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Abstract—Interactive navigation of large high-dimensional me- rate can be achieved relative to the conventional cubiagtili
dia datasets aims at allowing viewers to freely navigate caent, techniques. The run-time memory space can also be reduced
selecting a subset of the high-dimensional visual data of ferest accordingly. A key element in our proposed system [9]-[11]

for display. An example application would be remote visualzation . N . .
of an arbitrary 2-D planar cut from a large volumetric dataset involves tiling images or 3D datasets using rotated tildsatT

with random access. In our previous work, we proposed a clign IS, in SOme cases we use square or rectangular tile shapes at a
server based data representation and retrieval system usin angle with respect to the horizontal/vertical directioBsice
overlapping rotated tiles to represent the dataset, whichdads we use a standard transform, which assumes pixels are tbcate
to lower bandwidth required for accessing a random plane fran in a regular grid, these tiles require us to introduce a regimap

large volume data. This leads to the question of how best to lqorith that pixels in th iqinal arid dt
represent these rotated tiles for compression. We have prested ~/907thm, SO that pixels in the original grid are mapped 1o

a non_interp0|ated Symmetric mappmg a|gorithm‘ which maps a regular rotated gl’ld before transform. In [12] we studied
each voxel in the original image to a rotated Cartesian grid pint.  the mapping algorithm for rotated tile encoding and prodide
In this paper, we will present a tool to analyze and quantify experiments for the 3D case. Our results showed that a non-
the performance and demonstrate the benefits of our proposed interpolated symmetric mapping approach, which maps each

re-mapping algorithm. We will show that in general the more . o, . . . -
symmetric the mapping is, the better RD performance can be voxel in the original image to a rotated Cartesian grid point

achieved. Our analysis, based on spectral graph theory, cti outperforms tile representation methods based on intetipal
be used for measuring the performance of different mapping and non-symmetric mapping. Remapping without interpoiati
algorithms on a grid of any dimension. has been shown to lead to overall better RD performance in
|. INTRODUCTION other settings [13]. In [12] we show experimentally that enor
aymmetric mappings outperform less symmetric ones. In this
aper, we will present a tool to both analyze and quantify
performance and benefits of our proposed re-mapping
algorithm. The result will explain that in general the more

alization with random data access poses significant clggken symmetric .the mapping 1S, t'he petter RD performance that
We focus on situations where lower dimensional portions §R1 P€ achieved. This analysis using spectral graph theory c

a dataset need to be accessed. Specifically, we consider c35euSed for measuring the performance of different mapping

where arbitrary oblique planes of a 3D volume may need to B&0rithms on a grid of any dimension.

extracted and rendered, as is required in some medical mgagi

applications. An example of oblique plane intersectiorwlite

3D volume is shown in Fig. 1. In many techniques proposed

for volumetric image coding [1]-[5], including approaches

such as JP3D [6]-[8], some form of random access is provided

via a non-overlapped, independently encoded, cuboidgtilin 40

These approaches can be inefficient in the scenario we focus =

on, because the only useful voxeler each retrieved cubic g

tile are those near the intersection between the cube and the

desired 2D plane.

Interactive navigation of large high-dimensional medi
datasets aims at allowing viewers to freely navigate cdnte
selecting a subset of the high-dimensional visual data
interest for display. Even in 3 dimensional case, volumea-vis

3D Volume

Requested plane

In our previous work [9], [10], we have proposed a random - Intersection
image retrieval system for a 3D dataset and shown that it is a0
more efficient to use overlapping tiles to represent thesghta g w %
This work demonstrates that in exchange for increased iserve o 1

side storage, significant reductions in average transomssi P

1A volume element, representing a value on a regular grid ireth ) ) o )
dimensional space. Fig. 1. Random oblique plane acquisition illustration.
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Fig. 2. Regular grid graph. Sizal x 11 10 -5 0 5

Fig. 3. Mapping of the Cartesian grid pixels onto the rotageid using the

. . . symmetric mapping algorithm. Sizé:x 9
In Section Il, we define the graphs for the regular grid and pping &g *

the re-mapping grid. In Section lIll, both an analysis using Non-symmetric Mapping Grid Graph
spectral transforms on graphs as well as experiment results , , ,
will be shown, followed by the conclusion in Section IV. 6

Il. AGRAPH REPRESENTATION OF REMAPPING e ‘ I
PROBLEM oL N L L warchingair

Transforms (e.g., DCT) represent data on a regular grid.
When we consider a rotated tile we select a subset of pixels °| ' »
from regular grid. Then the question is how to apply a regular ’
grid transform to this rotated set of pixels. Our solutiorids o / A
“remap” the pixels in the rotated tile to a regular grid. This Ll _:‘Azgsivnzgzziéraphf
illustrated in Figure 3. The key problem is that when placing
these pixels in this new regular grid a geometric distorton |
incurred. For example, three pixels that were not aligned in
their original location become aligned once they have been _g ‘ . ‘
placed on the regular grid. We starting by providing a more ~'0 -5 0 5
fo_rmal o_lefinition of the problem. .Then’ in Sec.tion i, a. tOOIFig 4. Mapping the Cartesian grid pixels onto the rotateid gsing non-
will be introduced to evaluate different mapping algori®mg, . etric mapping algorithm. Size:x 9
guantify the geometrical distortion.

Let G = (V, E) be a graph, which represents a grid. Vertex
setV containsN nodes indexed by, € {1,2,...,N}. The  Let Ag denote the adjacency matrix of the grid graph, with
set of edgest represents the connectivity of grid pixels. Irentriesa; ; given by
Figure 2 for example, except for the pixels on the boundaries Lo { Ac(i,j) = ﬁg) if (i,j) € E

3

each pixel is connected with its four neighboring pixels,(up (1)
down, left and right). . _ _

Figures 3 and 4 display rotated regular grids (blue stardlerew(i,j) is the Euclidean distance between nodesd
superimposed on top of their corresponding original Cates J- i,j ¢an be seen as the relationship between the two nodes,
grids (red dots) as well as the mapping relationship (matghiWhich is smaller when the distance between nadasd j is
pairs) between pixels in the two (blue vectors). When tH@rger and vice versa. The degree matrix of a weighted graph
symmetric mapping algorithm is used, connectivity betwedn Will be denotedD¢ with diagonal elements

pixels in the original Cartesian grid is preserved betwéden t Dgli,i) = ZAG(M')- )
J

0 otherwise

pixels they are matched to, as seen in Figure 3. This leads

to a_regul_ar pattern to the blug v_ectors _showmg the mappiige Laplacian matrix of a weighted graph G will be denoted
relationships. In contrast to this is the irregular patteeen . :

T bx L and is defined as

in Figure 4, where we see the results of the non-symmetri

mapping algorithm. Lg = D¢ — Ac. 3)



Since L for undirected graphs is symmetric and positiveo the original graph. Thus, it would be desirable for this
semidefinite, the eigenvectors df; form an orthonormal dispersion to be minimal, and hence for the off-diagonal
basis inRY. Let {)\;,v;}Y, be the eigenvalues and vectorgnergy to be as small as possible. From this observation, we
of L¢ arranged in non-decreasing order with respect to tlean conclude that the spectrum of the weighted grid graph
eigenvalues. Similarly td.¢, we let Lrq, Lsa, Lnsg and does not change as much when using the symmetric mapping
iy vri 110 iy Vsi F 1, {\nsi, vnsi 1, denote the Lapla- algorithm, as compared to the non-symmetric mapping case.
cian matrices and the eigenvalues and vectors for the negula
grid graph, symmetric mapping graph, and the non-symmetric
mapping graph, respectively. We also denetev;,vo > as
inner-product between vectors andvs,.

regular grid & symmetric mapping grid

[1l. ANALYSIS AND RESULTS 10

As mentioned earlier, the transform operates on a regular,,
grid, producing transform coefficients that are encodedn-Co
pression is achieved when the data is smooth (or sparse) ingg
the bases of the transform. Note, however, that the geomet-
rical distortion introduced by remapping may mean that even 40
though the original data was smooth (in a traditional 2D or
3D separable transform), the information in the block oiedi 50
after remapping may not be as smooth and, thus, overall
coding efficiency may suffer. We next propose a metric that 60
will allow us to compare mapping algorithms with different
degrees of symmetry, e.g., Figures 3 and 4, and predict which/9
approach will achieve better performance.

Lgrc is symmetric and positive semidefinite, the eigen-
vectors of L form an orthonormal basis ilRY and the
eigenvectors can be used to characterize various propeitie
the graph. The transform is based on the regular giaph,
but the mapping graph grids are not regular any more, which
can be seen as geometric distorted from the regular graph. In
order to measure the geometric distortion, here we measere t regular grid & non—-symmetric mapping grid
difference of the eigenvectors betwebpg and Lsg, Lysg-

Given that both the symmetric grid graph and the non-
symmetric grid graph share the same topology, but different
weights, we calculate the inner product between all respect
eigenvectors (i.e. regular grid graph vs. symmetric griapgr
and regular grid graph vs. non-symmetric grid graph). We let 3q
Rg denote the correlation matrix between the eigenvectors
of Lre and Lgg and let Ry s denote the correlation matrix 40
between the eigenvectors éfz; and Lysg. The entries of
the correlation matrixRs are given by 50

Rs{i,j} =< uvpi,vs; > 4,5 €{1,2,...,N}, (4) 60
and for the correlation matriR ys they are given by
RNS{Z;]} =< V’r‘iaynsj> i,j€{1,2,...,N}. (5)

Figure 5 shows the absolute values of the correlation matri- 80 20 40 60
cesRgs andRy . Figure 5(a) indicates that the energy of the
Correlation, matri?(RS_ is more concentrated along the diago,nal (b) Ry s: Absolute value of the Correlation matrices for the non-
terms, while (b) indicates that the energy of the correlation  symmetric grid graph.
matrix Rys is more spread out along the diagonal terms.
Assume that a smooth signal is such that it can be described Fig. 5. Absolute values of the correlation matricgs and Ry s.
using a small number of eigenvectors of the original graph
Laplacian. Then, the intuition is that the effect of remaygpi We notice from Figure 5 that the largest correlation terms
is to “disperse” the energy, since eigenvectors in the neplyr are not always exactly on the diagonal of the matrices. For
have non-zero correlation with all eigenvectors corresipggn  each row: of the correlation matriz (R can beRg or Rys),

80

20 40 60

(a) Rg: Absolute value of the Correlation matrices for the sym-
metric grid graph.
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the maximum correlation term is found and denoif&gl,.. (i), is the lack of symmetry. The experiment uses the same 30
ie. random oblique planes for all different cases. We measwue th
Rz (i) = arg {R(i,5)}. (6) distortion between the 2D oblique planes, with and without

passing through our system. The rate distortion curves in

The modified diagonal terms of the correlation matrix aresthiFigure 7 are generated using the quantization step values
the set{ R,,.. (i)}, the energy of which can be calculatedrom 10 to 80, with increment 10. The mean squared error is
as N calculated to measure the distortion and the rate is medisure
in terms of the average bits per voxel of the transmitted tile

max
je{1,2,...,N}

Ediag = ;Rm‘”(i)% (") for all random oblique planes.
Denoting the energy of the modified off-diagonal terms as 3
Eoff-diag* we have \ ——— symmetric mapping
Eoft.diag= N — Fuiag: ®) TN | ronoymmetr maing2
where the total energy of the correlation matrix§ since 2F \\\\\iij\

the energy of each row is 1. Hence the percentage of the
total energy attributed tg the modified off-diagonal ternfis o
the correlation matrix i off[-vdlag_ The off-diagonal energy :
resulting from using either symmetric or non-symmetric map I I
ping is shown in Figure 6. In this figure, different sizes of th \
grid graphs are used, which agex 9, 11 x 11, 13 x 13,
15 x 15, 17 x 17, and 19 x 19. For all grid graph sizes
considered, there is consistently more off-diagonal gnerg o 50 100 150 200
using the non-symmetric mapping algorithm than using the MSE

symmetric mapping algorithm.

Fig. 7. Symmetric and non-symmetric mapping algorithms’ &ves.

Off-diagnal energy percentage

. . V. CONCLUSION
= B =non-symmetric mapping

0.8f —e— symmetric mapping a In our previous work, we presented a non-interpolated
_____ aT symmetric mapping algorithm, which maps each voxel in the

Fo7 ,x" original image to a rotated Cartesian grid point. Previgusl
PO T w’ we have shown experimentally that this approach outpeorm
£ 06 R tile representation methods based on interpolation and non

E symmetric mapping. Moreover, especially at high ratesagm

§’ 05 ping without interpolation was shown to lead to overall bett
ct|> e RD performance, with more symmetry leading to better RD

performance.
0.4 .

In this paper we have presented a tool to both analyze
| and quantify the performance and benefits of our proposed
03 re-mapping algorithm. Across a range of grid graph sizes,

e}

10 12 14 16 18
Grid graph size

Fig. 6. Percentage of the off-diagonal energy

20

there is always more off-diagonal energy using non-symmetr
mapping algorithm, as compared to the symmetric mapping
algorithm. Intuitively, when using the symmetric mapping
algorithm the weighted grid graph’s spectrum does not chang

The experimental results in Figure 7 shows that differeAf Much as when the non-symmetric mapping algorithm is
non-symmetric mapping algorithms lead to different RD Ioep_sed. Moreover, this result explains the experiments where

formance in terms of coding, and the symmetric mappi

s found that in general the more symmetric the mapping

algorithm has better performance than the non-symmettfe the_better the RD performance that can be achieved. Our
mapping algorithms. The distortion is measured by using tR8alysis based on spectral graph theory can be used for
Cartesian voxel values, which are used for reconstructifffasuring the performance of different mapping algorithms
the 2D oblique plane from a 3D volume dataset and % @ 9rid of any dimension.
distortion only comes from the compression process. For the
non-symmetric mapping here, we do select remapping to the _

I. Ihm and S. Park, “Wavelet-based 3D compression schéone

nearest neighbor at each point, so that the overall rem ifi-
) > - g ) p ' ] } app interactive visualization of very large volume dat&bmputer Graphics
distortion incurred is not very high and the main difference  Forum, March 1999.
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