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Abstract—A new spatiotemporal noise covariance model were
recenlty proposed to consist of the multi-pair Kronecker products
of spatial covariance matrices of rank 1 and their corresponding
full temporal covariance matrices. Optimized estimators for
parameters within this model were derived through the maxi-
mum likelihood method and their inversions were accomplished
through simple closed formulas, thereby allowing the method
to be easily incorporated into parametric source localization
methods. However, these maximum likelihood estimators were
derived under the assumption that collected spatiotemporal
noise samples are Gaussian distributed, which is generallynot
true for such non-averaged (or single trial) MEG/EEG signals.
In this work, an unbiased estimators of spatiotemporal noise
covariance in the least squares sense is proposed with using
the same multi-pair Kronecker product model without assuming
a Gaussian distribution for noise in the data. We found that
the least squares covariance estimator for orthogonal spatial
components is the same (only differing by constant factors)as the
maximum likelihood estimator. However, for independent spatial
components the least squares estimator is different from the
maximum likelihood estimator.

I. I NTRODUCTION

In MEG/EEG experiments, it is common to encounter very
low signal-to-noise ratio (SNR) signals due to low signal
strength coupled with noise from the system, the brain, exter-
nal environment and other sources. Brain noise, from ongoing
or non-stimulus correlated activity, is often the dominating
noise in well shielded MEG/EEG systems and has a com-
plicated structure, with correlations in both time and space.
Due to the central limit theorem, the noise of averaged data
is expected to be Gaussian distributed and parameterized with
a noise covariance matrix (2nd order statistic). This Gaussian
noise model is a basic component of most statistically based
MEG/EEG source localization approaches and the proper
estimation of noise covariance is of importance. It has been
reported that noise covariance estimation has a great effect on
localization performance in both spatial-only analyses [1] as
well as spatiotemporal analyses ([2], [3], [4]). Thus it is crucial
to estimate accurately the spatiotemporal noise covariance for
good localization performance.

The most general form for the spatiotemporal noise covari-
ance matrix has too many parameters to estimate in practice,
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while the simple and most commonly used noise model
(ignoring the correlation that is present in the background
noise) consists of sensor variances without both spatial and
temporal correlations. De Muncket. al [2] and Huizenga
et. al [5] proposed new noise covariance models that use a
Kronecker product (KP) of the full spatial covariance matrix
and full temporal covariance matrix under the assumption that
spatial and temporal noise structures are separable. Bijmaet.
al [6] investigated a multi-pair KP model with full spatial
covariance matrices and full temporal covariance matrices.
However, its inversion is not achievable with ease and thus it
is not tractable in source localization methods. Recently,Plis
et. al [4] proposed the spatiotemporal noise model consisting
of multi-pair KP of spatial covariance matrices of rank 1
and full temporal covariance matrices. Invertibility of this
model was assured and the model provided better explanations
of noise structure than the one pair KP model in studies
with simulated and empirical data. However, Plis derived the
noise covariance estimators through the maximum likelihood
technique under the assumption that non-averaged (single
trial) spatiotemporal noise samples are Gaussian distributed.
We have ample evidence that single trial or non-averaged
spatiotemporal noise samples are likely to be non-Gaussian.

In this work we use the same multi-pair KP model as [4] and
derive spatiotemporal noise covariances using the least squares
technique. Our derivations do not require the assumption that
non-averaged (or single trial) spatiotemporal noise samples are
Gaussian distributed.

II. KP NOISE COVARIANCE MODELS

In this section, two KP noise covariance models are de-
scribed briefly and discussed. We assume the following ex-
perimental setup:

• The same stimulus is repeatedM times.
• Trial-to-trial noise variations of the response are used to

estimate covariance.
• Spatiotemporal measurement noise (before stimulus or

long after stimulus) at trial numberm is Em (L × K
matrix) and mean of these noise samples is zero.L is
the number of channels andK is the number of time
samples.
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Thus, the unbiased sample averaged noise covariance can be
estimated by

Cs =
1

M(M − 1)

∑

m

vec(Em)vec(Em)′. (1)

Here vec(E) is a column vector stacked over all column
vectors of a matrixE, and ′ denotes the transposition. This
sample covariance hasLK(LK + 1)/2 degrees of freedom
(DOF)1. This requires a large amount of memory to store it
and its inversion is very time-consuming, thus it is sometimes
intractable on a common workstation. These motivated one
to develop simplified noise covariance models which have far
less DOF and are inverted efficiently.

Based on the assumption that full rankK × K temporal
(T) and full rankL×L spatial (S) covariances of background
noise are separable, a single pair KP model for averaged noise
covariance was proposed [2], [5] :

COP := T ⊗ S. (2)

The parameters within this model can be estimated through the
maximum likelihood method under the assumption that single
trial spatiotemporal noise samples are Gaussian distributed.
The maximum likelihood method is to find the optimal noise
covariance estimator that maximizes the following Gaussian
probability density distribution :

max
T̂,Ŝ

e−
1

2

∑

m

Tr{E′

m
ŜEmT̂}

(2π)KLM/2det(T̂)MK/2det(Ŝ)ML/2
. (3)

The above optimization yields

Ŝ =
1

K

(

1

M

∑

m

EmT̂−1E′

m

)

, (4)

T̂ =
1

L

(

1

M

∑

m

E′

mŜ−1Em

)

. (5)

Here⊗, Tr(·), and det(·) denote the Kronecker product, trace,
and determinant, respectively. These coupled equations (4) and
(5) are solved in an iterative way [2].

This one pair KP model (2) is easily inverted by

[T ⊗ S]
−1

= T−1 ⊗ S−1. (6)

Furthermore, this one-pair KP product covariance model
tremendously reduces the degrees of freedom (DOF) of spa-
tiotemporal noise covariance, thereby enabling us to estimate a
noise covariance in an efficient way when reasonably sufficient
noise information is available2. Nevertheless, this model has
an important problem. Due to its rigidness, it can not well
account for some phenomena such unequally distributed alpha
activity over the head [6], and trial-to-trial variation [8].

To better explain physiological background activity, capture
noise structure as well as to ensure its efficient inversion,

1For 100 sensors and 100 time points, it is roughly10
8.

2In general, single trial noise collection without any stimuli for a certain
time is required. For very limited noise data, refer to [7].

another model (multi-pair KP) consisting of a sum of KPs
was introduced [4] :

CMP :=

L
∑

l=1

T(l) ⊗ S(l). (7)

Here spatial componentsS(l) areL×L matrices of rank 1 and
their corresponding temporal matricesT(l) are full rankK ×
K matrices. Comparing to the one-pair KP model, this multi-
pair model can better account for different temporal structures
over the head. Even though trial-to-trial variations have not
been well understood and thus it is not known whether or not
they are likely to be statistically stationary, we believe this
multi-pair model may better consider trial-to-trial variations.

When spatial components (matrices of rank 1) are indepen-
dent, that is, all generating vectors{v1, v2, · · · , vL} (spatial
component is generated by matrix product of a vector and
its transposition) are independent, they can be expressed into
S(l) = vlv

′

l for the l-th column vectorvl of an invertibleL×L
matrix V. Thus, due to independence of spatial components,
the multi-pair KP model can be inverted as follows [4]:
(

L
∑

l=1

T(l) ⊗ S(l)

)−1

=

L
∑

l=1

T(l)−1 ⊗ (P−1S(l)P−1). (8)

Here P := VV′. We remark that linear independence of
spatial components of rank 1 ensures the efficient inversion
of the multi-pair KP models.

It was reported in [4] that this multi-pair KP model was
estimated through the maximum likelihood method under the
assumption that noise samples are Gaussian distributed. For
the given invertible matrixV consisting of column vectors
v1, v2, · · · , vL, the maximum likelihood covariance estimator
yields

Ŝ(l) = vlv
′

l

T̂(l) =
1

M2

∑

m

E′

mPŜ(l)PEm. (9)

These temporal estimators may account for possibly different
temporal characteristics coming from spatially differenthead
regions.

Regarding estimation of spatial components, Pliset. al [4]
proposed two ways in their recent work. For the spatial orthog-
onal components, they applied singular value decomposition
(SVD) to all accumulated spatial noise dataAnoise (having
KM kinds ofL-dimensional spatial samples):
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≡ Anoise = UOΣVO
′. (10)

The orthogonal matrixVO consists ofL orthogonal spatial
feature column vectors representing spatial characteristics of



KM samples.UO consists of orthogonal temporal sequence
column vectors.Σ is a diagonal matrix having singular values,
each of which represents how much of the spatial character-
istics its corresponding orthogonal spatial feature vector can
account for. In essence, SVD here is a principal component
analysis (PCA), that extracts orthogonal spatial featuresfrom
Anoise.

For independent spatial components (mostly unorthogonal),
the SOBI (second-order blind identification) ICA (independent
component analysis) technique was proposed to extractL
spatial features amongKM spatial samples as follows:

Anoise = UIVI
′. (11)

Here VI is an L × L mixing matrix consisting of spatial
feature column vectors (linearly independent) andUI is a
MK × L matrix having statistically independent temporal
sequence column vectors. This mixing matrixVI was used to
estimate the independent spatial components. We note that the
SOBI algorithm was chosen among several ICA methods in
this work because it showed good performance on MEG data
[9]. Mixing matrices from ICA techniques other than SOBI
can be applicable in this derivation.

Just like the one-pair KP model, these multi-pair Kronecker
products covariance models significantly reduce the degrees of
freedom (DOF) of spatiotemporal noise covariance and enable
us to estimate their inversion without significant computational
cost. However, the necessary assumption (that non-averaged
single trial noise is Gaussian distributed) is generally not
realistic for MEG/EEG signals. This motivates us to derive
least squares multi-pair KP models without this assumption.
We note that Bijmaet. al [6] investigated the least squares
one-pair KP estimator.

III. M ULTI -PAIR KP COVARIANCE ESTIMATOR IN THE

LEAST SQUARES SENSE

We assume that{v1, v2, · · · , vL} are linearly independent,
that is,vl is the l-th column vector of an invertible matrixV
of size L × L. For the given spatial componentŝSLS(l) =
vlv

′

l, we attempt to estimate the parameters of a multi-pair KP
model by fitting it to the sample covariance matrix under the
conventional Frobenius norm as follows:

min
symmetricT̂LS(l),

l = 1, · · · , L

∥

∥

∥

∥

∥

[

L
∑

l=1

T̂LS(l) ⊗ ŜLS(l) − Cs

]∥

∥

∥

∥

∥

2

F

(12)

Herevec(E) is a column vector stacked over all column vec-
tors of a matrixE. Due to symmetry of covariance matrices,
the above Frobenius norm can be expressed in the following:

min
symmetricT̂LS(l),

l = 1, · · · , L

Tr





[

L
∑

l=1

T̂LS(l) ⊗ ŜLS(l) − Cs

]2




(13)

Here Tr(·) is a trace operator. We seek the optimalT̂LS(l) for
l = 1, · · · , L such that (12) is minimized. Due to symmetry
of T̂LS(l) and ŜLS(l), rearranging (12) for̂TLS(l) yields

∥

∥

∥

∥

∥

L
∑

l=1

T̂LS(l) ⊗ ŜLS(l) − Cs

∥

∥

∥

∥

∥

2

F

=

L
∑

l=1

Tr(T̂LS(l)2)Tr(ŜLS(l)2) + Tr(Cs
2)

−
2

M(M − 1)

∑

m,l

Tr(E′

mŜLS(l)EmT̂LS(l)). (14)

Using symmetries of̂SLS(l) yields

Tr(ŜLS(l1)Ŝ
LS(l2)) = Tr(Vel1e

′

l1V
′Vel2e

′

l2V
′)

= Tr(V′Vel1el1V
′Vel2el2)

= ((V′V)l1,l2)
2 = (Ql1,l2)

2,

(Q := V′V)

and differentiation of (14) over̂TLS(l), l = 1, · · · , L gives

2
∑L

l1=1
T̂LS(l1)(Ql,l1)

2

−
2

M(M − 1)

∑

m

E′

mŜLS(l)Em. (15)

Here el is a canonical column vector having 1 at thel-th
entry and0 at other entries andQl1,l2 denotes the(l1, l2)-th
element of the matrixQ. We used the following identities to
derive (15):

dTr(T2)

dT
= 2T′,

dTr(AT)

dT
= A′. (16)

Setting (15) to zero yields
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(17)

Here ωl1,l2 is the element of Hadamard productQ ◦ Q

and R(l) := 1
M(M−1)

∑

mE′

mŜLS(l)Em. Solving (17) for

T̂LS(l) yields

T̂LS(l) =

L
∑

k=1

dl,kR(k). (18)

Heredl,k is the (l, k)-th element of(Q ◦ Q)−1.
In summary, for the given invertible matrixV consisting

of column vectorsv1, v2, · · · , vL, the least squares covariance



estimator yields

ŜLS(l) = vlv
′

l

T̂LS(l) =
1

M(M − 1)

∑

m

E′

m

[

L
∑

k=1

dl,kŜ
LS(k)

]

Em.

(19)

Interestingly, this yields an unbiased estimator because the
unbiased sample covarianceCs was used in the LS estimator
derivation, however, the maximum likelihood estimator (9)is
an inherently biased one. WhenV is orthogonal,P and Q

come to all identities. Thus, these estimators only differ in
constant factors 1

M−1 and 1
M . This ensures that the maximum

likelihood estimator would be good for a large number of
trialsM regardless of the validity of the Gaussian distribution
assumption of noise samples.

For a general invertible matrixV (independent spatial
components), these estimators as shown in (9) and (19) are
quite different. However, we can observe that asQ approaches
a diagonal matrix, then the LS estimator approaches the
maximum likelihood estimator. In general, seeking the optimal
(in some sense)V would be an interesting problem. We expect
that various ICA techniques are likely to yield suboptimal
mixing matricesV. That is, the optimality ofV would be
related to the criteria of ICA variants.

IV. SOURCE LOCALIZATION - FORMULATION

The source localization (for the fixed dipole model) is
now done by incorporating the estimated multi-pair KP noise
covarianceĈMP into the generalized negative log-likelihood
function (called cost function):

c(θ,J) = [vec(F(θ)J) − vec(Y)]′ Ĉ−1
MP [vec(F(θ)J)

−vec(Y)]
(

Ĉ−1
MP :=

L
∑

l=1

T̂LS(l)−1 ⊗ P−1ŜLS(l)P−1

)

=

L
∑

l=1

Tr
(

[F(θ)J − Y]′P−1ŜLS(l)P−1[F(θ)J

−Y]T̂LS(l)−1
)

. (22)

Hereθ,J, F(θ), andY are source location and its orientation,
a matrix (N×K) representing source time course, the forward
lead field matrix, and a spatiotemporal measurement matrix
(L×K), respectively.N , K, andL are the expected number
of sources, the number of time points in the temporal window,
and the number of sensors, respectively.

To minimize the above cost function, differentiating (22)
overJ and setting it to zero yields

L
∑

l=1

(

F(θ)′P−1ŜLS(l)P−1F(θ)JT̂LS(l)−1

− F(θ)′P−1ŜLS(l)P−1YT̂LS(l)−1
)

= 0. (23)

Solving for J gives the optimalJopt (20). Here we used the
identity

vec(ABC) = (C′ ⊗ A)vec(B). (24)

Inserting (20) into (22) yields (21). While the one-pair KP
model requires the inversion of theN × N matrix [5], this
evaluation requires the inversion of aKN × KN matrix,
which depends on the number of time pointsK. This can be
tractable for common multi-dipole source problems (several
dipole sources and up to several hundreds time points) on
common workstations.

The covariance matrix of the source parametersψ = {θ,J}
at the solutionψ̂ can be estimated ([10], [5]) by

Cψ = 2σ2 [E(H)]−1 . (25)

Hereσ = c(ψ̂)/(LK − 6N −NK). H is the Hessian matrix
with second-order partial derivatives of (22).E[·] means the
expectation. Taking the expectation of the HessianE(H), we
obtainE(H)i,j as

2 Tr

(

L
∑

l=1

T̂LS(l)−1

[

∂F(θ̂)Ĵ

∂ψi

]

′

P−1ŜLS(l)P−1

[

∂F(θ̂)Ĵ

∂ψj

])

.

(26)
This is a generalization of the result in [5].

V. D ISCUSSION

According to the experiments published in [11], there is
evidence that the background activity of the brain has a
stationary spatial distribution over the time of interest.Relying
on such evidence, we made assumptions about the background
activity in the brain:

• The measured background is a superposition of some spa-
tially fixed sources with independent temporal behavior.

• Each spatial source produces correlated Gaussian noise.

These are the bases for our multi-pair KP spatiotemporal noise
covariance modeling. In order to extract spatially fixed noise
generators we find spatial orthogonal components of rank 1.
The sum of the KP of these components with their correspond-
ing temporal covariances constitutes our multi-pair model.
However, higher rank spatial components can be considered
to maintain the invertibility of the covariance model, which
can be a generalization of multi-pair KP models [12]. Given
this reasoning, in MEG/EEG source localization problems it
may be unreasonable to consider another multi-pair KP model
consisting of the temporal components of rank 1 and their
corresponding full spatial matrices even though it may make
sense mathematically.

Each ML temporal covariance estimator should be inher-
ently a sample noise covariance computed from projected
noise samples onto its corresponding spatial component space.
This holds for any spatial components (orthogonal or inde-
pendent). We found LS temporal covariance for orthogonal
spatial components was such a case, but it was not for
independent spatial components. The difference between ML
and LS estimators has motivated us to conduct a localization



vec(Jopt) =

(

∑

l

T̂LS(l)−1 ⊗
[

F(θ)′P−1ŜLS(l)P−1F(θ)
]

)

−1

vec

(

∑

l

F(θ)′P−1ŜLS(l)P−1YT̂LS(l)−1

)

, (20)

c(θ,Jopt) = Tr

[

∑

l

P−1ŜLS(l)P−1YT̂LS(l)−1Y′

]

− vec

(

∑

l

F(θ)′P−1ŜLS(l)P−1YT̂LS(l)−1

)

′

×

(

∑

l

T̂LS(l)−1 ⊗
[

F(θ)′P−1ŜLS(l)P−1F(θ)
]

)

−1

vec

(

∑

l

F(θ)′P−1ŜLS(l)P−1YT̂LS(l)−1

)

.(21)

performance comparison on both simulated and empirical data,
currently in progress.

In our derivations of LS estimator, the spatial components
(coming fromV) are assumed to be given. This independent
(invertible) matrix (V) can be different for different optimality
criteria. For orthogonal matrix V, SVD is used to estimate
it. ICA methods like SOBI may be applicable to estimate
independent matrix V. Particularly, regarding ICA variants, it
would be interesting to investigate which ICA variant yields
the best (in some sense) LS estimator.

We first formulated the cost functions incorporating multi-
pair KP covariance models. Comparing the one-pair KP model
in [5], the evaluations of the cost functions incorporatingthe
multi-pair models are more computationally expensive than
evaluation of the cost function for the one-pair model because
they require theKN×KN matrix inversion. The rapid growth
of computational power may enable such computations even
for complicated problems like those with tens of dipoles and
thousands of time points. Although more complex and time
consuming, inclusion of the multi-pair KP noise covariance
model in MEG/EEG least squares inverse analyses will likely
provide better source localization and time course fitting than
analyses using simpler noise covariance estimators.

Comparative study between ML estimator and LS estimator
should be investigated in terms of source localization perfor-
mace. Such a study is under investigation and will be reported
in the subsequent paper.
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