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Abstract— This paper presents a novel approach to 
improving the noise robustness of speech features built on 
top of nonnegative matrix factorization (NMF). To do this, 
we employ NMF to extract a common set of basis spectral 
vectors that cover the intrinsic temporal structure 
inherent in the modulation spectra of clean training 
speech features. The new modulation spectra of the speech 
features, constructed by mapping the original modulation 
spectra into the space spanned by these basis vectors, are 
demonstrated with good noise-robust capabilities. All 
experiments were conducted using the Aurora-2 database 
and task. The results show that the proposed NMF-based 
approach, together with mean and variance normalization 
(MVN), can provide average error reduction rates of over 
65% and 12% relative as compared with the baseline 
MFCC system and that using the MVN method alone, 
respectively. 

I. INTRODUCTION 

The environmental mismatch caused by additive noise and/or 
channel distortion often degrades the performance of a speech 
recognition system seriously. Various robustness methods 
have been proposed to reduce this mismatch, and one 
prevalent school of thought aims to refine the modulation 
spectra of the speech feature sequence. It has been shown in 
[1] that different modulation frequency components have 
unequal importance for speech recognition, and most of the 
useful linguistic information is encapsulated in the 
modulation frequency components between 1 Hz and 16 Hz, 
with the dominant component centering around 4 Hz. 
Accordingly, a number of celebrated temporal processing 
methods have been proposed to highlight these important 
frequency components, either explicitly or implicitly, for 
robust speech recognition. They include, but are not limited to, 
RelAtive SpecTra (RASTA) [2], mean and variance 
normalization (MVN) [3] and a series of data-driven temporal 
filtering methods [4][5]. 

In this paper, we investigate a novel use of the 
nonnegative matrix factorization (NMF) [6-8] to learn a parts-
based representation of the magnitude modulation spectrum 
of speech features. NMF is a recently developed method for 
finding a linear and non-subtractive combination scheme to 
extract important ingredients that can correspond better with 

the intuitive notion of the parts of the original data. Compared 
with the other linear representation methods like principal 
component analysis (PCA) and independent component 
analysis (ICA), to name a few, NMF provides nonnegative 
basis vectors and ensures that the projection of any 
(nonnegative) data on each basis vector is also nonnegative. 
Apart from that, the basis vectors obtained by NMF are often 
sparse and localized. Consequently, NMF appears ideally 
suited for the purpose of analyzing magnitude modulation 
spectrum of speech features, which is always non-negative 
and often possesses a relatively narrow bandwidth. However, 
as far as we are aware, there is still not much research on 
leveraging NMF-like methods for analyzing the magnitude 
modulation spectrum of speech features. 

By treating the magnitude modulation spectra of various 
clean feature sequences as the analyzed data for NMF, we 
obtain the basis spectral vectors to span a subspace for the 
magnitude modulation spectrum. Then any clean or noise-
corrupted feature sequence is updated in modulation spectrum, 
in which the magnitude part is replaced by its mapping on the 
NMF subspace mentioned above. Experiments conducted on 
the Aurora-2 database show that the updated features via 
NMF maintain high recognition accuracy for the matched 
clean condition, and they provide significant accuracy 
improvements relative to the original features under 
mismatched noisy conditions. As such, the proposed NMF-
based approach for updating the modulation spectrum 
promotes the noise robustness of speech features. 

The remainder of the paper is organized as follows: 
Section II briefly introduces the principle underlying NMF. 
Next, we describe the proposed NMF-based modulation 
spectrum update procedure in Section III. The experimental 
setup is described in Section IV, followed by a series of 
experiments and discussions in Section V. Finally, Section VI 
concludes this paper and discusses avenues for future work. 

II. NONNEGATIVE MATRIX FACTORIZATION 

The nonnegative matrix factorization (NMF) is a subspace 
method that approximates data with an additive and linear 
combination of nonnegative components. Given a 
nonnegative data matrix MLRV , NMF computes another 
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two nonnegative matrices rLRW  and MrRH  such 
that 

WH.V       (1) 

The r columns of W are called basis vectors, and each 
column of H is often called an encoding, which consists of 
the coefficients by which the data vector (the column in V ) is 
approximated with a linear combination of basis vectors. The 
number of basis vectors, r , is often chosen to be fewer than 
L (the size of each data vector) and M (the total number of 
data vectors), and thus the product WH  is regarded as a 
compressed form of V . The smaller the rank of V , the better 
the approximation in (1). 

To find an approximate factorization as in (1), we need to 
define a cost function that quantifies the quality of the 
approximation. In this paper, the cost function is defined as 

   .WHV
,

2
,, 




i
iiL    (2) 

With an initial guess of W and H , the following 
multiplicative updating rule (see [7] for details) is employed 
to achieve a local minimum of (2). 
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In general, W and H are further normalized so that the rows 
of H have unit length. 

III. UPDATING THE MODULATION SPECTRUM 

Assume that  ]x[n represents the ordered sequence of feature 
vectors of an utterance, and  ][nxm  denotes the thm feature 
channel of  ]x[n . Then the discrete Fourier transform (DFT) 
of the time sequence  ][nxm , denoted by  ][kX m , is often 
referred to as the modulation spectrum of the utterance (with 
respect to the feature channel). In this paper, we propose to 
update the magnitude part of  ][kX m , while to keep the 
phase part unchanged. For the sake of compact notation, we 
hereafter omit the subscript m , unless otherwise stated. 

The procedures to perform the magnitude update via NMF 
are depicted in Figure 1, and can be generally described as 
follows. First, the time sequence  ]x[n  for each utterance in  
the training set is converted to its spectrum  ][kX  via a 2L-
point DFT. Since the property of conjugate symmetry, only 
the first L+1 points of  ][kX  is reserved, and their 
magnitude parts (which are always nonnegative) form each 
column of the data matrix V . Accordingly, if the training set 
consists of M utterances, then V  has M columns. Given the 
data matrix V  and a chosen number r , we obtain the two 
nonnegative matrices W  and H , as shown earlier in (2), 
using NMF. 

Next, the (L+1)-point (magnitude) modulation spectra of 
each utterance in the training and testing sets, denoted by a 
vector V , is factorized via NMF, i.e., WhV  , given that 
W  is fixed. The fixed W  comes directly from the previous 

(a) 

(b) 

Figure 2. Ten basis spectra learned by NMF from (a) the plain 
unprocessed c1 features (b) the MVN-processed c1 features. 
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Figure 1. The flowchart of the proposed NMF-based approach for 
updating the modulation spectrum of features. 



step, and the encoding vector h  can be obtained via the 
updating rule (cf. (3)). The vector WhV

~
  is a linear 

combination of the basis vectors involved in W , which is 
created via the clean utterances. Therefore we expect that the 
vector V

~
, representing the new magnitude spectrum, can 

highlight the important information for speech recognition 
and alleviate the effect of noise from the original V .  

Finally, a 2L-point inverse DFT is performed on the new 
modulation spectrum (with the conjugate symmetric last-half 
part being appended), which consists of the updated 
magnitude parts and the original phase parts, to obtain the 
new time sequence.  

Some details about the NMF-based approach mentioned 
above are listed below: 

 
(1) The length of the time sequence (i.e., the number of 

frames) varies from utterance to utterance. However, 
here the DFT-size 2L is set to be constant, which results 
in the same length of modulation spectra for different 
utterances. In addition, the value of 2L is assigned to be 
greater than the length of each utterance to be processed. 

(2) The 2L-point inverse DFT for the updated modulation 
spectrum produces a new time sequence with 2L in 
length. However, only the first N points of this 
sequence are reserved, where N is the length of the 
original time sequence. 

Figures 2(a) and 2(b), respectively, depict the NMF basis 
spectra for the modulation spectrum of the original c1 (the 
first MFCC feature) and the MVN-processed c1, 
corresponding to the clean training set of the Aurora-2 
database [9]. Consulting Fig. 2(a) and Fig. 2(b) we notice 
three particularities. First, the basis spectra shown in the two 
sub-figures reveal localized and sparse characteristics, which 
coincide with the fact that NMF often learns a parts-based 
representation of data. Next, these basis spectra are primarily 

located in the frequency region below 10 Hz, and thus they, to 
some extent, can capture or emphasize the lower modulation 
frequency components of the speech features, which have 
been shown to correspond to important linguistic information 
essential for speech recognition. Finally, one significant 
difference between the two sub-figures is that there is no 
“low-pass” basis spectrum in Fig. 1(b), reflecting the effect of 
removing the near-DC components made by MVN. 

IV. EXPERIMENTAL SETUP 

The proposed NMF-based method has been tested on the 
Aurora-2 database [9], which contains a database designed to 
evaluate the performance of speech recognition algorithms in 
noisy conditions. For the recognition environment, three 
different subsets are defined: Test Sets A and B are each 
affected by four types of noise, and Test Set C is affected by 
two types. Each noise instance is added to the clean speech at 
six SNR levels (ranging from 20 dB to -5 dB). Each utterance 
in the clean training set and three noise-corrupted testing sets 
is first converted into a sequence of 39-dimensional feature 
vectors (MFCC, c0-c12, plus their first and second order 
derivatives). Next, following the procedures described in 
Section III, we update the modulation spectrum of each 
feature sequence of each utterance in both the training and 
testing sets. The DFT size 2L is set to 1,024, and the number 
of basis vectors, r , is varied from 5 to 20, with an interval of 
5. With these new feature vectors in the clean training set, the 

TABLE I 
A SUMMARY OF THE AURORA-2 TASK. 

 

Training Set 

(Clean-Condition Training) 

Training Utterances: 8,440  

Channel Effect: G.712 

Test 

Set 

Set A 

Test Utterances: 28,028 

Additive Noses: Subway, Babble, Car, Exhibition

SNRs: Clean, 20dB, 15dB, 10dB, 5dB, 0dB, -5dB

Channel Effect: G.712 

Set B 

Test Utterances: 28,028 

Additive Noses: Restaurant, Street, Airport, Train 

Station 

SNRs: Clean, 20dB, 15dB, 10dB, 5dB, 0dB, -5dB

Channel Effect: G.712 

Set C 

Test Utterances: 14,014 

Additive Noses: Subway, Street 

SNRs: Clean, 20dB, 15dB, 10dB, 5dB, 0dB, -5dB

Channel Effect: MIRS 

 

TABLE II 
RECOGNITION ACCURACY (%) ACHIEVED BY THE NMF-BASED APPROACH 

CONDUCTED ON THE ORIGINAL MFCC FEATURES, AVERAGED ACROSS THE 

TEN NOISE TYPES. r  IS THE NUMBER OF BASIS SPECTRA USED IN NMF. RR 

(%) IS THE RELATIVE ERROR RATE REDUCTIONS OVER THE BASELINE. 
 

Method clean 
Noisy  

(SNR: 20 dB~0 dB) 
RR 

MFCC baseline 99.79 72.07 — 

NMF

5r =  99.61 84.65 45.04 

10r = 99.64 84.11 43.11 

15r = 99.69 83.87 42.25 

20r = 99.68 83.04 39.24 

 
TABLE III 

RECOGNITION ACCURACY (%) ACHIEVED BY MVN AND THE NMF-BASED 

METHOD PROCESSED ON THE MVN-PROCESSED MFCC FEATURES, 
AVERAGED ACROSS THE TEN NOISE TYPES. r  IS THE NUMBER OF BASIS 

SPECTRA USED IN NMF. RR1 (%) AND RR2 (%) ARE THE RELATIVE ERROR 

RATE REDUCTIONS OVER THE MFCC BASELINE AND MVN, RESPECTIVELY. 
 

Method clean
Noisy 

 (SNR: 20 dB~0 dB) 
RR1 RR2

MFCC baseline 99.79 72.07 — — 

MVN 99.83 88.82 59.97 — 

NMF+
MVN

5r =  99.69 90.42 65.70 14.31

10r = 99.73 90.57 66.24 15.65

15r = 99.78 90.60 66.34 15.92

20r = 99.76 90.52 66.06 15.21

 
 



HMMs for each word (digit) and silence are trained, 
following the Microsoft complex back-end training scripts 
[10]. Each HMM has 16 states and 20 Gaussian mixtures per 
state. Table I gives a summary of the Aurora-2 task. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In the first set of experiments, we compare the recognition 
performance of the MFCC baseline and the proposed NMF-
based approach conducted on MFCC. The corresponding 
results are shown in Table II, from which several observations 
can be made: 
 

(1) Under the matched clean condition, NMF slightly 
worsens the recognition accuracy compared to the 
MFCC baseline. However, the accuracy degradation is 
relatively insignificant (0.17% and 0.11% for the cases 

5r  and 20r , respectively), which clearly confirm 
our intuition that NMF provides a very efficient coding 
for the magnitude (modulation) spectrum since using 
only a small number of basis vectors can preserve most 
discriminative information for recognition. 

(2) For mismatched noisy conditions, NMF behaves better 
than MFCC obviously, and the optimal accuracy 
improvement provided by NMF with 5r  is 12.58%, 
which corresponds to 45.04% in relative error 
reduction. Therefore, the results reveal that MFCC is 

enhanced in noise robustness via NMF. Looking at the 
basis vectors shown in Fig. 1, the higher modulation 
spectral components that probably correspond to non-
speech distortions are attenuated, and thus NMF gives 
rise to less noise-contaminated MFCCs. 

(3) In contrast to the clean case, increasing the value of r  
in NMF does not always provide better accuracy rates 
for noisy conditions. However, the differences among 
the accuracy rates obtained with different r  are in fact 
relatively slight, and the maximum accuracy 
degradation is just1.61% (from 84.65% to 83.04%). 

 
In the next of experiments, we carry out the NMF-based 

approach on the MVN-processed MFCC features. The MVN 
preprocessing normalizes the first- and second-order statistics 
of the feature sequence and is very helpful in reducing the 
effect of noise. Here we are interested to investigate if NMF 
can provide MVN with further improvement in recognition 
accuracy. The corresponding recognition results are listed in 
Table III. First, all the methods appear to be on par with each 
other for the clean case. Next, MVN outperforms the MFCC 
baseline significantly in noisy conditions as expected. The 
corresponding accuracy improvement is about 16.75%. 
Finally, the pairing of NMF with MVN can further promote 
the recognition accuracy relative to MVN alone, and the 
improved performance is quite similar for different 
assignments of the parameter r  in NMF. These results agree 

TABLE IV 
DETAILED WORD RECOGNITION ACCURACY (%) AND RELATIVE WER REDUCTION (%) AS COMPARED TO THE MFCC BASELINE FOR THE NMF-BASED APPROACH 

( 5r  ) CONDUCTED ON THE ORIGINAL MFCC FEATURES AND THE NMF-BASED APPROACH ( 51r  ) CONDUCTED ON THE MVN-PROCESSED MFCC 

FEATURES AT DIFFERENT SNR VALUES BUT AVERAGED OVER ALL THE NOISE TYPES IN TEST SET A OF THE AURORA-2 DATABASE. 

Test Method Clean 20dB 15dB 10dB 5dB 0dB 
Avg. 

(0-20dB) 

Relative 
WER 

Reduction 

Set A 

MFCC 99.80 96.29 89.33 75.41 57.17 44.11 72.46  

NMF 99.62 98.00 95.63 89.65 77.26 58.44 83.80 41.18 

NMF+CMVN 99.78 98.94 97.74 94.75 87.58 72.53 90.31 64.81 

 
TABLE V 

DETAILED WORD RECOGNITION ACCURACY (%) AND RELATIVE WER REDUCTION (%) AS COMPARED TO THE MFCC BASELINE FOR THE NMF-BASED APPROACH 

( 5r  ) CONDUCTED ON THE ORIGINAL MFCC FEATURES AND THE NMF-BASED APPROACH ( 51r  ) CONDUCTED ON THE MVN-PROCESSED MFCC 

FEATURES AT DIFFERENT SNR VALUES BUT AVERAGED OVER ALL THE NOISE TYPES IN TEST SET B OF THE AURORA-2 DATABASE. 

Test Method Clean 20dB 15dB 10dB 5dB 0dB 
Avg. 

(0-20dB) 

Relative 
WER 

Reduction 

Set B 

MFCC 99.80 93.81 84.12 69.38 52.86 41.38 68.31  

NMF 99.62 98.24 96.64 92.02 80.30 61.11 85.66 54.74 

NMF+CMVN 99.78 99.14 98.20 95.77 88.95 74.11 91.23 72.33 

 
TABLE VI 

DETAILED WORD RECOGNITION ACCURACY (%) AND RELATIVE WER REDUCTION (%) AS COMPARED TO THE MFCC BASELINE FOR THE NMF-BASED APPROACH 

( 5r  ) CONDUCTED ON THE ORIGINAL MFCC FEATURES AND THE NMF-BASED APPROACH ( 51r  ) CONDUCTED ON THE MVN-PROCESSED MFCC 

FEATURES AT DIFFERENT SNR VALUES BUT AVERAGED OVER ALL THE NOISE TYPES IN TEST SET C OF THE AURORA-2 DATABASE. 

Test Method Clean 20dB 15dB 10dB 5dB 0dB 
Avg. 

(0-20dB) 

Relative 
WER 

Reduction 

Set C 

MFCC 99.77 97.34 93.63 84.19 67.64 51.32 78.82  

NMF 99.60 97.78 95.19 89.47 78.67 60.72 84.36 26.16 

NMF+CMVN 99.76 98.87 97.52 94.48 87.45 71.34 89.99 52.74 

 



with our previous observations in Table II that a small number 
of basis vectors in NMF suffice to give a robust feature 
representation. For easier comparison, the detailed recognition 
results of the MFCC baseline, and the NMF-based approach 
on the MVN-processed MFCC features for Test Sets A, B and 
C are also reported in Tables IV, V and VI, respectively. 

As a final point, in addition to the recognition accuracy, we 
examine NMF by the capability of reducing the modulation 
spectrum distortion caused by noise. Fig. 3(a)-(d) show the 
power spectral density (PSD) curves of the first MFCC 
feature c1 of an utterance (the file "MAR_5376869A.08" in 
the Aurora-2 database) for three SNR levels, clean, 10 dB and 
0 dB (with subway noise), before and after various processes, 
respectively. First, for the unprocessed case as in Fig. 3(a), it 
shows that the additive noise results in a significant PSD 
mismatch over the entire frequency range [0 50 Hz]. Second, 
from Fig. 3(b), we see that NMF conducted on the original c1 
can reduce the PSD mismatch. However, the mismatch 
reduction is less pronounced for the low SNR case. Third, Fig. 
3(c) shows that MVN can effectively normalize the PSDs 
under different SNR conditions, while it seems to provide no 
significant benefit for reducing the PSD mismatch located in 
the higher frequency region above 10 Hz. Finally, Fig. 3(d) 
shows that the pairing of NMF with MVN can considerably 
reduce the PSD distortion over the entire band. Therefore, the 
above observations again imply that, the proposed NMF-
based approach can provide a more noise-robust feature 
representation, and it can be conducted additively to MVN to 
reduce the effect of noise further. 

VI. CONCLUSION AND FUTURE WORK 

We have presented a novel use of NMF for deriving noise-
robust speech features, showing that the basis spectra 
constructed on top of NMF correspond well with the intuitive 
notion of the important components (or parts) of modulation 
frequency. This NMF-based method conducted on the 
conventional MFCC features can yield an accuracy 
improvement of up to 12% absolute on average over all test 
conditions of the Aurora-2 task. Besides, incorporating the 
NMF-based method with MVN behaves better than MVN 
alone, and has the added advantage of offering an extra 
improvement of 2% absolute. As to future work, we envisage 
the following two directions. First, we will explore whether 
further normalizing the encoding vector h  in the mapping 
process of NMF can bring better recognition accuracy. 
Moreover, we will examine if some possible extensions of 
NMF, such as probabilistic NMF [11], and other compressed 
sensing methods [12] can further enhance the modulation 
spectrum and make the derived speech features more noise-
robust for complicated speech recognition tasks. 
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Figure 3. The c1 PSD curves of an utterance 
("MAR_5376869A.08" in the Aurora-2 database) after various 

processing methods with three SNR levels, clean, 10 dB and 0 dB: 
(a) no processing, (b) NMF, (c) MVN, (d) NMF+MVN. 
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