
Unconstrained Many-to-Many Alignment
for Automatic Pronunciation Annotation

Keigo Kubo∗, Hiromichi Kawanami∗, Hiroshi Saruwatari∗ and Kiyohiro Shikano∗
∗ Graduate School of Information Science, Nara Institute of Science and Technology, Japan

E-mail: {keigo-k, kawanami, sawatari, shikano}@is.naist.jp

Abstract—An alignment between graphemes and phonemes is
vital data to annotate the pronunciation for out-of-vocabulary
words. We desire an alignment to be (1) many-to-many and (2)
fine-grained. A traditional one-to-one alignment model does not
represent an intuitive mapping for logograms, such as Chinese
characters, and has previously reported an inferior performance
in phoneme prediction. A conventional many-to-many alignment
model prefers a mapping consisting of longer substrings, which
degrades the generalization ability of the prediction model,
especially for out-of-vocabulary words. In order to obtain a
highly generalized model, we introduce city block distance in
the conventional many-to-many alignment, so that fine-grained
mappings are inferred without constraining the maximum lengths
of both graphemes and phonemes. Experimental results show
that our extension improves the baseline grapheme-to-phoneme
conversion on several language data sets.

I. I NTRODUCTION

Recent advances in speech recognition have made possible
to attempt large-scale, open-domain, data-driven approaches.
Out-of-vocabulary words are the bottleneck in speech systems,
and the need for robust pronunciation annotation has been in-
creasing. For example, voice search applications have attracted
attention because of an increased demand for mobile device
interfaces. A variety of words such as proper nouns and brand-
new words must be dealt with in these applications. It is im-
portant to update the language model and the word dictionary
to accommodate out-of-vocabulary words. Out-of-vocabulary
words can be collected easily from Web text resources, but
their pronunciation remains unknown. An automatic pronun-
ciation annotation is desired. Statistical approaches including a
grapheme-to-phoneme (g2p) conversion[1-4] and knowledge-
based approaches such as identifying a part of the Web
text that describes word-pronunciation pairs[5] have been
proposed.

An alignment between graphemes and phonemes is vital
data for these pronunciation annotation methods. In this paper,
we focus on the alignment methods, such as a one-to-one
alignment[6] and a many-to-many alignment[7-9]. In [7,8],
the many-to-many alignment is named joint multigrams. As
it and the one proposed in [9] are essentially the same, both
methods are treated as joint multigram approach in this paper.
Ref.[9] explains the suitability of the joint multigram approach
over a one-to-one alignment and shows better performances
for this approach. However, the joint multigram approach
generally prefers a mapping consisting of longer substrings,
which degrades the generalization ability of the prediction

model. To cope with this problem, we introduce city block
distance, which is employed in Dynamic Time Warping, in
the joint multigram approach, in such a way that the resulting
mappings are pairs of substrings that are unconstrained in
length, yet fine-grained to increase the generalization ability of
the prediction model. Our extension has shown to be effective
for a g2p conversion of out-of-vocabulary words.

The rest of this paper is organized as follows. In Section
II, we explain our motivation for an unconstrained many-to-
many alignment. In Section III, the EM algorithm derivations
are formally described. We report experiments in Section IV
and give a discussion in Section V. Finally, Section VI states
our conclusion.

II. M OTIVATION

First, we introduce the terms used in this paper, explain the
joint multigram approach and the basic idea of our extension.

A. Preliminaries

Let d be a tuple of a word and its pronunciation, andD be a
set of thed tuples. LetUd be a set of alignment candidates of a
grapheme sequence and a phoneme sequence, generated from
the d tuple. We call a unit sequenceu to be a g2p alignment
of the tupled in the setUd, and a unitu to be a mapping in
the unit sequenceu. We denoteϵ to be a null character that
represents a missing grapheme or a missing phoneme in the
unit u. An example of a word-pronunciation pair⟨able, éibl⟩
is shown below:

d = ⟨able, éibl⟩
D = {⟨able, éibl⟩}
Ud = {able/éibl, abl/éib e/l, ...,

a/éi b/b le/l, a/éi b/b l/l e/ϵ}
u = a/éi b/b l/l e/ϵ

u = a/éi

B. Joint multigram approach

The joint multigram approach proposed in [7] is:

û = argmax
u∈Ud

P (u|d)

= argmax
u∈Ud

P (d|u)P (u) (1)

= argmax
u∈Ud

P (u) (2)

≃ argmax
u∈Ud

∏
u∈u

P (u) (3)
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P (d|u) is equal to 1 asd is uniquely decided for a givenu
(Eqn.(1)→Eqn.(2)).P (u) is assumed to be the unigram prob-
abilities of a unitu (Eqn.(2)→Eqn.(3)). The above indicates
that we can estimate the best alignmentû between graphemes
and phonemes using the Viterbi algorithm, if we appropriately
obtainP (u). The EM algorithm can be used to estimateP (u)
by maximizingP (D) =

∏
d∈D P (d). The formal derivation

of the EM algorithm will be described in Section 3.

C. Basic idea of our method

Unlike a traditional one-to-one alignment model, the joint
multigram approach prefers longer units, i.e. mappings of a
longer grapheme sequence and/or a longer phoneme sequence.
This is becauseP (u) is unfairly influenced by the number
of units u in the unit sequenceu. P (u) is calculated by
multiplying unigram probabilities of unitsP (u)(≤ 1) in the
unit sequenceu (see Eqn.(3)). Generally, the unit sequence
u composed of many (and short) unitsu performs more
multiplications than theu composed of a few (and long) units
in P (u). This implies that theP (u) composed of many (and
short) unitsu is lower than that composed of a few (and
long) unitsu. In order for a phoneme prediction to be well-
performed, we believe the prediction model must be highly
generalized. In order to obtain a highly generalized model, a
many-to-many alignment of graphemes and phonemes must
also be fine-grained.

To meet the requirements above, [7-9] limits the maximum
length of graphemes and the maximum length of phonemes in
a single unitu. The parameters set in [9] were two. However,
appropriate values for the parameters depend on languages.
In case of Japanese out-of-vocabulary words including Kanji
(Chinese characters), one grapheme could map to more than
two phonemes. If we were to set the parameters more than
two, the resulting joint multigram approach would no longer
be fine-grained.

In contrast, we introduce city block distance inP (u) as
an exponential. Recall thatu composed of many (and short)
units u performs more multiplications than that composed of
a few (and long) units, and hence, longer units are generally
preferred over shorter units. We note that the sum of characters
in a tupled is uniform. The number of characters found in each
unit sequenceu of Ud is nearly the same, with the exception of
null characters. By introducing city block distance inP (u) as
an exponential, the total number of multiplications performed
in P (u) is bounded by the number of characters in the unit
sequenceu. In consequence, longer units are not advantageous
over shorter units.

Let iu be the number of characters in a grapheme sequence
of a unit u, ju be the number of characters in a phoneme
sequence of a unitu. Then, our unconstrained many-to-many
alignment is defined as:

û = argmax
u∈Ud

P (u|d)

≃ argmax
u∈Ud

∏
u∈u

P (u)su (4)

wheresu means city block distance as an exponential and is
defined as:

su =

 iu + C if u is a missing phoneme
ju + C if u is a missing grapheme
iu + ju otherwise

(5)

If there are severalu that have the same value for∏
u∈u P (u)su , theu composed of a fewer (and longer) units

is chosen.
In [9], P (u) incorporating a unit that was a missing

phoneme or a missing grapheme were naturally decreased
as the number of multiplications increased. However, such
a mechanism does not work in our extension. In order to
compensate this, we introduce a penaltyC which takes care
of the missing phoneme or the missing grapheme. However
we also prohibit the missing grapheme as referenced in [9].

III. F ORMAL EM DERIVATION

Here we show the formal EM derivations for the method in
[7] and our extended method.

A. Joint multigram approach

Let θ be the set of the current model parameters, and
θ̂ be the set of the updated model parameters. The model
parameters forP (u) are denoted below aspu ≡ P (u|θ). We
treatd as an observed variable andu as a hidden variable. The
Q function of EM algorithm for [9] can be defined as:

Q(θ̂|θ) =
∑
d∈D

∑
u∈Ud

P (u|d, θ) logP (u, d|θ̂)

=
∑
d∈D

∑
u∈Ud

P (u|d, θ)
∑
u∈u

log p̂u (6)

In order to estimatêpu, the Lagrangian forQ(θ̂|θ) is:

L(θ̂, λ) =
∑
d∈D

∑
u∈Ud

P (u|d, θ)
∑
u∈u

log p̂u+λ(
∑
u∈U

p̂u−1) (7)

whereU is the set of all unit types. The maximum likelihood
estimation ofp̂u is given by:

p̂u =
γu∑

u∈U

γu
(8)

whereγu can be calculated by:

γu =
∑
d∈D

∑
u∈Ud

P (u|d, θ)nu(u)

=
∑
d∈D

∑
u∈Ud

∏
u∈u

pu∑
u∈Ud

∏
u∈u

pu
nu(u) (9)

wherenu(u) is the number of occurrences ofu in u.
A pseudo code for the above EM algorithm is:

1) Set an initial value ofpu.
2) Calculate an expectation (E-step), shown in Eqn.(9).
3) Calculate the maximum likelihood (M-step), shown in

Eqn.(8).



4) Substitutep̂u for pu.
5) Finish if converges, or return to Step 2.

The initial value ofpu is set uniform. The E-step is calculated
by Forward-Backward algorithm.

B. Our proposed method

Similar to [7], the corresponding EM algorithm can be
derived in our method. Equation (4) assumes thatu occurs
su times, wheresu is city block distance, which is unrelated
to the occurrence ofu. We introduce a penalty term forsu to
the Lagrangian for our proposed method:

L(θ̂, λ)=
∑
d∈D

∑
u∈Ud

P (u|d, θ)
∑
u∈u

sulog p̂u+λ(
∑
u∈U

p̂u−1)

−
∑
d∈D

∑
u∈Ud

P (u|d, θ)
∑
u∈u

(su−1)log p̂u

=
∑
d∈D

∑
u∈Ud

P (u|d, θ)
∑
u∈u

log p̂u+λ(
∑
u∈U

p̂u−1) (10)

Although the assumptions made inP (u|d, θ) differ, our La-
grangian (Eqn.(10)) becomes the same form as the original
Lagrangian (Eqn.(7)). Thus, the maximum likelihood is given
by:

p̂u =
γu∑

u∈U

γu

whereγu can be calculated by:

γu =
∑
d∈D

∑
u∈Ud

∏
u∈u

psuu∑
u∈Ud

∏
u∈u

psuu
nu(u) (11)

The EM algorithm is similar to the method in [7], with a
difference in the E-step given by Eqn.(11).

IV. EXPERIMENTS AND RESULTS

We evaluate the conventional method (joint multigram ap-
proach) and our proposed method (unconstrained many-to-
many alignment) by g2p conversion on aConventional task
and a Web task. The Conventional taskis a g2p task that
has been employed in experiments on previous studies[1-4].
For the CMUDict, NETtalk, and Brulex data sets from the
Pascal Letter-to-Phoneme Conversion Challenge1, we attempt
to faithfully follow the convention in terms of data exclusion
and data size in [3].

TheWeb taskis a g2p task that performs g2p conversion for
new words in the Web that are not registered in a dictionary
data source, as the setting will be more realistic for out-of-
vocabulary words. We build two data sets: one for Japanese
words with Kanji (Chinese characters) and the other for al-
phabetically spelled words. Their pronunciations are provided
with Katakana (Japanese characters for syllables). As for the
Kanji words, we use theNAIST Japanese Dictionary (NAIST-
jdic)2 and theHatena kanji. NAIST-jdic is a dictionary that

1http://pascallin.ecs.soton.ac.uk/Challenges/PRONALSYL/Datasets
2http://sourceforge.jp/projects/naist-jdic/

TABLE I
VOCABULARY SIZES OF TRAINING SETS, DEVELOPMENT SETS AND TEST

SETS IN EACH TASK.

task data set training development test
Conventional CMUDict(En) 100,944 5,883 12,000
task NETtalk(En) 17,751 1049 1000

Brulex(Fr) 23,353 1,373 2,747
Web task NAIST-jdic(Ja) 292,885 - -

Hatena kanji(Ja) - 887 2,071
EIJIRO(En) 63,632 - -
Hatena alphabet(En) - 600 1,400

TABLE II
A SUMMARY OF PARAMETERS AND IMPLEMENTATIONS.

conventional method proposed method
Implementation of

m2m-aligner5 own implementation
many-to-many alignment
Max size of grapheme 2(En,Fr) or 3 (Ja) unconstrained
Max size of phoneme 2(En,Fr) or 3 (Ja) unconstrained
Missing grapheme prohibited prohibited
Missing phoneme allowed allowed withC = 1
Implementation of

DirectTL+6 DirectTL+
g2p conversion

lists Japanese words and their pronunciations.Hatena kanji
is a list of Kanji keywords registered at the websiteHatena
Keyword3 in 2009 from which proper nouns inNAIST-jdicare
excluded.NAIST-jdicis used in training, 30% ofHatena kanji
is used in the development, and the remaining 70% is used
in the test. As for the alphabetically spelled words, we use
the EIJIRO4 and theHatena alphabet. EIJIRO is a dictionary
that lists English words and their transliterated pronunciations.
Hatena alphabetis a list of alphabetically spelled keywords at
Hatena Keywordfrom which words inEIJIRO are excluded.
EIJIRO is used in training, 30% ofHatena alphabetis used in
the development, and the remaining 70% is used in the test.
Table I summarizes the data sets; vocabulary sizes of training,
development, and test.

Table II describes the parameters and tools used in the ex-
periment. We implemented our method to save more memory
because the number of unitsu becomes huge by not imposing
a maximum length of graphemes and phonemes for each unit.
Our implementation is efficient in memory usage (3GB in
our implementation vs. 6GB in m2m-aligner for the case
of NAIST-jdic) to allow unconstrained lengths of graphemes
and phonemes. This indicates that our proposed method can
be computationally realized. We set the max grapheme and
max phoneme to 3 in the conventional method forNAIST-jdic
and Hatena kanjito address Jukujikun, idiomatic pairings of
multiple characters and a specific pronunciation.

The evaluation measure we use is word accuracy:

word accuracy =
|R|
|V |

(12)

|V | is the number of phoneme sequences in the test set.|R|
is the number of correct phoneme sequences estimated.

3http://d.hatena.ne.jp/keywordlist?s=furigana
4http://www.eijiro.jp
5http://code.google.com/p/m2m-aligner/
6http://code.google.com/p/directl-p/



TABLE III
RESULTS OFConventional taskFOR THE CONVENTIONAL METHOD AND

OUR PROPOSED METHOD.

data set conventional method proposed method
CMUDict(En) 72.95% 73.16%
NETtalk(En) 71.10% 73.70%
Brulex(Fr) 94.90% 95.09%

TABLE IV
RESULTS OFWeb taskFOR THE CONVENTIONAL METHOD AND OUR

PROPOSED METHOD.

data set conventional method proposed method
Hatena kanji 45.00% 47.03%
Hatena alphabet 29.50% 32.00%

Table III and Table IV show the results of word accuracy
in Conventional taskand Web task. Our proposed method
outperforms the conventional method inConventional task
andWeb task, indicating that our unconstrained many-to-many
alignment model produces better training data for a phoneme
prediction model.

V. D ISCUSSION

The conventional method, in a replication study, could
not attain the reported performance in [4] for CMUDict,
Nettalk and Brulex as exactly the same model parameters,
the employed features and data split could not be replicated.
However, our proposed method gives better results in the
phoneme prediction under the same experimental conditions.

We conjecture that the improvement could be attributed to
the fine-grained alignments of our proposed method. Table V
shows a distribution of unit types applied in the phoneme pre-
diction of Hatena kanji. g is the length of a grapheme, andp is
the length of a phoneme. From Table V, our proposed method
performs fine-grained alignments. For example, in Table V, the
number of unit types with 2-3 pairs and 3-2 pairs are reduced
from 10450 to 44 and 361 to 0 respectively. The training data
with fine-grained mappings lead to an improvement in the
word coverage for out-of-vocabulary words. As our proposed
method doesn’t set the max sizes, appropriate alignments can
be obtained. It yields correct phoneme prediction in some
samples. For example, in⟨MANSOUR,MAENSER⟩ included
in test set of CMUDict, a g2p conversion with our proposed
method correctly outputM/M A/AE N/N S/S OUR/ER
and a g2p conversion with the conventional method generates
wrong outputM/M A/AE N/N S/S OU/AW R/ER. Here,
the correct mappingOUR/ER is produced because the max
sizes are not given beforehand. For these reasons, our proposed
method provides better training data than the conventional
method.

The word accuracy inHatena kanjiandHatena alphabetis
clearly inferior than the other test sets. A possible explanation
for the poor performances is that Katakana pronunciations in
Hatena kanjiandHatena alphabetare not standarized. Thus,
homographs had to be included in the training of many-to-
many alignment models so as to support any pronunciation
rule. The word accuracy was lower because of the difficult
test data.

TABLE V
DISTRIBUTION OF UNIT TYPES USED INHatena kanjiPREDICTION TEST. g

IS THE LENGTH OF A GRAPHEME. p IS THE LENGTH OF A PHONEME.

conventional method proposed method
p = 1 p = 2 p = 3 p = 1 p = 2 p >= 3

g = 1 4,129 7,945 5,681 5,914 11,449 4,938
g = 2 115 0 10,450 202 6 44
g >= 3 20 361 0 29 0 0

To cope with homographs, we explore the possibility to en-
hance a phoneme prediction by an annotation method from the
Web text resource [5]. Ref.[5] requires fine-grained mappings
of a grapheme sequence and a phoneme sequence, which can
be obtained from our proposed method. It is a research avenue
to explore in future.

VI. CONCLUSION

We proposed an unconstrained many-to-many alignment
that introduces city block distance in the joint multigram
approach proposed in [7], so that mappings of fine-grained
substrings are inferred without imposing maximum lengths
of both graphemes and phonemes. Fine-grained mappings of
graphemes and phonemes provide us with a highly generalized
model for a g2p conversion. Experiments on many-to-many
alignments show that our unconstrained many-to-many align-
ment improves the baseline g2p conversion in all test cases.
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