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Abstract—Interactive navigation of large high-dimensional me-
dia datasets aims at allowing viewers to freely navigate content,
selecting a subset of the high-dimensional visual data of interest
for display. An example application would be remote visualization
of an arbitrary 2-D planar cut from a large volumetric dataset
with random access. In our previous work, we proposed a client-
server based data representation and retrieval system using
overlapping rotated tiles to represent the dataset, which leads
to lower bandwidth required for accessing a random plane from
large volume data. This leads to the question of how best to
represent these rotated tiles for compression. We have presented
a non-interpolated symmetric mapping algorithm, which maps
each voxel in the original image to a rotated Cartesian grid point.
In this paper, we will present a tool to analyze and quantify
the performance and demonstrate the benefits of our proposed
re-mapping algorithm. We will show that in general the more
symmetric the mapping is, the better RD performance can be
achieved. Our analysis, based on spectral graph theory, could
be used for measuring the performance of different mapping
algorithms on a grid of any dimension.

I. I NTRODUCTION

Interactive navigation of large high-dimensional media
datasets aims at allowing viewers to freely navigate content,
selecting a subset of the high-dimensional visual data of
interest for display. Even in 3 dimensional case, volume visu-
alization with random data access poses significant challenges.

We focus on situations where lower dimensional portions of
a dataset need to be accessed. Specifically, we consider cases
where arbitrary oblique planes of a 3D volume may need to be
extracted and rendered, as is required in some medical imaging
applications. An example of oblique plane intersection with the
3D volume is shown in Fig. 1. In many techniques proposed
for volumetric image coding [1]–[5], including approaches
such as JP3D [6]–[8], some form of random access is provided
via a non-overlapped, independently encoded, cuboid tiling.
These approaches can be inefficient in the scenario we focus
on, because the only useful voxels1 for each retrieved cubic
tile are those near the intersection between the cube and the
desired 2D plane.

In our previous work [9], [10], we have proposed a random
image retrieval system for a 3D dataset and shown that it is
more efficient to use overlapping tiles to represent the dataset.
This work demonstrates that in exchange for increased server-
side storage, significant reductions in average transmission

1A volume element, representing a value on a regular grid in three
dimensional space.

rate can be achieved relative to the conventional cubic tiling
techniques. The run-time memory space can also be reduced
accordingly. A key element in our proposed system [9]–[11]
involves tiling images or 3D datasets using rotated tiles. That
is, in some cases we use square or rectangular tile shapes at an
angle with respect to the horizontal/vertical directions.Since
we use a standard transform, which assumes pixels are located
in a regular grid, these tiles require us to introduce a remapping
algorithm, so that pixels in the original grid are mapped to
a regular rotated grid before transform. In [12] we studied
the mapping algorithm for rotated tile encoding and provided
experiments for the 3D case. Our results showed that a non-
interpolated symmetric mapping approach, which maps each
voxel in the original image to a rotated Cartesian grid point,
outperforms tile representation methods based on interpolation
and non-symmetric mapping. Remapping without interpolation
has been shown to lead to overall better RD performance in
other settings [13]. In [12] we show experimentally that more
symmetric mappings outperform less symmetric ones. In this
paper, we will present a tool to both analyze and quantify
the performance and benefits of our proposed re-mapping
algorithm. The result will explain that in general the more
symmetric the mapping is, the better RD performance that
can be achieved. This analysis using spectral graph theory can
be used for measuring the performance of different mapping
algorithms on a grid of any dimension.
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Fig. 1. Random oblique plane acquisition illustration.
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Fig. 2. Regular grid graph. Size:11 × 11

In Section II, we define the graphs for the regular grid and
the re-mapping grid. In Section III, both an analysis using
spectral transforms on graphs as well as experiment results
will be shown, followed by the conclusion in Section IV.

II. A GRAPH REPRESENTATION OF REMAPPING
PROBLEM

Transforms (e.g., DCT) represent data on a regular grid.
When we consider a rotated tile we select a subset of pixels
from regular grid. Then the question is how to apply a regular
grid transform to this rotated set of pixels. Our solution isto
“remap” the pixels in the rotated tile to a regular grid. Thisis
illustrated in Figure 3. The key problem is that when placing
these pixels in this new regular grid a geometric distortionis
incurred. For example, three pixels that were not aligned in
their original location become aligned once they have been
placed on the regular grid. We starting by providing a more
formal definition of the problem. Then, in Section III, a tool
will be introduced to evaluate different mapping algorithms
quantify the geometrical distortion.

Let G = (V, E) be a graph, which represents a grid. Vertex
set V containsN nodes indexed byn ∈ {1, 2, . . . , N}. The
set of edgesE represents the connectivity of grid pixels. In
Figure 2 for example, except for the pixels on the boundaries,
each pixel is connected with its four neighboring pixels (up,
down, left and right).

Figures 3 and 4 display rotated regular grids (blue stars)
superimposed on top of their corresponding original Cartesian
grids (red dots) as well as the mapping relationship (matching
pairs) between pixels in the two (blue vectors). When the
symmetric mapping algorithm is used, connectivity between
pixels in the original Cartesian grid is preserved between the
pixels they are matched to, as seen in Figure 3. This leads
to a regular pattern to the blue vectors showing the mapping
relationships. In contrast to this is the irregular patternseen
in Figure 4, where we see the results of the non-symmetric
mapping algorithm.
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Fig. 3. Mapping of the Cartesian grid pixels onto the rotatedgrid using the
symmetric mapping algorithm. Size:9 × 9
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Fig. 4. Mapping the Cartesian grid pixels onto the rotated grid using non-
symmetric mapping algorithm. Size:9 × 9

Let AG denote the adjacency matrix of the grid graph, with
entriesai,j given by

ai,j =

{

AG(i, j) = 1
w(i,j) if (i, j) ∈ E

0 otherwise,
(1)

wherew(i, j) is the Euclidean distance between nodesi and
j. ai,j can be seen as the relationship between the two nodes,
which is smaller when the distance between nodesi and j is
larger and vice versa. The degree matrix of a weighted graph
G will be denotedDG with diagonal elements

DG(i, i) =
∑

j

AG(i, j). (2)

The Laplacian matrix of a weighted graph G will be denoted
by LG and is defined as

LG = DG − AG. (3)



SinceLG for undirected graphs is symmetric and positive
semidefinite, the eigenvectors ofLG form an orthonormal
basis inR

N . Let {λi, νi}
N
i=1 be the eigenvalues and vectors

of LG arranged in non-decreasing order with respect to the
eigenvalues. Similarly toLG, we let LRG, LSG, LNSG and
{λri, νri}

n
i=1, {λsi, νsi}

N
i=1, {λnsi, νnsi}

N
i=1 denote the Lapla-

cian matrices and the eigenvalues and vectors for the regular
grid graph, symmetric mapping graph, and the non-symmetric
mapping graph, respectively. We also denote< v1, v2 > as
inner-product between vectorsv1 andv2.

III. A NALYSIS AND RESULTS

As mentioned earlier, the transform operates on a regular
grid, producing transform coefficients that are encoded. Com-
pression is achieved when the data is smooth (or sparse) in
the bases of the transform. Note, however, that the geomet-
rical distortion introduced by remapping may mean that even
though the original data was smooth (in a traditional 2D or
3D separable transform), the information in the block obtained
after remapping may not be as smooth and, thus, overall
coding efficiency may suffer. We next propose a metric that
will allow us to compare mapping algorithms with different
degrees of symmetry, e.g., Figures 3 and 4, and predict which
approach will achieve better performance.

LRG is symmetric and positive semidefinite, the eigen-
vectors ofLRG form an orthonormal basis inRN and the
eigenvectors can be used to characterize various properties of
the graph. The transform is based on the regular graphLRG,
but the mapping graph grids are not regular any more, which
can be seen as geometric distorted from the regular graph. In
order to measure the geometric distortion, here we measure the
difference of the eigenvectors betweenLRG andLSG, LNSG.

Given that both the symmetric grid graph and the non-
symmetric grid graph share the same topology, but different
weights, we calculate the inner product between all respective
eigenvectors (i.e. regular grid graph vs. symmetric grid graph
and regular grid graph vs. non-symmetric grid graph). We let
RS denote the correlation matrix between the eigenvectors
of LRG andLSG and letRNS denote the correlation matrix
between the eigenvectors ofLRG and LNSG. The entries of
the correlation matrixRS are given by

RS{i, j} =< νri, νsj > i, j ∈ {1, 2, . . . , N}, (4)

and for the correlation matrixRNS they are given by

RNS{i, j} =< νri, νnsj > i, j ∈ {1, 2, . . . , N}. (5)

Figure 5 shows the absolute values of the correlation matri-
cesRS andRNS . Figure 5(a) indicates that the energy of the
correlation matrixRS is more concentrated along the diagonal
terms, while(b) indicates that the energy of the correlation
matrix RNS is more spread out along the diagonal terms.
Assume that a smooth signal is such that it can be described
using a small number of eigenvectors of the original graph
Laplacian. Then, the intuition is that the effect of remapping
is to “disperse” the energy, since eigenvectors in the new graph
have non-zero correlation with all eigenvectors corresponding

to the original graph. Thus, it would be desirable for this
dispersion to be minimal, and hence for the off-diagonal
energy to be as small as possible. From this observation, we
can conclude that the spectrum of the weighted grid graph
does not change as much when using the symmetric mapping
algorithm, as compared to the non-symmetric mapping case.
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(a) RS : Absolute value of the Correlation matrices for the sym-
metric grid graph.
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(b) RNS : Absolute value of the Correlation matrices for the non-
symmetric grid graph.

Fig. 5. Absolute values of the correlation matricesRS andRNS .

We notice from Figure 5 that the largest correlation terms
are not always exactly on the diagonal of the matrices. For
each rowi of the correlation matrixR (R can beRS or RNS),



the maximum correlation term is found and denotedRmax(i),
i.e.

Rmax(i) = arg max
j∈{1,2,...,N}

{R(i, j)}. (6)

The modified diagonal terms of the correlation matrix are thus
the set{Rmax(i)}N

i=1, the energy of which can be calculated
as

Ediag =

N
∑

i=1

Rmax(i)2. (7)

Denoting the energy of the modified off-diagonal terms as
Eoff-diag, we have

Eoff-diag = N − Ediag, (8)

where the total energy of the correlation matrix isN , since
the energy of each row is 1. Hence the percentage of the
total energy attributed to the modified off-diagonal terms of

the correlation matrix is
Eoff-diag

N
. The off-diagonal energy

resulting from using either symmetric or non-symmetric map-
ping is shown in Figure 6. In this figure, different sizes of the
grid graphs are used, which are9 × 9, 11 × 11, 13 × 13,
15 × 15, 17 × 17, and 19 × 19. For all grid graph sizes
considered, there is consistently more off-diagonal energy
using the non-symmetric mapping algorithm than using the
symmetric mapping algorithm.
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Fig. 6. Percentage of the off-diagonal energy

The experimental results in Figure 7 shows that different
non-symmetric mapping algorithms lead to different RD per-
formance in terms of coding, and the symmetric mapping
algorithm has better performance than the non-symmetric
mapping algorithms. The distortion is measured by using the
Cartesian voxel values, which are used for reconstructing
the 2D oblique plane from a 3D volume dataset and the
distortion only comes from the compression process. For the
non-symmetric mapping here, we do select remapping to the
nearest neighbor at each point, so that the overall remapping
distortion incurred is not very high and the main difference

is the lack of symmetry. The experiment uses the same 30
random oblique planes for all different cases. We measure the
distortion between the 2D oblique planes, with and without
passing through our system. The rate distortion curves in
Figure 7 are generated using the quantization step values
from 10 to 80, with increment 10. The mean squared error is
calculated to measure the distortion and the rate is measured
in terms of the average bits per voxel of the transmitted tiles
for all random oblique planes.
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Fig. 7. Symmetric and non-symmetric mapping algorithms’ RDcurves.

IV. CONCLUSION

In our previous work, we presented a non-interpolated
symmetric mapping algorithm, which maps each voxel in the
original image to a rotated Cartesian grid point. Previously,
we have shown experimentally that this approach outperforms
tile representation methods based on interpolation and non-
symmetric mapping. Moreover, especially at high rates, remap-
ping without interpolation was shown to lead to overall better
RD performance, with more symmetry leading to better RD
performance.

In this paper we have presented a tool to both analyze
and quantify the performance and benefits of our proposed
re-mapping algorithm. Across a range of grid graph sizes,
there is always more off-diagonal energy using non-symmetric
mapping algorithm, as compared to the symmetric mapping
algorithm. Intuitively, when using the symmetric mapping
algorithm the weighted grid graph’s spectrum does not change
as much as when the non-symmetric mapping algorithm is
used. Moreover, this result explains the experiments whereit
was found that in general the more symmetric the mapping
is, the better the RD performance that can be achieved. Our
analysis based on spectral graph theory can be used for
measuring the performance of different mapping algorithms
on a grid of any dimension.
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