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Abstract—A new spatiotemporal noise covariance model were while the simple and most commonly used noise model
recenlty proposed to consist of the multi-pair Kronecker products  (ignoring the correlation that is present in the background
of spatial covariance matrices of rank 1 and their corresponding noise) consists of sensor variances without both spatidl an

full temporal covariance matrices. Optimized estimators ®r ¢ | lati De M Rt al [2 d Hui
parameters within this model were derived through the maxi- emporal correlations. De Muncet. (2] an uizenga

mum likelihood method and their inversions were accomplised €t @ [5] proposed new noise covariance models that use a
through simple closed formulas, thereby allowing the methd Kronecker product (KP) of the full spatial covariance matri

to be easily incorporated into parametric source localizabn  and full temporal covariance matrix under the assumptia th
methods. However, these maximum likelihood estimators wer g atia| and temporal noise structures are separable. Bfma
derived under the assumption that collected spatiotempoia . . S . .
noise samples are Gaussian distributed, which is generallgot al [6]_ |nvest|gat¢d a multi-pair KP model W't_h full spatl_al
true for such non-averaged (or single trial) MEG/EEG signak. covariance matrices and full temporal covariance matrices
In this work, an unbiased estimators of spatiotemporal nois However, its inversion is not achievable with ease and thus i
covariance in the least squares sense is proposed with usingis not tractable in source localization methods. Recetig

the same multi-pair Kronecker product model without assumng et. al [4] proposed the spatiotemporal noise model consisting

a Gaussian distribution for noise in the data. We found that f lti-nair KP of tial ) tri f K1
the least squares covariance estimator for orthogonal spet of mufti-pair OF spalial covariance matrices of ran

components is the same (only differing by constant factorsds the and full temporal covariance matrices. Invertlblllty ofigh
maximum likelihood estimator. However, for independent satial model was assured and the model provided better explasation
components the least squares estimator is different from t of noise structure than the one pair KP model in studies
maximum likelihood estimator. with simulated and empirical data. However, Plis deriveel th
noise covariance estimators through the maximum likelihoo
I. INTRODUCTION technigue under the assumption that non-averaged (single

In MEG/EEG experiments, it is common to encounter ver§ia!) spatiotemporal noise samples are Gaussian diseibu
low signal-to-noise ratio (SNR) signals due to low signai/é have ample evidence that single trial or non-averaged
strength coupled with noise from the system, the brain,rext@Patiotemporal noise samples are likely to be non-Gaussian
nal environment and other sources. Brain noise, from orgyoin [N this work we use the same multi-pair KP model as [4] and
or non-stimulus correlated activity, is often the domingti derive spatiotemporal noise covariances using the leastreg
noise in well shielded MEG/EEG systems and has a cofgchnique. Our derivations do not require the assumptiah th
plicated structure, with correlations in both time and spachon-averaged (or single trial) spatiotemporal noise samate
Due to the central limit theorem, the noise of averaged ddgaussian distributed.
is expected to be Gaussian distributed and parameterizéd wi
a noise covariance matrix (2nd order statistic). This Ganss T
noise model is a basic component of most statistically based

MEG/EEG source localization approaches and the proper, this section, two KP noise covariance models are de-

estimation of noise covariance is of importance. It has begpiped briefly and discussed. We assume the following ex-
reported that noise covariance estimation has a greatteffec perimental setup:

localization performance in both spatial-only analyselsd4

. KP NoIse COVARIANCE MODELS

well as spatiotemporal analyses ([2], [3], [4])- Thus it fedal . The same Stim_ulus is_ re_peatMi times.
to estimate accurately the spatiotemporal noise covagitoc Trial-to-trial noise variations of the response are used to
good localization performance. estimate covariance.

The most general form for the spatiotemporal noise covari-* Spatiotemporal measurement noise (before stimulus or
ance matrix has too many parameters to estimate in practice, '0ng after stimulus) at trial numben is E,, (L x K
matrix) and mean of these noise samples is zéras
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Thus, the unbiased sample averaged noise covariance caram@her model (multi-pair KP) consisting of a sum of KPs
estimated by was introduced [4] :
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Here vec(E) is a columnlvector stacked over "’.".' COlumrHere spatial componen$/) are L x L matrices of rank 1 and
vectors of a matrixE, and’ denotes the transposition. This

X their corresponding temporal matric@!) are full rank K x
sample covanance haBK (LK +1)/2 degrees of freedom K matrices. Comparing to the one-pair KP model, this multi-
(DOF)L. This requires a large amount of memory to store

dits i o i ina. thus it | " Bair model can better account for different temporal strces
and It INVersion s very ime-consuming, tus It IS SOMe8M , o 1pe pead. Even though trial-to-trial variations hawe n

fB%en well understood and thus it is not known whether or not
ﬁ‘[ey are likely to be statistically stationary, we believest
multi-pair model may better consider trial-to-trial vai@ns.

TBaizdf Ollnr tEiLassLumpt[[(i)nl that ]:;J"rir?\mk x If(bterlrgprma:]d When spatial components (matrices of rank 1) are indepen-
(T) and full ra x L spatial §) covariances of backgrou dent, that is, all generating vecto{s,,vs,-- , v} (spatial

noise are separable, a single pair KP model for averagee no&%mponent is generated by matrix product of a vector and
covariance was proposed [2], [5] :

its transposition) are independent, they can be expresged i
Cop =T®S. (2) S(1) = vv; for thel-th column vectow; of an invertibleL x L
matrix V. Thus, due to independence of spatial components,

The parameters within this model can be estimated through #he multi-pair KP model can be inverted as follows [4]:
maximum likelihood method under the assumption that single

trial spatiotemporal noise samples are Gaussian diséibut < L )

to develop simplified noise covariance models which have
less DOF and are inverted efficiently.

=> T() '@ P 'SOP). (8)

=1

The maximum likelihood method is to find the optimal noise > T @s()
covariance estimator that maximizes the following Gaussia ‘'=!

probability density distribution : Here P := VV’. We remark that linear independence of
1Y Tr{E,8E,.T) spatial components of rank 1 ensures the efficient inversion
e *om mr f the multi-pair KP models.
max — NV @ ° P
1,8 (2m)KLM/2de(T)ME/2deS)ML/2 It was reported in [4] that this multi-pair KP model was

estimated through the maximum likelihood method under the

The above optimization yields ; i : o4t
assumption that noise samples are Gaussian distributed. Fo

& 1 (1 P the given invertible matrixV consisting of column vectors
S = K (M ZEmT Em) ’ 4) v1, U9, - -, vz, the maximum likelihood covariance estimator
e " yields
_ &1 R
-1 <M 2 B8 Em) | ®) () = wf
m . 1 ) R
Here®, Tr(-), and def-) denote the Kronecker product, trace, T = M2 ZEmPS(l)PEm' ©)

and determinant, respectively. These coupled equatigran@

(5) are solved in an iterative way [2]. These temporal estimators may account for possibly diffiere
This one pair KP model (2) is easily inverted by temporal characteristics coming from spatially differéeiad
B B B regions.
Tes ' =T 'es™ (6)  Regarding estimation of spatial components, Blisal [4]

Furthermore, this one-pair KP product covariance modB[OP0Sed two ways in their recent work. For the spatial agtho

tremendously reduces the degrees of freedom (DOF) of sﬁg-al components, they applied_ singl_,llar value decompositio
tiotemporal noise covariance, thereby enabling us to edéra (SVD)_tO all accqmulat_ed spatlal_ noise da.oise (having
noise covariance in an efficient way when reasonably sufficie™ kinds of L-dimensional spatial samples):

noise information is availabfe Nevertheless, this model has E)

an important problem. Due to its rigidness, it can not well E)

account for some phenomena such unequally distributechalph

activity over the head [6], and trial-to-trial variation][8 E’ = ALoise = UoE Vo' . (10)
To better explain physiological background activity, capt m
noise structure as well as to ensure its efficient inversion, :
E/,

1For 100 sensors and 100 time points, it is roughly. h h | . . f h | ial
2|n general, single trial noise collection without any stlivfer a certain The orthogonal matriXVo consists ofL orthogonal spatia

time is required. For very limited noise data, refer to [7]. feature column vectors representing spatial charadesistf



KM samplesUg consists of orthogonal temporal sequencEere Tr() is a trace operator. We seek the optirﬁ&ls(l) for
column vectorsY. is a diagonal matrix having singular values] = 1,--- |, L such that (12) is minimized. Due to symmetry
each of which represents how much of the spatial charactef-T%S (1) andS™S(l), rearranging (12) fofi'“S(1) yields
istics its corresponding orthogonal spatial feature vectn
account for. In essence, SVD here is a principal component
analysis (PCA), that extracts orthogonal spatial featfnas

2

L
> TS () @ 8 (1) - ¢,
l

Anoise- =1 F
. . L
For independent spatial components (mostly unorthogpnal) _ S LS9 ALS /12 9
the SOBI (second-order blind identification) ICA (indepent a ; TrE=OT) TS0 +Tr(Cs7)
component analysis) technique was proposed to exttact 9 . )
spatial features among M spatial samples as follows: NG ZTr(E;nSLS(Z)EmTLS(Z)). (14)
m,l

Anoise = UIVI/- (11) ~
Using symmetries o8%5(1) yields
Here V1 is an L x L mixing matrix consisting of spatial

feature column vectors (linearly independent) abg is a Tr(SYS(11)8"8(l)) = Tr(Veye), V'Vere), V')
MK x L matrix having statistically independent temporal = Tr(V'Ve,e, V'Veyer,)
sequence column vectors. This mixing maf¥x was used to = (V'V),1,)% = (Qu 1)

estimate the independent spatial components. We notehthat t

SOBI algorithm was chosen among several ICA methods in (Q:=V'V)

this work because it showed good performance on MEG daéﬁd diff tiati f(14) oveRLS () 1 = 1.--- L qi
[9]. Mixing matrices from ICA techniques other than SOBI ifferentiation of (14) ov (@), o L QIVeS
can be applicable in this derivation. L -is 9
(1
Just like the one-pair KP model, these multi-pair Kronecker Zl =1 (1)(Qun)
products covariance models significantly reduce the degrée _ 2 Z E sLS(l)E . (15)
freedom (DOF) of spatiotemporal noise covariance and enabl M(M-1) — m "

us to estimate their inversion without significant compiotae! _ ) )
cost. However, the necessary assumption (that non-awerafere ¢: IS a canonical column vector having 1 at thén
single trial noise is Gaussian distributed) is generally n§ntry ando at other entries an@, ;, denotes thel,, l»)-th

realistic for MEG/EEG signals. This motivates us to derivélément of the matrbQ. We used the following identities to
least squares multi-pair KP models without this assumptiofeve (15):

We not_e that B!jmaet. al [6] investigated the least squares dTr(T?) . dTr(AT) R 16
one-pair KP estimator. T = 2T o A (16)
[1I. M ULTI-PAIR KP COVARIANCE ESTIMATOR IN THE Setting (15) to zero yields
LEAST SQUARES SENSE ol wial e wigl FLS(1)
We assume thafvi, v, --- ,vz} are linearly independent, wo 1l wopl o0 wopl TLS(2)
that is,v; is thel-th column vector of an invertible matri¥ . . .
of size L x L. For the given spatial componer &S (/) = : I ' ' I AL
vv], we attempt to estimate the parameters of a multi-pair KP “rit WLz v WLL T(L)
model by fitting it to the sample covariance matrix under the TLS(l) R(1)
conventional Frobenius norm as follows: TLS(2) R(2)
i ) = [(QeQ)®T] : =1 . (17)
min | > TS () @ 8¥S(1) - . |||(12) TS (1) R(L)
symmetric TS (1), -1 P
l=1,---,L Here wy, ;, is the element of Hadamard produ@ o Q

and R() == gzr=1y Lom EnS"S(DEn. Solving (17) for
Herewvec(E) is a column vector stacked over all column VeC'TLS(l) yields
tors of a matrixE. Due to symmetry of covariance matrices,
the above Frobenius norm can be expressed in the following:

L 2

min Tr [ [>T () @ 8¥S(1) - C. _
symmetric TS (1), =1 Hered; ; is the (I, k)-th element of(Q o Q)fl.
l=1,---,L In summary, for the given invertible matri¥ consisting
(13) of column vectors, ve, - -+ , v, the least squares covariance

L
TS () =Y diR(k). (18)
k=1




estimator yields Solving for J gives the optimall°Pt (20). Here we used the

LS , identity

S = . vec(ABC) = (C' @ A)vec(B). (24)

“ 1 ~

™0 = M(M —1) SEL D diiSS(k) | En. Inserting (20) into (22) yields (21). While the one-pair KP
m k=1 model requires the inversion of th&% x N matrix [5], this

(19) evaluation requires the inversion of EN x KN matrix,

which depends on the number of time poiti{s This can be

Interestlngly, Ith's yleIQS an unbiased gstlrr:lator bec_ahee tractable for common multi-dipole source problems (severa
unplasgd sample covarlanﬁg_ was U_SEd_ in the L$ eSt'm_atordipole sources and up to several hundreds time points) on
derivation, however, the maximum likelihood estimator ) .ommon workstations.

an mherenﬁlydbms_(_ad or_:_eh. Whﬁﬂ 'S orthogonaI,P an-% . The covariance matrix of the source parameters {0, J}
come to all i en'lutles. 1us, t_ ese estimators only iffer it the solution} can be estimated ([10], [5]) by
constant factors;— and ;. This ensures that the maximum

likelihood estimator would be good for a large number of Cy =202 [E(H)] . (25)
trials M regardless of the validity of the Gaussian distribution . . . )
assumption of noise samples. Hereo = ¢(¢)/(LK — 6N — NK). H is the Hessian matrix

For a general invertible matriv (independent spatial With second-order partial derivatives of (225]-] means the

components), these estimators as shown in (9) and (19) &i@ectation. Taking the expectation of the HessiziH), we
quite different. However, we can observe thatspproaches 0Ptain E(H); ; as
/

a diagonal matrix, then the LS estimator approaches the I s R
maximum likelihood estimator. In general, seeking themopti 9 Ty TLS (1)1 OF(0)J P18LS (P! OF (6)d
(in some sensey would be an interesting problem. We expect = ;i O;

that various ICA techniques are likely to yield suboptimal o _ (26)
mixing matricesV. That is, the optimality ofV would be This is a generalization of the result in [5].
related to the criteria of ICA variants.

V. DISCUSSION

IV. SOURCE LOCALIZATION - FORMULATION According to the experiments published in [11], there is
The source localization (for the fixed dipole model) iéewdence that the background activity of the brain has a

now done by incorporating the estimated multi-pair KP noisﬂQE];ationary s_,patial distribution overthe_time of interétlying
covarianceCyp into the generalized negative Iog-IikeIihoooOn such evidence, we made assumptions about the background

function (called cost function): activity in the brain:
« The measured background is a superposition of some spa-
c(0,3) = [vec(F(0)) —vec(Y)]' Cyfp [vec(F(0)T) tially fixed sources with independent temporal behavior.
—vec(Y)) « Each spatial source produces correlated Gaussian noise.
These are the bases for our multi-pair KP spatiotemporaknoi
<CM1P =y T e P_lgLS(l)P_1> covariance modeling. In order to extract spatially fixedseoi
generators we find spatial orthogonal components of rank 1.

L The sum of the KP of these components with their correspond-
= > Tr ([F(G)J - Y|P ISY)PF(0)] ing temporal covariances constitutes our multi-pair model
=1 However, higher rank spatial components can be considered
—Y]TLS(Z)*) ) (22) to maintain the invertibility of the covariance model, whic

can be a generalization of multi-pair KP models [12]. Given
Hered,J, F(6), andY are source location and its orientationthis reasoning, in MEG/EEG source localization problems it
a matrix (V x K) representing source time course, the forwarchay be unreasonable to consider another multi-pair KP model
lead field matrix, and a spatiotemporal measurement matagnsisting of the temporal components of rank 1 and their
(L x K), respectivelyN, K, and L are the expected numbercorresponding full spatial matrices even though it may make
of sources, the number of time points in the temporal windowense mathematically.

and the number of sensors, respectively. Each ML temporal covariance estimator should be inher-
To minimize the above cost function, differentiating (22gntly a sample noise covariance computed from projected
overJ and setting it to zero yields noise samples onto its corresponding spatial componenéspa

This holds for any spatial components (orthogonal or inde-
pendent). We found LS temporal covariance for orthogonal
spatial components was such a case, but it was not for
. . independent spatial components. The difference between ML
- F(e)/P_lsLS(l)P_lYTLS(l)_l) =0. (23) and LS estimators has motivated us to conduct a localization

3 (F(e)'P—1SLS(Z)P—lF(e)JTLS(l)—1

=1



l

c(6,J°Pt) = Tr

—vec

vec(JOPY) = <ZTLS(Z)‘1®[F(@)’P‘lgLS(l)P‘lF(H)D vec<ZF(@)'P—lsLS(z)P—lYTLS(z)—1>, (20)
l

ZF(H)'P‘lgLS(Z)P‘lYTLS(l)‘1>
l

Z P—ISLS (Z)P_lYTLS (l)—lYl
l

X (Z ™) 'e [F(H)’PlgLS(l)PlF(H)D vec (Z F(H)’PlgLS(l)PlY’i‘LS(l)1> (21)

l l
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