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Abstract—Single image dehazing is challenging because it is
massively ill-posed. Haze removal based on dark channel prior
is effective, but refining the transmission map with closed-form
matting is computationally expensive. Recent work discovered
that using guided filter to refine the transmission map is feasible.
In this paper, we elaborate single image dehazing by combining
dark channel prior and guided image filtering in detail. By
analyzing the tradeoffs of this approach, we propose an effective
scheme to adapt the parameters. Experiments and comparisons
show that our method generates satisfactory dehazed results with
low computation.

I. INTRODUCTION

Outdoor scenes, especially those distant photographs in bad
weather, are usually degraded due to the presence of particles
or droplets in the atmosphere. With lowered contrast, the
degraded dull images lose their visual vividness and color
fidelity. Consequently, image dehazing is a significant issue
in many image-relevant applications.

However, single image dehazing is non-trivial because it
is highly under constrained – the local transmissions, which
depend on the scene depth for homogeneous atmosphere, have
to be estimated. To solve this, techniques that rely on their
own assumptions or priors have been come up [3, 4, 7].
Among those successful priors, the dark channel prior [4]
can serve as a simple but effective guidance to estimate the
local transmissions for hazy images. Unfortunately, refining
the transmission map with close-form matting (soft matting in
[4]) is computationally expensive. The guided filter, proposed
recently in [5], filters the input by considering the content of
a guidance image. Since the guided filter has close theoretical
connection with the closed-form matting framework [1] and
it also has O(N) time algorithm, He et al. [5] show that it is
possible to apply guided filter to refine the transmission map
obtained by dark channel prior, and the running time of the
dehazing process can be reduced significantly. However, de-
tailed analyses of image dehazing by combining dark channel
prior and guided filter haven’t been provided in [5].

In this work, we study several aspects of using guided filter
to refine the coarse transmission map. Different from that in
[4], we use adaptive patch size to compute the dark channel. To
further improve the performance of transmission refinement,
we then propose a scheme to adjust the filtering radius of the
guided filter accordingly. A case of failure of this approach
is also presented in this paper. Like He et al.’s work [5], we
filter the coarse transmission map under the guidance of the

(a) Input hazy image (b) Dehazed image

Fig. 1. An image before and after dehazing.

input hazy image, this method gives a transmission map that
well captures the sharp edge discontinuities of the objects.

In fact, image dehazing using dark channel prior and guided
filter provides results that comparable with the state-of-the-
art techniques, and its computational cost is also quite low.
Therefore the insights revealed in this paper can be helpful for
applications where single image dehazing is necessary. Fig. 1
presents an example of image dehazing using our method.

II. DARK CHANNEL PRIOR AND IMAGE DEHAZING

A. Haze Imaging Model

Although the physical mechanism of haze is rather sophis-
ticated, the general hazy image formation model that being
widely-used in computer vision and computer graphics is
simple [4, 7, 8, 9]:

I(x) = t(x)J(x) + (1− t(x))A, (1)

in which x is the pixel coordinate, I is the observed color,
J is the scene radiance vector (the true color that we want
to recover). And t is the transmission of the medium, which
indicates the portion of light that penetrates through the haze,
A is the global atmospheric light, which can be regarded as
the global “color” of the haze.

The difficulties of single image dehazing comes from the
fact that we only have the hazy observation I, but the goal
is to recover J, A, and t. So the problem of haze removal is
inherently under-constrained.

B. Transmission Estimation Using Dark Channel Prior

The dark channel prior is a statistics of outdoor haze-free
images: for most of the non-sky patches in an outdoor haze-
free image, at least one color channel contains some pixels
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whose intensities are very low [4]. Mathematically, the dark
channel of an image I is given by:

Idark(x) = min
y∈Ω(x)

( min
c∈{r,g,b}

Ic(y)), (2)

where Ω(x) is a local patch centered at pixel x, and Ic is a
color channel of I. For a haze-free image J, its dark channel
tends to be zero: Jdark → 0, which is the dark channel prior
proposed in [4].

According to the haze imaging model (1), with the help of
the dark channel prior, He et al. [4] show that the transmission
map can be estimated simply by:

t̃(x) = 1− ω min
y∈Ω(x)

( min
c∈{r,g,b}

Ic(y)
Ac ), (3)

in which t̃(x) denotes the constant transmission in the patch
Ω(x). The parameter ω (0 < ω < 1) in (3) is introduced to
prevent removing the haze thoroughly and keep the feeling
of depth, it is set to be 0.95. The global atmospheric light A
in (3) is estimated by the technique proposed in [4], which
prescreens the candidate pixels first using the dark channel of
the input hazy image.

In fact, assuming constant transmission in a local patch
Ω(x) is inappropriate. The transmission obtained by (3) is
only a coarse estimation, the recovered image using the coarse
transmission contains severe halo artifacts, so it is necessary
to refine the transmission map and capture the depth changes
at object edges. In [4], the closed-form matting framework [1]
is applied to suppress the blocky artifacts in the coarse trans-
mission map, which minimizes the following cost function,

E(t) = tTLt + λ(t − t̃)T(t − t̃). (4)

In (4), the first term (smoothness term) encodes the color line
model in [1] and the second term (data term) encodes the
information about the transmission, the constraint weight λ
is a small value (10−4 in [4]). The matrix L is the N × N
matting Laplacian matrix [1] for an input image with N pixels.
Minimizing (4) involves computing the matting Laplacian
matrix and solving a sparse linear system. This process is
known as soft matting in [4] and its computational cost is
very high. Notice that by implementing the local minimum
filter with the fast algorithm in [6], the dark channel can
be computed in O(N) time; therefore the bottleneck of the
efficiency in [4] is the soft matting step. In this work, we
consider using guided filter to refine the coarse transmission
map and speed up the dehazing process.

III. IMAGE DEHAZING USING GUIDED FILTER

Different from soft matting [4], after the coarse transmission
map is obtained, we apply the guided filter to refine the
transmission, such that the overall time complexity of the
dehazing algorithm achieves O(N).

A. Guided Image Filtering

Guided filter is a type of edge-preserving smoothing op-
erator, which filters the input image under the guidance of
another image [5]. Denote the input image as p, the guidance
image as I , and the filtering output as q. The local linear
model of guided filter assumes that q is a linear transform of
the guidance I in a window wk centered at pixel k, so that
mathematically we have:

qi = akIi + bk, ∀i ∈ wk, (5)

in which the linear coefficients ak and bk are constant in
window wk, we also denote the radius of the window wk as r.
Guided filter seeks for coefficients (ak, bk) that minimizes the
difference between the output q and the input p. For a window
wk, consider the cost function:

E(ak, bk) =
∑
i∈wk

((akIi + bk − pi)
2 + ϵa2k), (6)

where ϵ is a regularizer. Minimizing (6) defines a least square
problem within window wk, its solution is given by:

ak =

1
|w|

∑
i∈wk

Iipi − µkp̄k

σ2
k + ϵ

and bk = p̄k − akµk, (7)

in which σ2
k and µk are the variance and mean of I in wk,

with p̄k = 1
|w|

∑
i∈wk

pi, and |w| is the number of pixels in
wk. The final filtering output is given by:

qi =
1

|w|
∑

k:i∈wk

(akIi + bk) = āiIi + b̄i, (8)

where āi and b̄i are obtained with average filter: āi =
1
|w|

∑
k∈wi

ak, b̄i = 1
|w|

∑
k∈wi

bk. Since (āi, b̄i) are out-
puts of an average filter, their gradients are quite small, so
∇q ≈ ā∇I . For RGB color guidance image, the derivations
are similar [5]. As can be seen that locally, the output q
captures similar details from the guidance I (by virtue of
the local linear model (5)); while globally, the impression
of the output q should be similar to the input p (due to the
minimization of the cost function (6)).

B. Transmission Refinement Using Guided Filter

In [5], one of the application of guided filter is to refine the
coarse transmission map obtained by dark channel prior. In
fact, guided filter is closely related to the matting Laplacian
matrix [1]. For guided filter, the guidance image I , the input p
and the filtering output q play similar roles as the input image,
the trimap (or the scribble constraints) and the alpha matte in
the closed-form matting framework [1], respectively. In [5], the
output of guided filter has proven to be one Jacobi iteration in
optimizing the cost function (4). And the expected value of the
constraint weight λ is 2 for guided filter, which implies that
the filtering output (or the alpha matte) is loosely constrained
by the input image p (or the trimap for matting). Therefore
guided filter is applicable for transmission refinement in [4],
since in soft matting the refined transmission map should also
be loosely constrained by the coarse transmission map, which
can be seen from the data term in (4).



(a) Input hazy image (b) Coarse transmission map

(c) Soft matting result (d) Guided filter output

Fig. 2. Transmission refinement using soft matting
and guided filter (r = 30 and ϵ = 10−3).

Notice that the summations in (7) and (8) can be computed
with the O(N) time integral image technique [2], so the guided
filter can be implemented in O(N) time (for an image with N
pixels). This property is important for single image dehazing
because it provides a chance to improve the efficiency of
transmission refinement in [4], which reduces the complexity
of the dehazing algorithm to O(N).

Fig. 2 compares the results of transmission refinement using
soft matting and guided filter. The coarse transmission map
(Fig. 2(b)) is obtained with patch size of 15 × 15. And we
use Fig. 2(a) as an RGB color guidance to filter the coarse
transmission map then obtain Fig. 2(d). In this case, the input
image has the size of 400 × 330, the window radius of the
guided filter is r = 30 and the regularizer is ϵ = 10−3. As can
be seen that the filtering output (Fig. 2(d)) is visually similar
to the refined transmission given by soft matting (Fig. 2(c)).

C. Analyses and Parameter Settings

An important parameter for computing the dark channel
Idark is the patch size, we denote its radius as rdark. Since
the computational cost in [4] is quite high, the algorithm is
only suitable for small images. So in [4] the patch size is fixed
as 15×15, which is relatively small. However, the complexity
of our method is quite low and it is capable of processing
large images with short running time, so it is not appropriate
to use fixed patch size in our case. Here we adopt a simple
strategy to adjust rdark linearly according to the area of the
image. When the number of pixels in the image exceed 5×106,
the patch radius is fixed as rdark = 30, preventing the patch
size from growing too large; when the number of pixels in
the image is less than 2 × 105, the patch radius is set to
be rdark = 7, preventing the patch size becoming too small;
for images with pixel numbers in between, we interpolate the
patch radius linearly. Notice that there exist a tradeoff for the
patch size. When it decreases, the blocky artifacts in the coarse

transmission map reduce, making it easier for the guided filter
to refine the transmission; however, a smaller patch size makes
the dark channel prior less appropriate, the transmission t(x)
is underestimated and the recovered scene radiance become
over-saturated. Therefore the patch size should neither be too
large nor too small.

For the guided filter, our experiments find that the refined
transmission map is not sensitive to the regularizer ϵ, and we
fix it to be 10−3. But for the filtering radius r, its behavior is
quite different. From the local linear model (5), a large radius r
implies that the filtering output is linear to the guidance image
in a large range, which helps to reduce the blocky artifacts in
the coarse transmission map, so that the halo effect in the
recovered image can be eliminated. However, if r is too large,
the transmission map will capture too much details from the
guidance (the input hazy image), making the recovered image
over-saturated. Fig. 3 shows an image (with size of 896×672)
recovered with different radii r. In this example, the patch size
to compute the dark channel is deliberately set as 15 × 15.
As can be seen, when r = 8 (corresponds to the window of
17×17, which is of similar scale as the patch size 15×15), the
halo effect is quite severe (Fig. 3(d)); when r = 800, the halos
are suppressed (Fig. 3(f)), but notice the leaves in the lower-
half of the image become saturated; when r = 80, there’re
still some halos (Fig. 3(e)), but it compromises between the
two extremes.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Scene radiance recovery using different filtering radii r (patch size of
dark channel is 15×15, ϵ = 10−3). (a) Input hazy image. (b) Dark channel.
(c) Coarse transmission map. (d)(e)(f) Scene radiance recovered with r equals
to 8, 80, and 800, respectively.

As a result, the filtering radius r of the guided filter should
be much larger than the patch radius rdark of the dark channel.
In our implementation, we simply set r = 5rdark, such that a
good tradeoff can be achieved between halo effect and over-
saturation.

After the refined transmission map t(x) is obtained with
the guided filter, the haze-free image (scene radiance) can be
recovered using the haze imaging model (1). Like that in [4],
in this work we also set a lower bound t0 = 0.1 for the
transmission to avoid noisy dehazed results.



(a) Input images (b) Results of [4] (c) Our results

Fig. 4. Dehazed results of our work and
comparisons with He et al.’s work [4].

IV. EXPERIMENTAL RESULTS

Compared to the work in [4], the main advantage of
combining dark channel prior and guided filter to dehaze the
images lies in its low computational cost. On a laptop with
a 2.2 GHz Intel Core 2 Duo CPU, our C++ implementation
takes about 4 seconds to process a 1-mega pixel image, but in
[4], it takes about 10-20 seconds to process a 600×400 image.
By virtue of its exact O(N) time complexity, the running time
of our algorithm becomes tolerable for many applications.

Some dehazed results of our work and comparisons with
that in [4] are shown in Fig. 4. Since the recovered haze-free
images usually look quite dim, we enhance their brightness
for better display. As can be seen, our approach is capable of
unveiling the details for the inputs, which gives results that
comparable to He et al.’s work [4].

However, guided image filtering is actually an approxima-
tion of soft matting, as proven in [5]; refining the transmission
map with guided filter may not always work. Fig. 5 presents a
case of failure of transmission refinement using guided filter.
Firstly, the dehazed result (Fig. 5(c)) contains noticeable halos,
this happens because the depth change at the object edge is
too abrupt, the guided filter needs a larger filtering radius
r to suppress the halos. On the other hand, in the refined
transmission map (Fig. 5(b)), the details of the pedestrian are
captured too well by the local linear model (5), and the
transmission is under estimated, results in over-saturation in
the recovered image (notice the color of the face and the
jeans). This problem can be resolved by reducing the filtering
radius r; however, a smaller r makes the halo effect even
more severe. As a result, when the input hazy image contains
discontinuities that are too abrupt, it is difficult to find an

(a) Input image (b) Transmission map (c) Dehazed result

Fig. 5. Failure of transmission refinement using guided filter.

appropriate filtering radius that compromises between the halo
effect and over-saturation. Therefore the low complexity of
this dehazing algorithm comes with the price of some failures.
To address the mentioned problem, future improvements may
focus on adjusting the parameters rdark and r locally within
the image, at the cost of inevitable higher computation.

V. CONCLUSIONS

In this paper, we elaborate single image dehazing by
combining dark channel prior [4] and guided image filtering
[5], then we study several aspects of this approach. Through
experiments and analyses, we propose an effective scheme to
adapt the patch size of dark channel and the filtering radius
of guided filter. The main benefit of using guided filter to
refine the transmission lies in its low computational cost, it
also generates comparable dehazed results with He et al.’s
work [4]. Since guided image filtering is an approximation of
soft matting in [4], this method may fail when the input image
contains abrupt depth changes. Fortunately, it turns out that our
work performs quite well on many hazy images, its O(N) time
complexity also make it appealing for many applications.
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