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Abstract—This paper proposes to adopt hierarchical tree
construction of directional lapped orthogonal transforms (Dir-
LOTs) to image denoising. The DirLOTs are 2-D non-separable
lapped orthogonal transforms with directional characteristics.
The bases are allowed to be anisotropic with the fixed-critically-
subsampling, overlapping, orthogonal, symmetric, real-valued
and compact-support property. As well, it is possible to introduce
the trend vanishing moments (TVMs), which force wavelet filters
to annihilate trend surface components. So far, the orthonormal
wavelet image denoising techniques, such as the SURE-LET
approach by Luisier et al., have shown a disadvantage in
the restoration of diagonal textures and edges because of the
separability of the adopted transforms. This work shows through
some experimental results that the SURE-LET approach with
DirLOTs overcomes the geometric problem.

I. INTRODUCTION

Denoising is one of the most important image processing
applications since images are usually corrupted with additive
noise through image acquisition and transmission. The noise is
often modeled as white Gaussian. This statistical hypothesis or
prior knowledge on noise gives us several denoising algorithms
which preserve features of the noiseless clean images. For a
couple of decades, such denoising algorithms have been de-
veloped with sparse representation of images, which includes
orthonormal wavelets [1]. One of the most popular techniques
is the soft-thresholding introduced by Donoho and Johnstone
[2], [3]. In the article [3], the authors proposed to minimize
Stein’s unbiased risk estimator (SURE) for determining the
shape of shrinkage function and used it in the wavelet domain.
The SURE approach has an advantage that no statistical prior
knowledge on the clean unknown image is required, while
Bayesian approaches requires the knowledge of the pdf. This
fact makes the procedure simple, while keeping the efficiency.

The shrinkage function, however, is piece-wise linear and
governed by a single threshold parameter T . Thus, the shape
is strongly restricted and the relation between the shape and
threshold is not linear. As a result, finding an optimal threshold
T requires nonlinear search algorithm. In order to relax the
restriction, Lusier et al. proposed a linearly parameterized
denoising function so that the optimal solution search becomes
linear [4]–[6]. The technique is referred to as the SURE-LET
(linear expansion of thresholds) approach and can be used for
interscale orthonormal wavelet shrinkage.

The SURE-LET thresholding is efficient both in terms of
computational complexity and denoising quality. However, the
quality becomes lower for regions where the interscale corre-
lation is weak. Conventionally, orthonormal wavelet thresh-
olding adopts separable transforms such as Haar transform

and Symlets. Such separable transforms have disadvantage in
representing diagonal edges, textures and gradually changing
content, where the transform coefficients are scattered around
several high-frequency subbands. Consequently, the sparse
representation fails.

Recent development of image transforms involves non-
separable transforms for handling such diagonal structures [7]–
[12]. The curvelet is one of the successful 2-D transforms,
which can efficiently approximate smooth curve edges [8],
[9]. It, however, is overcomplete and initially developed in
continuous domain, and constructing a fast discretized orthog-
onal curvelet-like transform is an open problem. In the article
[11], Do and Vetterli start with discrete-domain construction
of filter banks for producing an alternative directional mul-
tiresolution analysis framework. The transform, however, is
non-orthogonal [11], [12].

Orthonormal transforms are preferable for many applica-
tions since they preserve the energy between a given original
signal and the transform coefficients, and reduce mathematical
handling of algorithms significantly. The non-redundancy is
also attractive for the application to compression. As a previ-
ous work, we have proposed 2-D directional lapped orthogonal
transforms (DirLOTs) [13]–[16]. The bases are allowed to
be anisotropic with the fixed-critically-subsampling, overlap-
ping, orthogonal, symmetric, real-valued and compact-support
property. As well, it is possible to give the trend vanishing
moments (TVMs), which force wavelet filters to annihilate
trend surface components. This paper proposes to adopt the
hierarchical tree construction of the DirLOTs, i.e. 2-D non-
separable orthonormal symmetric DWTs, to the SURE-LET
denoising so that the denoising quality for diagonal textures
and edges is improved. It is worth noting that the group delay
compensation (GDC) filter is simply obtained since each basis
image is symmetric or anti-symmetric and has the same center
of symmetry.

The organization of this paper is as follows: In Section II,
as a preliminary, the SURE-LET image denoising is briefly
reviewed. Then, Section III introduces the DirLOTs and shows
some of the design examples. In Section IV, some experi-
mental results of the SURE-LET image denoising with the
DirLOTs are shown, followed by the conclusion in Section V.

II. REVIEW OF SURE-LET IMAGE DENOISING

In this section, let us review the SURE-LET approach of
image denoising, We here note that the symbol I is reserved
for denoting the identity matrix.
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Fig. 1. Principle of orthonormal wavelet denoising

A. Problem Setting

Image acquisition devices provide pixels v =(
v0 v1 · · · vN−1

)T
, where N denotes the number of

pixels. The observed picture v is usually corrupted with noise
w and the noise w is frequently modeled as an additive white
Gaussian noise (AWGN) with zero mean and no correlation
to the other pixels. Let x be the original clean noiseless
picture. Then, the observed image v is represented by

v = x+w,

where E{w} = 0 and E{wwT } = σ2I.
Image denoising in this study deals with the problem of

finding a good candidate x̂ of unknown noiseless picture x
only from the observed picture v. The estimation process can
be represented by the following formulation:

x̂ = F(v),

where F is a denoising function.
Figure 1 shows the principal of orthonormal wavelet de-

noising, where Ψ, Θ and ΨT are a forward discrete wavelet
transform (DWT), a shrinkage function and the inverse DWT.
The symbol yj denotes the j-th subimage, where y0 consists
of scaling coefficients and yj for j ∈ [1, J − 1] possess
wavelet coefficients, while uj for j ∈ [1, J − 1] denote the
denoised wavelet coefficients through shrinkage operation Θ.
The wavelet denoising process is summarized as follows:

i) Perform a forward DWT of the noisy picture v =
x+w. Then, obtain the transform coefficients

y =
(
yT
0 yT

1 · · · yT
J−1

)T
= Ψv.

ii) Denoise wavelet subimages yj for j ∈ [1, J − 1].
Then, obtain denoised subimages

u =
(
yT
0 uT

1 · · · uT
J−1

)T
= Θ(y).

iii) Perform the inverse DWT of coefficients u as

x̂ = Ψ−1u = ΨTu.

In this framework, the denoising function F is represented by

F(v) = ΨTΘ(Ψv). (1)

Note that the denoising quality depends on the choice of the
transform Ψ and the shrinkage function Θ.

B. SURE-LET Approach

The SURE-LET approach is a technique to realize the
shrinkage function Θ, which avoids any a priori hypotheses
on the noiseless picture x under the usual white Gaussian
noise assumption. The denoising problem is reformulated
as the search for the denoising process that minimizes the
Stein’s unbiased risk estimate (SURE). The denoising process
is completely characterized by a set of parameters. In the
article [4], Luisier et al. proposed the following point-wise
thresholding

θ(y) =

K∑
k=1

akye
−(k−1) y2

2T2 ,

where y is a wavelet coefficient. In this function, the authors
suggested to use K = 2 and T =

√
6σ.

Furthermore, the authors also proposed the following form
of the shrinkage function:

θ(y, yp;a,b) = e−
y2
p

12σ2

K∑
k=1

akye
−(k−1) y2

12σ2

+

(
1− e−

y2
p

12σ2

) K∑
k=1

bkye
−(k−1) y2

12σ2 , (2)

where yp is an interscale prediction of y obtained from the
wavelet parent-child relationship. This predictor tells us only
an indication on its expected magnitude. Thus, the authors use
the parent yp as a discriminator between high and low SNR
wavelet coefficients. Consequently, the parameters ak and bk
are linearly solved for minimizing SURE.

III. IMAGE DENOISING WITH DIRECTIONAL LOT

The wavelet denoising function F in Eq (1) is governed by
the choice of DWT Ψ as well as the shrinkage function Θ.
In this section, we propose to use the directional LOT as a
critically sampled orthonormal wavelet basis Ψ.

In the followings, the decimation matrix is fixed to 2×2 in
order to construct 2-D DWT trees. We reserve the symbol E0

to the 4 × 4 symmetric orthonormal transform given directly
through the 2-D separable DCT, where each basis image is
aligned into an 4 × 1 vector and is arrayed into the form
ET

0 =
(
bee boo boe beo

)
, where bee, boo, boe and beo

are 4 × 1 vectors consisting of columnized basis images.
The first and second subscript denote the symmetry in the
vertical and horizontal direction, where ’e’ and ’o’ describe
even- and odd-symmetry, respectively. The symbols Om and
Im are reserved for the m × m null and identity matrix,
respectively. A product of sequential matrices is denoted by∏N

n=1 An = ANAN−1 · · ·A2A1.

A. Lattice Structure of 2-D Non-separable LOTs

In the articles [13]–[16], we have shown a method to
construct 2-D nonseparable LOTs with a lattice structure.
Figure 2 illustrates the structure, where d(z) is defined as a

2-D delay chain of size 4×1 by [d(z)]� = z
−((�))My
y ·z−��/My�

x ,
where z = (zy, zx)

T ∈ C2, ((x))M and �x� denote the
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Fig. 2. Lattice structure of a 2-D non-separable GenLOT (forward transform).

modulo x of M and the largest integer less than or equal to
x, respectively. The corresponding polyphase matrix of order
[Ny, Nx] is represented by the following product form:

E(z) =

Ny∏
ny=1

{
R{y}

ny
Q(zy)

}
·

Nx∏
nx=1

{
R{x}

nx
Q(zx)

}
·R0E0,

(3)
where Q(zd) = 1

2

(
I2 I2
I2 −I2

) ( I2 O2

O2 z−1
d I2

) (
I2 I2
I2 −I2

)
, R0 =(

W0 O2

O2 U0

)
, R{d}

n =
(

I2 O2

O2 U{d}
n

)
. Symbols W0, U0 and U

{d}
nd

denote orthonormal matrices of size 2 × 2 and freely con-
trolled during the design process. Equation (3) guarantees the
orthonormality and symmetry. The support region of each
analysis (or synthesis) filter results in Ly × Lx = 2(Ny +
1)× 2(Nx + 1).

B. TVM Condition

The 2-D non-separable LOTs can be constructed under the
trend vanishing moment (TVM) constraints so that a proper
directional characteristic is provided. The TVM condition is
defined as follows, where we refer to H0(z) as a scaling filter
and Hk(z) for k ≥ 1 as a wavelet filter.

Definition 1 (Trend Vanishing Moments of Order P ). We say
that a filter bank has P -order TVM along the direction uφ =

(sinφ, cosφ)T if trend moments μ
(p)
k,φ of all wavelet filters up

to p = (P − 1) vanishes, i.e.

0 = μ
(p)
k,φ =

∑
n∈Z2

hk[n]

p∑
q=0

(
p
q

)
(ny sinφ)

p−q(nx cosφ)
q

(4)
for all k = 1, 2, · · · ,M − 1 and p = 0, 1, · · · , P − 1, where
n = [ny, nx]

T and hk[n] is the impulse response of the k-th
analysis filter.

The one-order TVM is identical to the classical one-order
VM and guarantees the no-DC-leakage property. As well, the
wavelet filters with the two-order TVMs annihilate piecewise
one-order trend surfaces in the direction uφ, i.e. functions
proportional to (ny sinφ+nx cosφ). Figure 3 shows a design
example of a DirLOT with the two-order TVMs. The direc-
tional property works well for diagonal textures and edges.

IV. EXPERIMENTAL RESULTS

This section shows some experimental results of the wavelet
denoising with the SURE-LET approach in order to verify the
significance of the proposed construction, i.e. the combination
of the SURE-LET approach as the shrinkage function and
a hierarchical DirLOT as the orthonormal DWT. In this
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Fig. 3. A design example with the two-order TVMs of φ = cot−1 α =
cot−1(−2.0) ∼ −0.4636[rad], where [Ny, Nx]T = [4, 4]T , i.e. the basis
images are of size 10× 10.

(a) Original (b) Noisy picture

(c) Sym5 (d) VM2 (e) TVM

Fig. 4. Denoising results, for an 8-bit grayscale picture of size 128×128 pixels.
(a)Original picture, (b)Noisy picture with white Gaussian (σ = 30). (c),(d)
and (e) are denoised results, where Sym5, VM2 and TVM denote Symlets of
index 5, DirLOT with the classical VM of order two and DirLOT with the
two-order TVMs, respectively. The number of hierarchical levels is three.

experiments, as was suggested in the article [4], the interscale
shrinkage function given in Eq. (2) was adopted, where the
parameters K and T are selected as K = 2 and T =

√
6σ.

We adopt the DirLOT shown in Fig. 5, which was designed
by the procedure given in the article [16].

Figures 4 and 5 show the experimental results. In this
experiments, 8-bit grayscale textures of size 128× 128 pixels
were used, where the noise level was set to σ = 30. The
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Fig. 5. Denoising results, for an 8-bit grayscale picture of size 128×128 pixels.
(a)Original picture, (b)Noisy picture with white Gaussian (σ = 30). (c),(d)
and (e) are denoised results, where Sym5, VM2 and TVM denote Symlets of
index 5, DirLOT with the classical VM of order two and DirLOT with the
two-order TVMs, respectively. The number of hierarchical levels is three.

TABLE I
COMPARISON OF PSNRS AND SSIM INDEXES AMONG THREE

TRANSFORMS FOR VARIOUS NOISE LEVELS.

Sym5 VM2 TVM Sym5 VM2 TVM

Fig. 4 PSNR SSIM
σ = 10 29.47 23.97 28.81 0.969 0.907 0.965
σ = 20 25.46 23.11 25.26 0.936 0.902 0.937
σ = 30 23.22 21.43 23.17 0.904 0.866 0.908
σ = 40 21.71 20.29 21.73 0.871 0.833 0.878
σ = 50 20.50 19.26 20.59 0.837 0.797 0.849
Fig. 5 PSNR SSIM
σ = 10 24.04 25.70 27.51 0.651 0.771 0.847
σ = 20 23.18 23.57 24.51 0.605 0.666 0.728
σ = 30 22.28 22.32 22.89 0.539 0.571 0.623
σ = 40 21.48 21.49 21.97 0.461 0.495 0.553
σ = 50 20.97 20.91 21.25 0.409 0.440 0.490

polyphase order was set to Ny = Nx = 4 for the DirLOTs.
Since the basis size is Ly×Lx = 10×10 in this case, Symlet
of index 5 was used as a reference of separable orthonormal
DWT, where the support size is identical to the adopted
DirLOTs. The number of levels for constructing DWTs is
selected as three. The variance σ2 was estimated by applying
the robust median estimator to the finest wavelet coefficients.

By observing Figs. 4 and 5, the DirLOT with the TVMs
shows better quality for diagonal edges compared with the
results of Sym5 and VM2 [17]. Table I compares the denoising
performances among three transforms for various noise levels.
In the table, the DirLOT with TVMs shows almost the best
performance among the three transforms, especially in terms
of the structural similarity (SSIM) index [18]. This means that
the DirLOTs with the TVMs represent the diagonal structure
appropriately and yield perceptually pleasant results.

V. CONCLUSIONS

This paper proposed to adopt the hierarchical tree con-
struction of DirLOTs to image denoising. The SURE-LET
approach was firstly reviewed as the orthonormal wavelet-
based denoising technique. Since the conventional separable
transform has the disadvantage that the bases are not simul-
taneously allowed to be anisotropic with the fixed-critically-
subsampling, overlapping, orthogonal, symmetric, real-valued
and compact-support property, the SURE-LET approach re-
mains room to improve the performance for diagonal textures
and edges. From some experimental results, it was shown that
the combination of the SURE-LET approach as the shrinkage
function and a hierarchical DirLOT as the DWT overcomes
the geometric problem.
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