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Abstract—In the past few years second order statistical features
(e.g. Markov transition probability matrix) have been proved
to be effective features for image forgery detection. In this
paper, conditional co-occurrence probability matrix (CCPM)
which is third order statistical features is proposed to detect
image splicing. Since the dimensionality depends exponentially on
the order of features, principal component analysis is employed
to overcome the high dimensionality introduced computational
complexity and over-fitting for a kernel based supervised clas-
sifier. Experimental results show that conditional co-occurrence
probability matrix demonstrates its effectiveness in block discrete
cosine transform domain, it outperforms Markov features in
both block discrete cosine transform domain and spatial domain,
principal component analysis is proved to be an effective dimen-
sionality reduction method for image splicing detection.

I. INTRODUCTION

Photograph forgery could be dated to 1860s [1], in the film
camera era, only skilled forger with professional equipments
could manipulate a film photograph, thus tampered photos are
unfamiliar to many people. Nowadays we are living in a digital
age, with the help of powerful digital image editing software
and high performance computers, image forgeries flushed in
our daily life. ‘Seeing is Believing’ is not applicable to digital
images. In July 2008, an image of Iranian missile test which
is shown in the left side of Fig. 1 appeared on the front
pages of many newspapers. Shortly after its publication, it
was proved to be a fake which was used to conceal a failing
missile launch, and the original image is given in the right
side of Fig. 1. In July 2010, British Petroleum (BP) struggling
against the Gulf of Mexico oil spill posted a photo of its
command center shown as left side of Fig. 2 on its website.
Later, it was revealed that three screen images in the original
photo were copied and pasted over three blank screens, and
the manipulated photo was finally removed and replaced
with the original photo shown in the right side of Fig. 2.

Fig. 1. Iranian missile test event.

Researchers have made efforts on digital image forensics, on
the whole, all the detection methods can be reduced to active

Fig. 2. Gulf of Mexico oil spill.

[2][3][4] and passive approaches [5]. Digital watermarking
and signature have been proposed as active detecting methods,
and they can be used to authenticate an image. However, the
watermark or signature must be inserted at the time of imaging
process which limit it to special equipped cameras, and many
consumers’ digital cameras do not have this function. On the
contrary, passive detecting methods do not need any prior
knowledge (e.g. watermark or signature), they work on the
assumption that tampering will disturb the original underlying
statistics of the image. For the above reasons, passive image
detection gains much attention and it is becoming a hot
research topic. This paper concerns the passive image forgery
detection.

Several passive image detection methods have been pro-
posed. Tian-Tsong Ng et al. in [6] proposed bicoherence which
is a normalized bispectrum based features for image splicing
detection. The best detecting performance over image data set
[7] is 71%. W. Chen et al. in [8] proposed phase congruency
and statistical moments of characteristic functions of wavelet
sub-bands to catch the splicing artifacts. Experimental results
showed that the best detecting accuracy over [7] is 82.3%.
A natural image model consisting of statistical features was
proposed in [9]. The statistical features were comprised of
moments of characteristic functions of wavelet sub-bands and
first order Markov transition probabilities of difference 2 D ar-
rays. Detecting accuracies over [7] showed that 168 D moment
features achieved 86.8% and 98 D first order Markov features
achieved 88.3%. In [10], SIFT features were proposed to detect
region duplications. SIFT features extracted from different
regions were compared and correlations were employed to
output a map indicating region with high probability to be
duplicated from another one. When composing an image it is
difficult for the forger to match the lighting conditions from the
individual ones. Lighting inconsistencies can therefore be used
to reveal the image tampering [11][12]. However, the proposed
method failed in detecting the compositing part with the same
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lighting conditions. Color filter array (CFA) interpolations are
employed to get a true color image for single CCD cameras.
Correlations introduced by CFA interpolation are likely to be
disturbed when tampering an image. For this reason, Popescu
et al. in [13] proposed an interpolation based method to
detect image forgeries, but this method failed in detecting low
quality (high compressed rate) images. In [14] and [15], gray
level co-occurrence matrix (GLCM) features and Run-length
Run-number (RLRN) features extracted from Chroma spaces
were employed to detecting image splicing, and experimental
results showed that features extracted from Chroma spaces
demonstrate much better class separability than that extracted
from luma space. Both GLCM and RLRN features, however,
do not get satisfying detecting performance over image data
set [7].

Image splicing introduces sharp edges in a tampered image,
thus capturing the tampering introduced artifacts is the key for
image splicing detection. Since edges introduced by tampering
are different with their ”neighbors”, the relationships between
spliced parts and normal parts can be used to expose image
forgery. In this paper, relationships between elements in an
array are modeled as conditional co-occurrence probability
matrix (CCPM) which contains more informative features
compared with first order (e.g. histogram) and second order
(e.g. Markov features) statistics. We test the proposed method
in block discrete cosine transform (BDCT) domain and spatial
domain, and the conditional co-occurrence probability matrix
demonstrates its superiority in BDCT domain compared with
spatial domain. CCPM (third order statistical features) con-
tains discriminative information, however the dimensionality
of features exponentially increases with the order. For a
large number of modern machine learning algorithms, high
dimensionality usually introduces computational complexity
and over-fitting [16]. Therefore, principal component analysis
(PCA) is introduced in our work to reduce the dimension-
ality of proposed features. Experimental results show that
CCPM superior to Markov features in both BDCT and spatial
domains, PCA can reduce the dimensionality of proposed
features greatly without bringing down classification perfor-
mance.

The rest of this paper is organized as follow. The proposed
method is described in section II. In section III, the experi-
mental work and detecting performance analysis are reported.
Finally, conclusions and future works are given in section IV.

II. PROPOSED METHOD

A. Preprocessing

One purpose of image splicing detection is to get the
features independent of image contents. Since, features which
are dependent on image contents usually lead to poor general-
ization ability. In our work, image is de-correlated [9] before
extracting features, that is, subtraction between neighboring
elements which can be formulated as:

Eh(i, j) = I(i, j)− I(i+ 1, j) (1)
Ev(i, j) = I(i, j)− I(i, j + 1), (2)

where I(i, j) is the value of image pixel intensity or DCT
coefficient at the position (i, j), Eh(i, j) and Ev(i, j) indicate
de-correlated arrays along horizontal right and vertical down
directions respectively. In this paper we investigate the effec-
tiveness of CCPM in both spatial domain and BDCT domain.
For spatial method, I denotes the input image, Eh(i, j) and
Ev(i, j) are the edge images along horizontal and vertical
direction, an example is given in Fig. 3. Two horizontally
spliced images and two vertically spliced images are shown in
the first row. Eh(i, j) and Ev(i, j) of the spliced images are
given in the second row and the third row. From the figure we
can see that horizontally spliced parts are emphasized in the
horizontally de-correlated images, and vertically de-correlated
images put emphasis on the vertically spliced parts.

For DCT method, I is the 8 × 8 non-overlapping BDCT of
the input image which is given as

I =


I11 I12 · · · I1m
I21 I22 · · · I2m

...
... · · ·

...
Im1 Im2 · · · Imm

 , (3)

where Iij(1 ≤ i, j ≤ m) is a 8 × 8 block DCT coefficients
array, m is the number of 8 × 8 blocks in a row or column.
Iij is defined as

Iij = UT IsijU, (4)

where Isij is the corresponding 8 × 8 image block and U is
given by{

U(n, k) = 1
2
√

2
, k = 0, 0 ≤ n ≤ 7

U(n, k) = 1
2 cos(π(2n+1)k

16 ), 1 ≤ k ≤ 7, 0 ≤ n ≤ 7
(5)

Fig. 3. Spliced images and the corresponding de-correlated images. Spliced
images are showed in the first row; horizontally de-correlated images and
vertically de-correlated images are given in the last two rows.

B. CCPM Modeling

Markov chain is commonly used to describe the underlying
class dependences. For classes ω1, ω2, · · · , ωN (N is the total



number of classes), Markov model assumes that

P (ωik |ωik−1
, ωik−2

, · · · , ωi1) = P (ωik |ωik−1
). (6)

The meaning of (6) is that class dependence is limited only
within two successive classes (i.e. second order statistics). In
our work, we expand the Markov model to CCPM model
which defined as

P (ωik , ωik−1
|ωik−2

). (7)

That is, we consider the class dependence within three suc-
cessive classes (i.e. third order statistics). CCPM with size
N ×N2 is given as

CCPM =


p111 p121 · · · p1NN

p211 p221 · · · p2NN

...
... · · ·

...
pN11 pN21 · · · pNNN

 , (8)

where pabc ≡ P (ωc, ωb|ωa) (1 ≤ a, b, c ≤ N) is the co-
occurrence probability of the next two classes (ωc, ωb) if the
current class is ωa, and

∑N
b,c=1 pabc = 1. Every element in an

2 D array has 8 neighbors (boundary elements are neglected),
therefore there exists 8 directional CCPMs to describe the
dependences between different classes. For computational con-
venience, we use horizontal right and vertical down directional
CCPMs which are denoted as CCPMh and CCPMv as features
for classification, thus, the dimensionality of features is 2N3.
The selection of N greatly influence the dimensionality of
proposed features, in our work, we threshold CCPMh and
CCPMv in the range [-3, 3], that is, totally 7 classes are
considered in our work. Fig. 4 illustrates the feature extraction
process in the spatial domain and BDCT domain.

Fig. 4. CCPM feature extraction in spatial domain and BDCT domain.

C. Dimensionality Reduction for Features

A problem associated with CCPM features is the high
dimensionality. Obviously, high dimensionality will intro-
duce computational complexity. Furthermore, although single
feature carries discriminative information respectively, when
combined together there is little gain if they are highly
correlated. Curse of dimensionality is also an import reason
for dimensionality reduction.

There exist high correlations between CCPM features, thus
PCA is introduced in our work to avoid information redun-
dancies. Let

Y = AT (X − X̄), (9)

where X is original feature vector matrix with D rows (feature
dimensionality) and K columns (number of samples), Y is
the new feature vector matrix with d rows (dimensionality
of transformed features) and K columns,X̄ denotes the mean
value of X . Correlation matrix Ry is defined as

Ry ≡ E(Y Y T ) = AT covX−X̄A, (10)

covX−X̄ is the covariance matrix of X−X̄ and it is symmetric,
hence its eigenvectors are mutually orthogonal. When A is
comprised of eigenvectors of covX−X̄ , Ry is then a diagonal
matrix, i.e. features in Y are uncorrelated. Therefore A can
be formulated as [v1, v2, · · · , vD], vi (i = 1, 2, · · · , D) is the
eigenvector corresponding to eigenvalue λi of covX−X̄ and
λ1 > λ2 > · · · > λD which makes var(v1) > var(v2) >
· · · > var(vD). Y is therefore the projection of X onto the
subspace spanned by the eigenvectors and the significance of
features decreases with the increasing of dimensionality. Fig.
5 indicates the relationship between the dimensionality and
variance of the corresponding features of Markov and CCPM
after PCA dimensionality reduction. It can be seen from the
figure that variances of features drops dramatically with the
increase of dimensionality, i.e. the first d (d < D) features take
most information of Y and they can be used to represent Y .
d is selected in our work according to the detection accuracy.

(a)

(b)

Fig. 5. Variance distribution of Y. (a) Markov, (b) CCPM.



III. EXPERIMENTAL RESULTS AND
PERFORMANCE ANALYSIS

A. Image Dataset

To test the effectiveness of the proposed method, Columbia
Image Splicing Detection Evaluation Dataset [7] which con-
sists of 933 authentic and 912 spliced images is used in
our experimental work. The image dataset covers a variety
of images (e.g. smooth, textured, arbitrary object boundary
and straight boundary). Images in this dataset are all in BMP
format with fixed size of 128 × 128. Spliced images are
manipulated via two types of operations, that is, crop and past
of horizontal or vertical strips and crop and past along object
boundaries. The spliced parts can be from the same image or
from another image. Some of the images are given in Fig. 6.

Fig. 6. Some image examples in image set [7]. Authentic images are shown
in the first row and spliced ones are given in the second row.

B. Classifier

Support vector machine (SVM) which is a supervised ma-
chine learning method is employed in our work for classi-
fication. LIBSVM [17] is used as classifier and radial basis
function (RBF) is selected as kernel of SVM. For each
experiment, half of the authentic images and half of the
spliced images are randomly selected to train the SVM, and
the left authentic and spliced images are treated as test set.
Grid searching is employed to select the best parameters C
(positive constant that controls the relative influence of the
competing terms) and γ (variance of RBF kernel) for SVM.
This procedure is repeated thirty times to eliminate the effect
of randomness. Experimental results are evaluated by the
average detecting accuracies over thirty times and receiver
operating characteristics curves (ROC).

C. Comparisons

Experimental results of proposed CCPM features with di-
mensionality 686 and Markov features [9] with dimensionality
98 are given in Table I, where TP, TN and Accuracy denote
true positive rate, true negative rate and the average detection
rate over thirty runs respectively. Standard deviations over
thirty random tests are given in the parentheses. Table I
shows that the proposed CCPM features outperform first order
Markov features in both spatial domain and BDCT domain.
Fig. 7 indicates detecting performance comparisons between
Markov features and CCPM features after PCA dimensionality

reduction. Note that the first 98 D PCA features of CCPM is
employed for the convenience of comparison.

TABLE I
COMPARISONS OF DETECTION ACCURACIES BETWEEN MARKOV

FEATURES AND CCPM FEATURES

Spatial domain BDCT domain
TP TN Accuracy TP TN Accuracy

Markov 74.0% 78.1% 76.0% 84.1% 89.5% 86.8%
(2.612) (2.307) (1.116) (1.907) (1.854) (0.719)

CCPM 78.5% 75.7% 77.1% 85.7% 91.3% 88.5%
(1.893) (2.190) (1.105) (1.935) (1.602) (0.890)

From Fig. 7 we can see that:
(1) Markov and CCPM features demonstrate much better

detecting performance in BDCT domain than that in spatial
domain.

(2) Detection performance increases dramatically for the
first few features, after that it vibrates on a small scale.

(3) CCPM outperforms Markov features in BDCT domain
with PCA dimensionality more than 10.

(4) In spatial domain, CCPM outperforms Markov features
when PCA dimensionality is larger than 45.

(5) Compared with Table I, features after PCA dimension-
ality reduction can perform as well as original features do, in
some cases, even better than the original features.

(a)

(b)

Fig. 7. Comparisons of detecting performance between Markov features and
CCPM after PCA dimensionality reduction. (a) Spatial domain, (b) BDCT
domain.

To testify the effectiveness of PCA for dimensionality
reduction, boosting feature selection method proposed in [14]
is employed in our work for comparison, and the comparison
results are given in Fig. 8. It can be seen from Fig. 8 that



the performance of PCA dimensionality reduction outperforms
boosting feature selection dramatically in both BDCT domain
and spatial domain.

Finally, we employ the first 30 D PCA features to compare
with the original features in BDCT domain, and the receiver
operating characteristics (ROC) curves are given in Fig. 9 (a).
In a similar way, Fig. 9 (b) illustrates the comparison results
between the first 45 D PCA features and the original feature in
spatial domain. From Fig. 9 we can find that, CCPM features
in BDCT domain can be reduced to as few as 30 D from the
original 686 D without losing discriminative information, and
the spatial CCPM features can be reduced to 45 D without
discriminative information loss.

(a)

(b)

Fig. 8. Detection performance comparisons between PCA dimensionality
reduction and boosting feature selection method for both Markov features
and CCPM features. (a) Spatial domain, (b) BDCT domain.

IV. CONCLUSIONS

Passive image splicing detection is becoming a hot research
topic. Different kinds of features have been proposed in the
past few years, and Markov transition probability matrix is
one of the most effective features. In this paper, CCPM is
proposed for image splicing detection, that is, we consider
the class dependences within three successive classes and the
transition probability from the current class to the next two
classes is treated as discriminative feature. All the conditional
co-occurrence probabilities are grouped into CCPM and the
matrix is then fed into SVM for classification. Higher order
statistical features contain more discriminative information
while the high dimensionality usually leads to computational
complexity and over-fitting for modern supervised classifier.
PCA is therefore proposed for dimensionality reduction. We

(a)

(b)

Fig. 9. Receiver operating characteristics curves. (a) 45 D PCA features and
the original features in spatial domain, (b) 30 D PCA features and the original
features in BDCT domain.

test the effectiveness of CCPM in both BDCT domain and
spatial domain. Experimental results have shown that CCPM
demonstrates much better performance in BDCT domain than
that in spatial domain, and in both domains CCPM outper-
forms Markov features. PCA is testified as an effective tool
for image splicing detection, it can reduce the dimensionality
of original features greatly without losing discriminative infor-
mation. Higher order features integrated with dimensionality
reduction method will be further studied in our future work.
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