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Abstract— The speech parameter generation algorithm 
considering global variance (GV) for HMM-based speech 
synthesis proved to be effective against the over-smoothing 
problem. In this paper this idea is extended to the generation of 
state duration. A GV model on syllable duration is proposed and 
a state duration generation algorithm considering this GV model 
is presented in details. By improving the GV likelihood on 
syllable duration, the over-averaging effect on generated state 
duration is much alleviated. Experimental results are promising 
which show that the proposed method outperforms the 
conventional one and the naturalness of synthetic speech is 
improved.  

I. INTRODUCTION 

The Hidden Markov Model (HMM)-based speech synthesis 
has been widely used in recent years. In this method, pitch, 
spectrum and duration are modeled simultaneously within a 
unified framework [1]. By taking account of constraints 
between the static and dynamic features, smooth speech 
parameter trajectories can be generated [2]. The synthetic 
speech is highly intelligible and smooth [3, 4]. 

Currently, the main drawback of HMM-based speech 
synthesis is that the synthetic voice does not sound natural 
enough, including the unsatisfying speech quality and the 
bland prosody. Besides the influence of vocoder, the over-
smoothed spectral parameters generated by HMMs are closely 
related to the former aspect. As to the second aspect, the over-
smoothed pitch and over-averaged state duration generated by 
HMMs are the main reasons. Many methods have been 
proposed to improve the naturalness of synthetic voice. Some 
of them focus on alleviating the over-smoothing effect of 
generated spectral parameters, such as post-filtering methods 
[4, 5], incorporating the difference of adjacent LSPs as a 
stream to HMM feature vector [6]. Some of them focus on 
integrating multiple-level prosody models to model and hence 
generate prosody parameters more accurately, such as phone 
duration model [7], phone and syllable duration model [8], 
multi-layer F0 model [9], syllable and phrase level F0 model 
[10]. One of the most successful methods against the over-
smoothing problem is the speech parameter generation 
algorithm considering global variance (GV) [11]. In this 
method, a GV model is built to model the variation of speech 
parameter trajectories at utterance level, including trajectories 
of F0 and spectral parameter. The generated parameter 
sequence maximizes a likelihood based not only on an HMM 
likelihood but also on a GV likelihood. The latter likelihood 

works as a penalty for reduction of the GV of the generated 
parameter trajectories. This method proved to be effective 
against the over-smoothing problem and can improve the 
naturalness of synthetic speech. 

In this paper, this method is extended to the generation of 
state duration. Firstly, a GV model of syllable duration was 
built. Then, state duration is generated by maximizing a 
likelihood consisting of both HMM state duration likelihood 
and GV likelihood. With the penalty of GV likelihood on 
syllable duration, the over-averaging effect of generated state 
duration is much alleviated. Experimental results show that 
the synthetic speech sounds more natural from the view of 
syllable duration distribution. 

The rest of this paper is organized as follows. In section 2, 
the conventional state duration generation for HMM-based 
speech synthesis is reviewed. Section 3 describes the 
proposed GV model on syllable duration and the state 
duration generation algorithm considering GV in details. In 
section 4 the evaluation result is presented. The conclusion is 
given in section 5. 

II. CONVENTIONAL STATE DURATION GENERATION 

For given HMMs λ , the optimal speech parameter vector 
sequence O* is derived as follow based on maximum-
likelihood (ML) criterion: 
 

            * arg max ( | ),
O

O P O λ=                             (1) 

 
where the state sequence Q (i.e. state duration) is hidden. 
Though an algorithm based on EM algorithm is proposed in 
[2] to solve the above problem, it’s too complex and time 
consuming. However, a sub-optimal solution to the problem 
has been widely used, which is: 
 

       * arg max ( | ),
Q

Q P Q λ=                         (2) 

*ˆ arg max ( | , ).
O

O P O Q λ=                  (3) 

 
In this case, the state sequence Q* is determined 
independently of speech parameter sequence O, which greatly 
simplifies the determination of Ô . In Eq. (2), the probability 
of state sequence is: 
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where id  is the duration of state i, ( )ip ⋅  is the duration 
probability density function of state i, K is the total state 
number of the utterance. When single Gaussian distribution is 
used as duration model, Eq. (4) can be further written as: 
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where 2( , )i iN μ σ  is the duration probability distribution of 
state i. It’s easy to see that the above probability is maximized 
when each state duration id  is equal to iμ . Thus the optimal 
state duration is determined. 

III. PROPOSED STATE DURATION GENERATION 
CONSIDERING GV 

A. GV on Syllable Duration 
Considering an utterance with M syllables, the duration 

vector over M syllables is T

1 2[ , , , , , ]m Md d d d= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅d , where 

md is the duration of syllable m. The GV on syllable duration 
is defined as follows: 
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where Ki is the number of HMMs in syllable i, N is the state 
number of  HMM topology, and dijk is the duration of  state j, 
HMM k, and syllable i. 

Fig. 1 shows a sequence of syllable duration extracted from 
natural Mandarin speech and that generated from HMMs. As 
can be seen, the variation of syllable duration of natural 
speech is much larger than that of generated speech. In other 
words, the syllable duration of synthetic speech is closer to 
the mean vector of syllable duration. This is partially due to 
the fact that a state-based HMM is inadequate in modeling a 
global and hierarchical prosody structure at utterance level, 
and partially due to the statistical averaging during the 
estimation of HMM duration model. This over-averaging 
effect on the sequence of generated syllable duration tends to 
make the prosody of synthetic speech sound bland. 

Since one statistical characteristic of natural speech versus 
generated speech is that the GV of syllable duration in natural 
speech is obviously larger than that in synthetic speech, the 

over-averaging effect on generated syllable duration is 
expected to be much alleviated by integrating a duration GV 
model into the conventional generation of state duration based 
on HMM state duration model. 

It should be noted that syllable level is chosen to have 
duration GV model on in this paper. However, it is quite 
similar to build duration GV model on other level, e.g. phone 

level, or multi-level. 

B. Duration generation considering GV 
To integrate duration GV model into the generation of state 

duration, the proposed likelihood function consists of both 
conventional HMM state duration likelihood and GV 
likelihood, which is: 
 

log( ( | ) ( ( ) | ) ),d vL P P v ωλ λ= d d          (9) 
 
where λd

is the conventional HMM state duration model, 
T= [ , , ]ikjd⋅ ⋅ ⋅ ⋅ ⋅ ⋅d  is the vector of state duration over the 

whole utterance, 
vλ  is the proposed GV model on syllable 

duration, ( )v d  is GV calculated on syllable duration over the 
utterance (see Eq. (6)-(8)), and ω  is GV weight. In this paper 
ω  is set to the ratio of the numbers of dimensions between 
vectors d  and ( )v d , i.e., 

1

M
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=∑ . A single Gaussian 
distribution is used here to model the distribution of GV on 
syllable duration. The above likelihood can be further 
expanded as 
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where ikjμ and 2

ikjσ are the mean and variance of state duration 

Gaussian of state j, HMM k, and syllable i, vμ  and 2

vσ  are 
mean and variance of duration GV Gaussian. To determine 
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Fig. 1   Syllable duration sequences of natural speech and generated 
speech. The square root of duration GV is shown. 



the optimal state duration vector *d , we can iteratively 
update d  by steepest descent algorithm as follow 
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where  α  is the step size. With the likelihood L  defined in 
(10), the gradient in (11) with respect to each ikjd  is 
calculated as 
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As to the initial state duration vector (0) th−d  for iteration, 

there are two kinds of settings. One is the conventional state 
duration Tˆ= [..., , ...]ˆ

ikjdd  generated by maximizing HMM 

state duration likelihood, where ˆ
ikjd  is actually the mean of 

each HMM state duration Gaussian. The other is to use 
' T[..., , ...]ikjd='d  which is linearly converted from the 

conventional one as follows 
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where ˆ

id  is the syllable duration accumulated from d̂  and 

d̂  is the mean of  ˆ
id  sequence, which can be calculated 

according to Eq. (7) and (8). d̂  maximizes HMM state 
duration likelihood, while 'd  maximizes syllable duration 
GV likelihood. With setting GV weight as described above, 
we find that 'd  usually has a larger value of the proposed 
likelihood than d̂ , which usually leads to a better 
convergency of iteration. Therefore, 'd  is taken as the initial 
state duration vector. 

IV. EXPERIMENT 

A. System Overview 
Fig. 2 is the block diagram of HMM-based speech system 

with the proposed state duration generation. It consists of 
training part and synthesis part. In the training part context 
dependent HMMs and GV models are trained separately. In 
the synthesis part, the input text is firstly analyzed by a text 
analyzer and context features are extracted. Then the state 

duration of each context dependent HMM is generated by the 
proposed state duration generation algorithm considering GV. 
After that, the speech parameters are generated by the speech 
parameter generation algorithm with dynamic features. 
Finally, the synthetic speech is generated by a parametric 
synthesizer. 

B. Experimental conditions 
We used a 2-hour phonetically balanced Mandarin corpus 

for training, which consisted of 2000 sentences. Speech 
signals were sampled at 16kHz/16bit. F0, spectral envelope 
were extracted by STRAIGHT [12] with a 5ms frame shift. 
The spectral envelope was then used to extract 24-order LSPs 
and an extra gain dimension. A 5-state left-to-right with no 
skip HMM structure was adopted to model each phoneme of 
Mandarin. The feature vector consisted of log-scaled F0, 
LSPs, and their velocity and acceleration coefficients. 
Duration GV model was built on syllable level and a single 
Gaussian distribution was used to model the distribution of 
GV. In synthesis part, the generated LSPs were firstly 
converted to LPCs. Then a LP filter was used to synthesize 
the speech. 

To compare the proposed method with the conventional 
one, two systems were built in our experiment. 
·Baseline: An HMM-based speech synthesis system with 

conventional state duration generation method. 
·Proposed: An HMM-based speech synthesis system with 

proposed state duration generation method. 
In the iterative updating procedure of state duration 

generation for proposed system, the weight ω  was set to the 
ratio of the numbers of dimensions between vectors d  and 

( )v d , the step size α  was initially set to 0.1, the convergence 
threshold was set to 0.0001.  To increase the convergence 
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Fig. 2   Block diagram of HMM-based speech system with the 
proposed state duration generation method. 



speed, the step size will be increased or reduced according to 
the polarity of likelihood change after each time of iteration, 
with a factor 1.2 and 0.5 respectively. 

C. Convergency of Iteration 
Fig. 3 and 4 show two examples of the convergence curves 

of the likelihood used in the state duration generation of the 
proposed system, where L denotes the total likelihood and 
Lgv denotes the likelihood of GV. In Fig. 3, the converted 
state duration 'd  described in section 3.2 is used. While in 
Fig. 4, the unconverted state duration d̂  described in section 
3.2 is used. As we can see, the initial likelihood L in Fig. 3 is 
obviously larger than that in Fig. 4. And the convergence of L 
in Fig. 3 is faster than that in Fig. 4. This indicates that the 
adopted converted state duration is better for the convergence 
of iteration, with the GV weight set as described. From Fig. 4, 
we still can find that the likelihood of GV model increases 
significantly during the process of iteration. By improving the 
likelihood of GV model, the over-averaging effect on 
generated state duration could be alleviated. 

D. Subjective evaluation 
20 sentences out of the training set were synthesized by the 

two systems respectively. An AB preference test was 
conducted to evaluate the proposed method. 10 subjects 
which are all graduated students participated in the test. The 

subject was required to make a decision for each testing pair 
if which one sounds more natural or no preference could be 
made. The results of the test with 95% confidence interval are 
given in Fig. 5. 

As we can see the proposed system outperforms the 
baseline system perceptually. The subjects indicated that the 
speech synthesized by proposed method sounds more natural 
and expressive in many cases from the perception of syllable 
duration. However, the duration of some syllables in the 
speech synthesized by proposed method is too long or short in 
a few cases, which made the synthetic speech sound unnatural. 

Still, the syllable duration of speech synthesized by the two 
systems are quite similar in many cases, which is represented 
by the “no preference” item shown in Fig. 5. 

The occurrence of the above two cases where the baseline 
voice was preferred and no preference was made is highly 
related to the accuracy of GV model. In this paper, a single 
model was trained to describe the distribution of GV on 
syllable duration. Though it is effective in many cases (about 
40.7%), it is still lack of accuracy in other cases. In the case 
when the mean of GV model distribution is close to the GV of 
syllable duration generated by maximizing HMM likelihood, 
the likelihood of GV is close to its maximum. Hence no 
penalty could be made by the incorporating of GV likelihood 
into the likelihood function. Still, in the case when the mean 
of GV model distribution is much greater than the GV of 
syllable duration generated by maximizing HMM likelihood, 
the over-adjustment of syllable duration occurs due to the 
contribution of GV likelihood. Therefore, a more accurate GV 
model which covers most context environment, e.g., a context 
dependent GV model, will further improve the naturalness of 
synthetic speech. 

V. CONCLUSIONS 

In this paper, a state duration generation algorithm 
considering global variance (GV) for HMM-based speech 
synthesis is proposed. A GV model on syllable duration is 
proposed and a state duration generation algorithm 
considering this GV model is presented in details. The 
experimental results are promising which show that the 
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Fig. 5   Preference scores of the two systems. 



proposed method outperforms the conventional one by the 
way of alleviating the over-averaging effect of the generated 
state duration. We also find the accuracy of GV model 
adopted in this paper is still not good enough. Therefore, the 
next step is to build a context dependent GV model on 
syllable duration and further improvement is expected. 
Moreover, a multi-level GV model, e.g., GV model on phone 
duration, syllable duration, or even phrase duration, is worthy 
of studying. 
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