) 

10  impedance phase angle () 

11 D loss coefficient = tan()  

12 Q quality factor 

13 ε' relative permittivity  

14 ε" dielectric loss factor = ε' tan() 



 

 

 
 

Fig.1 Apple internal quality classification predicted by electronic signals 

 

 

TABLE III. Eigenvalues and contributions to variance of Principal Components 

 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Eigenvalue 1.604*10^11 4.648*10^5 1.336*10^5 2863.0 334.8 156.3 0.3036 0.001127 

Percentage 

(%) 

0.999996 0.00000289809 8.32872*10^(-7) 1.785*10^(-8) 2.08768*10^(-9) 9.74462*10^(-10) 1.89325*10^(-12) 7.0264*10^(-15)

 

 

Fig. 2 Correlation coefficient matrix (Each row or column is one feature.) 



 

signifies that the matrix X' can be converted to an orthogonal 

matrix, a diagonal matrix and another orthogonal matrix[9]. 

And the orthogonal matrix P can be easily obtained from this 

decomposition. 

Principal Component Analysis requires the calculation of 

the covariance matrix of a data set. First  the linear relation 

between the feature measurements presented by the correlation 

coefficient matrix (Shown by Fig. 2) is analyzed. Let Coe(X')ij 

denote the value in the i-th row and the j-th column which 

means this number measures the correlation between the two 

feature variables. But a great number of values in the 

correlation coefficient matrix make it difficult to make 

comparisons unless we already have a pair of target features. 

Table III presents the eigenvalues and contributions to 

principal components variance. The first column explains that 

the eigenvalue of PC2 is 0.999996, which verifies that some of 

the principal components can construct fairly good mapping 

space. The second row displays the energy percentage of each 

principle component. Table IV shows the eigenvectors 

corresponding to eigenvalues in descending order (each 

column represents one eigenvector). Obviously, value 

distribution in all the features appears to be random. 

B. SPCA 

PCA finds the linear combinations of the original variables 

so that the derived variables are able to capture maximal 

variance. PCA can be estimated via the singular value 

decomposition (SVD) of the data matrix. PCA makes itself 

successful mainly by this optimal property. The first several 

principal components can sequentially maximize the 

variability of the data matrix and remains uncorrelated at the 

same time[10]. However, the weakness is that principal 

components are linear combinations of all the original 

variables, or rather their loadings are mostly nonzero, which 

makes it difficult to interpret the derived variables. It should be 

considered to change the weighting coefficients of 

insignificant principal components to be zero.  

SPCA[10] is one of such combination algorithms. In fact, 

the L1-norm-based penalization technique of lasso (proposed 

by Tibshirani in 1996[11]) can produce accurate and sparse 

models via variable selection. 

 

TABLE IV. The eigenvectors corresponding to eigenvalues in descending order (a column is an eigenvector) 

 

Features PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Z -0.02647 0.05813 -0.05424 -0.8156 0.5231 -0.2321 -0.01297 0.0003457 

Cs -4.432*10^(-13) -1.706*10^(-13) -2.614*10^(-14) -2.145*10^(-14) 4.897*10^(-13) 7.362*10^(-13) 8.044*10^(-12) -4.467*10^(-11)

Ls -9.917*10^(-10) 2.013*10^(-9) -1.731*10^(-9) -3.88*10^(-8) -1.579*10^(-8) -5.775*10^(-8) 1.166*10^(-6) -4.218*10^(-6)

Rs -0.008616 -0.02013 -0.01928 -0.2285 0.07227 0.9692 -0.0486 0.002356 

Cp -3.934*10^(-13) 6.179*10^(-13) 2.499*10^(-13) -3.106*10^(-12) -7.512*10^(-12) -1.336*10^(-11) -7.385*10^(-11) -7.217*10^(-9)

Lp -1.096*10^(-9) 1.046*10^(-9) -2.916*10^(-9) -2.94*10^(-8) -3.01*10^(-9) 2.129*10^(-8) 3.046*10^(-7) 2.861*10^(-6)

Rp -0.08398 0.2938 -0.9477 0.09038 0.009492 0.007716 0.01223 -0.00014 

G -3.629*10^(-6) 8.567*10^(-7) 2.215*10^(-6) -9.084*10^(-5) -2.555*10^(-7) -1.486*10^(-5) -0.002206 -0.1191 

Y -1.079*10^(-5) 9.44*10^(-6) 2.93*10^(-7) -8.927*10^(-5) -0.0002458 0.0002494 -0.006015 -0.07007 

 0.03676 -0.05345 0.03839 0.5204 0.8481 0.05796 -0.02957 -0.00368 

D -0.0001729 -0.0003884 -0.000287 -0.002754 -0.002931 0.001788 -0.003341 -0.9904 

Q -0.001558 0.005769 -0.01097 0.007453 -0.0353 -0.04579 -0.9982 0.003988 

ε' -0.9445 0.2738 0.1735 0.04837 0.01994 0.01068 0.0003162 -0.0001647 

ε" -0.3142 -0.9122 -0.2585 -0.03375 -0.009133 -0.03417 -0.0003002 0.0005372 

 



In 2003, Jolliffe & Uddin introduced SCoTLASS [12] to get 

modified principal components with possible zero loadings. 

And in the same year, a generalization of lasso, the elastic net, 

is presented by Zou & Hastie[13] to improve the lasso. In 2006, 

Zou et al. [10] put forward the SPCA algorithm which is based 

on the fact that PCA can be treated as a regression-type 

optimization problem whose regression criterion can be 

integrated by the elastic net directly. Next, we will review 

SPCA briefly. 
As each principal component is a linear combination of 

the n variables, its loadings can be recovered by regressing the 

target principal component on the n variables. Let Ui denote 

the i-th principal component. >0, the ridge estimates and the 

solution are given as follows:  

2
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It is obvious that if n>p and X is a full rank matrix, the theorem 

does not need  to be positive. And if p>n and =0, Vi will not 

be the unique solution of ordinary multiple regression. The 

same situation appears when n>p and X is not a full rank 

matrix. But PCA can achieve a unique solution under any 

circumstances. After the addition of the L1 penalty, the 

optimization problem will be: 
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Then will be the estimate of Vi, and XVi will be the estimate 

of the i-th principal component. After the addition of the lasso 

penalty into the criterion, the optimization problem will be: 

Considering the first k principal components, let α and β 

 

TABLE V. Sparse principal components and their variance contributions 

 

Features SPC1 SPC2 SPC3 SPC4 SPC5 SPC6 SPC7 SPC8 

Z 0 0 0 0 0.6627 0.5158 0 0 

Cs 0 0.07289 0 0.03758 0.115 0 0.02191 0.4809 

Ls 0 0.07289 0 0.03758 0.115 0 0.02196 0.153 

Rs 0 0 0 0.6229 0 0.4836 0 0 

Cp 0 0.07289 0 0.03758 0.115 0 0.02191 0.4809 

Lp 0 0.07289 0 0.03758 0.115 0 0.02196 0.1185 

Rp 0 0 0 0 0 0 0 0 

G 0 0.07283 0 0.03823 0.08497 0 0.1816 0 

Y 0 0.07272 0 0.0395 0.02568 0 0.4969 0 

 0 0.679 0.707 0 0 2.542*10^(-5) 0 0 

D 0 0.07005 0 0.06821 0 0 0.4671 0 

Q 0 0.04718 0 0.3142 0 0 0 0 

ε' 0.684 0 0.01235 0 0 0 0 0 

ε" 0.1794 0 0 0 0 0 0 0 

Percentage 

(×100%) 
0.8781 0.04617 0.05509 0.009619 0.005347 6.361*10^(-5) 0.0001049 8.693*10^(-6)

Cumulative 

percentage 

(×100%) 

0.8781 0.9243 0.9794 0.989 0.9944 0.9944 0.9945 0.9945 



denote a p × k matrix respectively. And Xi is the i-th row vector 

of X. Then >0, 
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If α=β, the minimization under the orthogonal constraint on 

α is exactly the first k loading vectors of ordinary PCA. 

In apple electronic signal data analysis, we use SPCA to 

select a set of base principal components with sparse loading to 

construct the new mapping space, which avoids 

mid-identifying the important variables and guarantees 

minimal information loss at the same time. Table V shows the 

sparse principal components and their variance contributions. 

It is obvious that these basis vectors are restricted to sparse 

loadings. In the next step, projections on these components will 

be computed and used as the new representation of apple 

quality. 

C. Grey Relational Analysis 

Grey Relational Analysis (GRA)[14] is developed as part 

of the grey system theory[15], which has been widely adopted 

for data analysis in various fields. As a method in grey system 

theory, GRA is introduced here specially for analyzing discrete 

data series. Its procedure involves the following steps. 

(1). Generate the reference vector and the comparison 

vector selected from observations:  

0 01 02 0{ , ,..., }T
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i i i imx a a a i n    (7) 
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(3) Get the global maximum difference value and 

minimum value in the whole difference vector: 

max max(max )i
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(4) Transform each data point in each difference vector to 

grey relational coefficient. The grey relational coefficient 

of the j-th data point in the i-th difference vector: 

min max

max

( )
( )i

i

j
j

 
 





   (10) 

i(j) is the i-th value in the difference vector i。 And  is a 

coefficient between 0 and 1, used to compensate the effect of 

min in case max is an extreme value in the vector. In general, 

the value of  is set to 0.5. 

(5) Compute grey relational grade for each difference 

vector. Assume that data points in the series are of the 

same weights, and the grey relational grade for the i-th 

scale item will be:  
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In general, a scale item with a high value of Γ 

indicates that the respondents, as a whole, have a high 

degree of favored consensus on the particular item[16]. 

Fig. 3 (data for detail shown in Table VII in Appendix) 

displays the grey relational grades among features. For 

example, the value in the first row and the second column 

represents the grey relational grade between feature Z and 

feature Cs. And the value of the number
 
shows the overall 

degree of standardized deviance of feature Cs from feature Z. 

An important characteristic of this table is that when feature ε" 

and feature ε′ serve as the reference data series, the grey 

relational grades of all the rest features are below 0.60. By 

contrast, when other features are taken as the reference data 

series, the grey relational grades of the rest features are around 

0.90. Besides, the grey relational grades of the rest features are 

around 0.50 when feature Rp is the reference indicator. All 

these facts prove that the 3 electric signals (ε", ε′ and Rp) do 

not fit into the general tendency that other features show. 

Generally internal quality features describe the trend of 

quality decline. But the 3 electric signals (ε", ε′ and Rp) are 

negative factors in terms of grey relational grade. Then it will 

be reasonable to remove them and evaluate the apple internal 

quality by other signals. Here we choose a mapping scheme to 

complete the experiment, and elaborate on it in detail in the 

next step. 



 

 
Fig.4 Comparison of the classification performance between experiments of PCA and SPCA 

TABLE VI. The classification performance in experiments of GRA 

 

Number of basis vectors 1 2 3 4 5 6 7 

Recognition Rates 0.705 0.72 0.77667 0.86833 0.905 0.89167 0.88833 

 

 

Fig. 3 The grey relational grades between each internal quality feature and others 



 
Fig.5 Classification made by Hierarchical Clustering when the distance measure of Hierarchical Clustering is Standardized Euclidean 

distance and the linkage criterion is the complete link 

 

IV. CLASSIFICATION AND RECOGNITION 

It is easy to classify apple samples by time of storage. But 

as time goes on, the quality of apples after being culled from 

trees is lowered day by day. Besides, different preservation 

techniques result in great difference of quality variation. And it 

is also possible that apples, either of different species or of the 

same one, possess diverse qualities and properties. For these 

reasons, clustering apples by quality instead of time would be 

a better way out.  

It is widely accepted that internal quality features such as 

firmness and contents of Ethylene production rate can reveal 

apple quality. But an obvious disadvantage of clustering 

apples by quality is that internal quality features are difficult to 

measure without damaging the tested apples. So it will be 

convenient and efficient to measure apple quality just through 

electronic signals if we can use these signals to identify 

different classes. Then we introduce apple clustering based on 

internal quality features using hierarchical clustering. 

Widely used in statistics, hierarchical clustering is aimed to 

build a hierarchy of clusters. There are generally two types of 

approaches to hierarchical clustering: 

(1). Agglomerative: It is a "bottom up" strategy: each 

observation starts with its own cluster, and pairs of clusters are 

merged as one moves up the hierarchy.  

(2). Divisive: It is a "top down" strategy: all observations 

start with a single cluster, and splits are performed recursively 

as one moves down the hierarchy.  

As a rule, these merges and splits are determined in a greedy 

manner. The results of hierarchical clustering are usually 

presented in a dendrogram. Here we use the Agglomerative 

strategy to build the hierarchy of sample clusters.  

For the purpose of deciding which clusters should be 

combined, Euclidean distance is used as the pair-wise 

similarity measure while Complete-link is used as the measure 

between two sets of samples. The apple quality categories 

defined by clustering are shown in Fig. 5. 

To verify the variable selection made by all the techniques 

mentioned above, we use the Linear Discriminant Classifier 

(LDC) to identify the belonging of the cluster samples. We use 

a series of basis vectors extracted from the training set as the 

mapping space. For example, in PCA, we choose a number of 

principal components to compute the projections, which will 

reduce the electronic signal dimension. In SPCA, we also have 

the same basis vectors (Sparse Principal Component, SPC) to 

perform the transformation. In GRA, the gray relational grades 

of the 7 internal quality features express the same variable 

interpretation as principal components (See Table VII in 

Appendix), when the 14 electrical signals serve as reference. 

And they can be treated as basis principal components 

computed with special loadings. Then we introduce the 

classification methods and algorithms to perform signal 

selection or projection, and classifiers also given to categorize 

testing samples into the known clusters of the training set. 

V. RESULTS AND SUMMARIES 



We selected the testing set from the original data set 

randomly, but kept the structure so that each class has at least 

one observation. We repeated the process of random selection 

and recognition 100 times, and computed the average 

recognition rate as the final result. The comparison of these 

three variable processing algorithms is shown in Table VI and 

Fig. 4. Here, ‘recognition rates’ means the ratio of the 

right-matched number to the total number of testing samples. 

In Fig. 4, the horizontal axis denotes the number of principal 

components or sparse principal components. 

In detail, the highest recognition rate 0.9133 is reached by 

SPCA when the number of remaining SPCs is 3, the distance 

measure of Hierarchical Clustering is Standardized Euclidean 

distance, and the linkage criterion is the complete link. Fig. 5 

shows the classification of Hierarchical Clustering in the same 

argument setting. In the three sets of experiments, we verify 

that these 3 methods are all workable in extracting features and 

SPCA is better than the other two in classification. According 

to our experimental results, when PCA and GRA are chosen as 

feature selection methods, their performances are acceptable. 

And the best scheme is to select features by means of SPCA. 
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APPENDIX: 

 

Comparison Z Cs Ls Rs Cp Lp G Rp Y θ tanθ Q ε′ ε" FirmnessTSS Titirable acid TSS/acid ratioAscorbic acid content Respiration intensityEthylene production rate

Z - 0.8880.8880.8850.8880.8880.4810.8880.8880.9540.8880.8841.207 -1.644 0.887 0.885 0.888 0.818 0.874 0.872 0.885 

Cs 0.909 - 0.9300.9280.9300.9300.511 0.9300.9300.9950.9300.9261.179 -0.280 0.929 0.928 0.930 0.861 0.918 0.914 0.928 

Ls 0.9090.930 - 0.9280.9300.9300.511 0.9300.9300.9950.9300.9261.179 -0.280 0.929 0.928 0.930 0.861 0.918 0.914 0.928 

Rs 0.8940.9160.916 - 0.9160.9160.5010.9160.9160.9810.9160.9121.188 -4.689 0.915 0.914 0.916 0.847 0.903 0.899 0.913 

Cp 0.9090.9300.9300.928 - 0.9300.511 0.9300.9300.9950.9300.9261.179 -0.280 0.929 0.928 0.930 0.861 0.918 0.914 0.928 

Lp 0.9090.9300.9300.9280.930 - 0.511 0.9300.9300.9950.9300.9261.179 -0.280 0.929 0.928 0.930 0.861 0.918 0.914 0.928 

Rp 0.7830.8090.8090.8060.8090.809 - 0.8090.8090.8770.8090.8051.273-19.195 0.808 0.806 0.809 0.738 0.793 0.794 0.807 

G 0.9090.9300.9300.9280.9300.9300.511 - 0.9300.9950.9300.9261.179 -0.280 0.929 0.928 0.930 0.861 0.918 0.914 0.928 

Y 0.9090.9300.9300.9280.9300.9300.511 0.930 - 0.9950.9300.9261.179 -0.279 0.929 0.928 0.930 0.861 0.918 0.914 0.928 

θ 0.9790.9960.9960.9960.9960.9960.5600.9960.996 - 0.9960.9921.144 8.772 0.996 0.995 0.996 0.930 0.986 0.979 0.993 

tanθ 0.9090.9300.9300.9280.9300.9300.511 0.9300.9300.995 - 0.9251.180 -0.251 0.929 0.928 0.930 0.861 0.917 0.913 0.927 

Q 0.9060.9270.9270.9260.9270.9270.5090.9270.9270.9930.927 - 1.181 -0.088 0.927 0.925 0.927 0.859 0.915 0.911 0.925 

ε′ 0.3230.3460.3460.3410.3460.3460.1610.3460.3460.3930.3460.344 - -0.103 0.344 0.341 0.346 0.299 0.330 0.338 0.344 

ε" 0.5700.5990.5990.5930.5990.5990.3000.5990.5990.6620.5990.5951.598 - 0.596 0.593 0.599 0.534 0.579 0.586 0.596 

Firmness 0.9030.9240.9240.9220.9240.9240.5070.9240.9240.9890.9240.9201.183 0.369 - 0.922 0.924 0.855 0.911 0.908 0.922 

TSS 0.8960.9170.9170.9150.9170.9170.5020.9170.9170.9830.9170.9131.187 37.770 0.917 - 0.917 0.848 0.904 0.901 0.915 

Titirable acid  0.9090.9300.9300.9280.9300.9300.511 0.9300.9300.9950.9300.9261.179 -0.259 0.929 0.928 - 0.861 0.917 0.913 0.927 

TSS/acid ratio 0.8450.8690.8690.8660.8690.8690.4680.8690.8690.9350.8690.8651.222 -1.143 0.868 0.866 0.869 - 0.855 0.853 0.866 

Ascorbic acid content 0.8750.8980.8980.8960.8980.8980.4890.8980.8980.9640.8980.8941.199 -1.023 0.897 0.895 0.898 0.828 - 0.882 0.895 

Respiration intensity 0.9010.9220.9220.9210.9220.9220.5060.9220.9220.9880.9220.9181.184 2.182 0.922 0.920 0.922 0.853 0.910 - 0.920 

Ethylene production rate0.9080.9280.9280.9270.9280.9280.5100.9280.9280.9940.9280.9241.180 -0.214 0.928 0.927 0.928 0.860 0.916 0.912 - 

Reference 

TABLE VII. The grey relational grades between each internal quality feature and others 
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