
Detection of Shifted Double JPEG Compression
using Markovian Transition Probability Matrix

Yujin Zhang, Shenghong Li and Shilin Wang
Shanghai Jiao Tong University, Shanghai

E-mail: {yjzhang82, shli, wsl}@sjtu.edu.cn Tel: +86-21-34205281

Abstract—Copy-paste forgery is a very common type of

forgery in JPEG images. The tampered patch has always
suffered from JPEG compression twice with inconsistent block
segmentation. This phenomenon in JPEG image forgeries is
called the shifted double JPEG (SD-JPEG) compression.
Detection of SD-JPEG compressed blocks can make crucial
contribution to detect and locate the tampered region. However,
the existing SD-JPEG compression detection methods cannot
achieve satisfactory results especially when the image block size
is small. In this paper, an effective SD-JPEG compression
detection method based on Markovian transition probability
matrix is proposed. Statistical artifacts are left by the SD-JPEG
compression among the elements of the JPEG 2-D arrays.
Difference JPEG 2-D arrays generated along four directions (i.e.
horizontal, vertical, main diagonal and minor diagonal) are
utilized to enhance them and then thresholded by a predefined
threshold for reducing computational cost. Markovian transition
probability matrix is used to model the difference JPEG 2-D
arrays in order to utilize the second order statistics. All the
elements of these transition probability matrices are served as
features for SD-JPEG compression detection. Support Vector
Machine (SVM) is employed as the classifier. Experimental
results demonstrate the efficiency of the proposed method.

I. INTRODUCTION

With the rapid growth of cheap and high resolution digital
cameras, high performance computers, and powerful image
processing software, it is getting easier to manipulate a digital
image without leaving obvious visual traces. As a matter of
fact, the problem of digital image counterfeiting is potentially
serious, sometimes malicious tampering may bring us some
legal crisis. Therefore, digital image forensics has become an
especially important research subject.

Generally speaking, existing approaches for digital image
forensics can be divided into two categories: active [1, 2] and
passive [3-5] approaches. Active approaches mainly insert
watermarks or signatures to digital images at the time of
recording, the authenticity of digital images can be checked
by detecting the change in the watermark, however most
image capturing devices don’t equip with watermarking
functionality due to the cost. In contrast to active approaches,
passive approaches don’t need any watermark or prior
information about image, so they have drawn a lot of attention
and become a hot research topic in digital image forensics.

It is well-known that JPEG is a commonly used image
compression standard. Identifying the authenticity of JPEG
format images plays a useful role in image forensics. Recently,
several methods for JPEG image authentication based on

double compression detection were proposed, the block
segmentations of the first and second JPEG compressions are
aligned to each other under these circumstances. Lukáš and
Fridrich [6] tried to identify double JPEG compression by
detecting DCT histogram artifacts of individual coefficients
and estimate the primary quantization matrix from a double
compressed image. Popescu and Farid [7] also pointed out
that double quantization introduces periodic artifacts to the
JPEG mode’s histogram, and devised a quantitative measure
for these artifacts to discriminate between single and double
JPEG compressed images. Fu et al. [8] presented a novel
statistical model based on Benford’s law for the probability
distributions of the first digits of the block-DCT and
quantized JPEG coefficients and claimed that double JPEG
compression could be detected because it would cause severe
violation of the first digit law. Li et al. [9] observed that using
generalized Benford’s law to fit distribution of the first digits
of JPEG coefficients from some selected individual AC
modes, the performance of detecting double JPEG
compression could be greatly enhanced, and then the quality
factor in the primary JPEG compression could be identified
by a multi-class classification strategy. Chen et al. [10] used
Markov based transition probability matrix as the feature and
employed the support vector machine as the classifier to
distinguish double compressed images from single JPEG
compressed images, the author stated that their algorithm
outperformed the prior work in [7].

Copy-paste forgery is a very common type of forgery in
JPEG images. The tampered region has always suffered from
the JPEG compression twice with inconsistent block
segmentation. In such situations, methods based on double
compression don’t work effectively. Luo et al. [11] developed
a blocking artifact characteristics matrix (BACM) to detect
SD-JPEG compression. They observed that the BACM
exhibits regular symmetrical shape for the single JPEG
compression, but symmetry property is destroyed after SD-
JPEG compression. Chen and Hsu [12] presented a linearly
dependency model of pixel differences, and analyzed the
different peak energy distribution to discriminate SD-JPEG
compressed images from single JPEG compressed images. Qu
et al. [13] formulated the SD-JPEG compression as noisy
convolutive mixing model, tried to solve it using blind signal
separation. Rather than using ICA, the authors analyzed the
Independent Value Map (IVM) to determine whether the
image has been SD-JPEG compressed with the assumption
that SD-JPEG compression will break the symmetry of IVM.
However, these methods can achieve good performance only

APSIPA ASC 2011 Xi’an

when the image block size is large, it is hard to employ them
to detect and locate the some small tampered regions for
composite JPEG images.

Motivated from the above discussion, in this paper, we first
propose an effective SD-JPEG compression detection method
based on Markovian transition probability matrix to identify
the SD-JPEG compressed blocks, and then we use the
proposed method to detect and locate the tampered regions for
composite JPEG images.

The rest of this paper is organized as follows. The process
of copy-paste forgery in JPEG images is introduced in section
II. The proposed approach is described in section III. The
experimental results with comparison to two existing methods
are shown in section IV. Conclusion is made in section V.

II. MODEL OF COPY-PASTE FORGERY IN JPEG IMAGES

As we known, JPEG compression is a popular compression
scheme based on block discrete cosine transform, the block
artifacts can be as an inherent signature for JPEG compressed
images. Copy-paste forgery is a very common type of forgery
in JPEG images. It means that a patch of the source image is
cropped and pasted it onto the target image to generate a new
composite image, as illustrated in Fig.1.

(a) Original image1 (b) Original image 2 (c) Composite image

Fig.1. Demonstration of copy-paste forgery in JPEG images.

(a) (b)

Fig.2. Generation of a SD-JPEG compressed block (a) JPEG compressed
with the quality factor QF1 (b) SD-JPEG compressed with the quality factor

QF2 and block segmentation in dotted line with a coordinate shift (x, y).

In Fig.1, suppose that each grid cell represents a pixel block
of size 8×8, the original image 1 is compressed with the
quality factor QF1, the original image 2 is uncompressed or
compressed with the quality factor QF2. The rectangle region
is cropped from the original image 1, and then pasted onto the
original image 2. The composite image is stored in JPEG
format with the quality factor QF2. We can notice that the
blocking artifact grids of the tampered region are misaligned
with the original ones with a probability of 63/64.Therefore, it
is very reasonable to assume that the tampered region has
undergone the SD-JPEG compression. Generation of a SD-
JPEG compressed block is shown in Fig.2 so as to better
illustrate the SD-JPEG compression.

In order to detect and locate the tampered regions of a
composite JPEG image, the composite JPEG image can be
segmented into small blocks and identified one by one.

III. PROPOSED APPROACH

In general, for each pixel of a color JPEG image, there are
three numerical values that collectively describe its color.
They are identified as Y, Cb, Cr. Y is the luma value, and Cb
and Cr collectively form the chrominance value. Chrominance
subsampling makes SD-JPEG compression detection in
chroma spaces very difficult, hence we only consider the Y
component. Fig.3 shows the framework of the proposed
feature extraction procedure.

Fig.3. Diagram of the proposed feature extraction.

A. JPEG 2-D Array
For a given JPEG image, JPEG coefficient 2-D array is

made up of all the quantized 8×8 block discrete cosine
transform (BDCT) coefficients. The proposed approach only
considers the magnitude elements of the JPEG coefficient 2-D
array (JPEG 2-D array for short). Because the SD-JPEG
compression leaves statistical artifacts among them. Whereas
the sign of few quantized BDCT coefficients changes after
SD-JPEG compression.

B. Difference JPEG 2-D Array
Elements in the JPEG 2-D array are often correlated for a

single JPEG compressed image. The SD-JPEG compression
artifacts disturb the JPEG 2-D array, weakening the
correlation among the elements of the JPEG 2-D array. The
SD-JPEG compression detection can be considered as a
problem of weak signal detection in the background of strong
signal. In order to reduce the effects caused by the diversity of
image content and enhance the SD-JPEG compression
artifacts, difference JPEG 2-D arrays are generated along four
directions (i.e. horizontal, vertical, main diagonal and minor
diagonal) as shown in (1).

(,) (,) (1,)
(,) (,) (, 1)
(,) (,) (1, 1)
(,) (1,) (, 1)

h

v

d

m

E i j x i j x i j
E i j x i j x i j
E i j x i j x i j
E i j x i j x i j

= − +

= − +
= − + +
= + − +

 (1)

Where x (i, j) (i [0, ∈ M-1], j [0, ∈ N-1]) indicates the
JPEG 2-D array of a given JPEG image. M and N are the size
of the JPEG 2-D array along the horizontal and vertical

directions. The symbols Eh (i, j), Ev (i, j), Ed (i, j), Em (i, j)
denote difference JPEG 2-D arrays along horizontal, vertical,
main diagonal and minor diagonal directions, respectively.

C. Thresholded Difference JPEG 2-D Array
A predefined threshold T is used to deal with the difference

JPEG 2-D array as shown in (2). In doing so, the value range
of the difference JPEG 2-D arrays is limited to [-T, T], with
only 2*T+1 possible values.

(,) (,)

(,) (,)
(,)

E i j E i j T
E i j T E i j T

T E i j T

⎧ <
⎪

= ≥⎨
⎪− ≤ −⎩

 (2)

The threshold T cannot be too small or too large. With a too
small T, the transition probability matrix will not be able to
sensitively catch the artifacts caused by SD-JPEG
compression. With a too larger T, dimensionality of the
transition probability matrix will be too high. Besides, more
information about image content itself rather than SD-JPEG
compression may be introduced with the increase of the
threshold T. Based on the experimental dataset prepared in
section IV, this threshold is selected as 2 in the proposed
approach.

D. Transition Probability Matrix of Thresholded Difference
JPEG 2-D Array

We model the thresholded difference JPEG 2-D arrays
defined above by using one-step Markov random process.
According to random process theory, a transition probability
matrix (TPM) can be used to characterize a Markov random
process. Equations (3) show the transition probability matrix
for horizontal, vertical, main diagonal and minor diagonal
difference JPEG 2-D arrays respectively. Consequently, we
have 5×5 elements for the transition probability matrix along
each direction. There are 100 elements in the feature vector
for a given JPEG image. All the elements of these transition
probability matrices for Eh, Ev, Ed and Em are served as
features for the SD-JPEG compression detection.

2 2

0 0
2 2

0 0

2 2

0 0
2 2

0 0

((,) , (1,))
{ (1,) (,) }

((,))

((,) , (, 1))
{ (, 1) (,) }

((,))

{ (1, 1) (,)

M N

h h
i j

h h M N

h
i j

M N

v v
i j

v v M N

v
i j

d d

E i j m E i j n
p E i j n E i j m

E i j m

E i j m E i j n
p E i j n E i j m

E i j m

p E i j n E i j m

δ

δ

δ

δ

− −

= =
− −

= =

− −

= =
− −

= =

= + =
+ = = =

=

= + =
+ = = =

=

+ + = =

∑∑

∑∑

∑∑

∑∑
2 2

0 0
2 2

0 0

2 2

0 0
2 2

0 0

((,) , (1, 1))
}

((,))

((1,) , (, 1))
{ (, 1) (1,) }

((1,))

M N

d d
i j

M N

d
i j

M N

m m
i j

m m M N

m
i j

E i j m E i j n

E i j m

E i j m E i j n
p E i j n E i j m

E i j m

δ

δ

δ

δ

− −

= =
− −

= =

− −

= =
− −

= =

= + + =
=

=

+ = + =
+ = + = =

+ =

∑∑

∑∑

∑∑

∑∑

 (3)

Where m, n∈Z, -T ≤ m, n ≤ T, and

1,
(,)

0,
A m and B n

A m B n
otherwise

δ
= =⎧

= = = ⎨
⎩

 (4)

IV. EXPERIMENTS AND RESULTS

In our experiments, the Matlab JPEG Toolbox [14] is
employed for JPEG compression. Images collected in our
experiments are obtained from the UCID [15] and NRCS [16]
image databases. All the original images in above databases
are uncompressed. LIBSVM [17] is used as the classifier. The
polynomial kernel with degree three for the proposed method
and Radial Basis Function kernel for two existing SD-JPEG
detection methods are selected.

A. Detection of the SD-JPEG Compressed Blocks
In the SD-JPEG compressed blocks detection experiment,

the experimental dataset is created as follows:
(1) Three sizes (64×64, 128×128 and 256×256) of image

blocks are generated for assessment.
(2) QF1 and QF2 are selected from 50 to 90 with an

increment of 10.
(3) In a specified test condition, 1000 uncompressed image

blocks are randomly extracted from the UCID database. For a
given {QF1, QF2} pair, there are totally 1000 pairs of SD-
JPEG compressed blocks and single JPEG compressed blocks.
Each pair of SD-JPEG compressed block and single JPEG
compressed block have the same size and image contents for
each bmp images. SD-JPEG compressed blocks are generated
from the extracted blocks with the quality factor QF1, QF2
and random coordinate shifts. Single JPEG compressed
blocks are generated from the same blocks only with the
quality factor QF2 and same coordinate shifts.

Therefore, for a given {QF1, QF2} pair, there are totally
2000 image blocks in this dataset. Half of them, i.e. 500 SD-
JPEG compressed image blocks and 500 single JPEG
compressed blocks are randomly picked out to train the SVM
classifier and others for testing. Grid searching is employed to
select the best parameters for the classifier. 5-fold cross
validation is used in classification. Detection accuracies are
average over 20 random experiments.

To test the efficacy of the proposed method, two existing
SD-JPEG detection methods, i.e., the BACM-based [11] and
ICA-based [13] methods, have also been investigated for
comparison on the same dataset. The detection accuracies of
the BACM-based, ICA-based and proposed methods for block
sizes of 64×64, 128×128 and 256×256 are shown in Table I,
Table II and Table III respectively.
TABLE I DETECTION ACCURACY (%) WITH VARIOUS VALUES OF QF1 AND QF2 FOR

BLOCK SIZE OF 64×64. THE DETECTION ACCURACIES A/B/C IN THE TABLE ARE
OBTAINED BY THE BACM-BASED (A), ICA-BASED (B) AND PROPOSED (C) METHOD
RESPECTIVELY.THE VALUE IN BOLD DENOTES THE BEST DETECTION ACCURACY

AMONG THE THREE METHODS.
QF1\QF2 50 60 70 80 90

50 52.8/50.6/56.7 51.5/51.4/59.0 54.4/51.6/67.1 56.3/54.1/76.1 62.2/60.3/88.4
60 51.3/49.9/54.4 50.5/50.2/57.7 51.4/50.3/60.6 53.9/53.6/70.5 59.0/58.6/85.7
70 51.1/50.0/53.7 50.3/50.1/54.5 51.3/51.1/58.2 52.7/52.3/64.4 56.3/56.5/80.1
80 50.4/50.6/52.3 49.6/50.5/53.4 51.6/50.2/54.7 50.4/51.5/57.4 54.3/53.8/72.0
90 50.4/49.6/50.9 49.8/49.8/50.5 49.8/48.5/52.0 49.3/50.9/54.4 50.2/50.3/58.3

TABLE II DETECTION ACCURACY (%) WITH VARIOUS VALUES OF QF1 AND QF2
FOR BLOCK SIZE OF128×128. THE DETECTION ACCURACIES A/B/C IN THE TABLE

ARE OBTAINED BY THE BACM-BASED (A), ICA-BASED (B) AND PROPOSED (C)
METHOD RESPECTIVELY.THE VALUE IN BOLD DENOTES THE BEST DETECTION

ACCURACY AMONG THE THREE METHODS.

QF1\QF2 50 60 70 80 90
50 51.8/52.8/63.3 52.6/55.3/68.5 58.2/60.1/76.3 64.3/67.2/85.7 74.3/76.9/95.0
60 50.9/51.3/61.7 51.3/52.4/65.2 54.1/56.9/70.2 58.5/62.8/80.9 69.5/73.8/93.7
70 50.0/50.8/58.1 51.2/50.8/61.6 52.6/53.7/64.5 53.8/58.7/75.3 62.8/71.1/89.6
80 50.1/49.9/54.5 51.4/50.6/57.3 50.1/50.0/60.3 51.0/52.6/65.2 57.3/64.9/81.4
90 50.2/50.1/51.3 50.2/49.8/52.6 49.4/49.0/54.6 49.9/51.3/60.8 52.7/51.0/66.1

TABLE III DETECTION ACCURACY (%) WITH VARIOUS VALUES OF QF1 AND QF2
FOR BLOCK SIZE OF 256×256. THE DETECTION ACCURACIES A/B/C IN THE TABLE

ARE OBTAINED BY THE BACM-BASED (A), ICA-BASED (B) AND PROPOSED (C)
METHOD RESPECTIVELY.THE VALUE IN BOLD DENOTES THE BEST DETECTION

ACCURACY AMONG THE THREE METHODS.
QF1\QF2 50 60 70 80 90

50 53.2/58.8/75.6 56.4/64.6/80.0 65.6/71.2/86.1 75.8/80.2/95.0 84.4/88.2/99.0
60 50.9/54.9/70.2 55.0/61.0/76.1 58.2/67.0/80.3 67.8/77.7/91.0 80.6/87.8/98.2
70 50.8/51.0/65.4 50.7/54.6/69.0 52.1/56.9/75.7 59.0/69.9/84.0 74.2/85.3/96.2
80 49.6/51.2/58.9 49.4/50.3/63.0 50.0/49.9/67.3 53.6/55.4/74.6 64.9/76.3/92.0
90 49.9/50.9/53.5 50.7/49.5/55.9 50.0/49.6/58.6 50.0/52.6/65.3 54.4/51.4/73.9

From Table I, II and III, the observations can be made as
follows:

(1) Due to the three kinds of errors (i.e., quantization error,
truncation error and rounding error) in JPEG compression and
decompression procedure, the artifacts caused by the SD-
JPEG compression are extensive. Difference JPEG 2-D arrays
along four directions are used to enhance them. This is one
reason why the proposed method can achieve good
performance.

(2) The larger the QF2-QF1 is, the higher the detection
accuracy is. The reason for this is that the lower quality factor
of the first JPEG compression will leave more traces of the
compression history and the higher quality factor of the
second JPEG compression will introduce less distortion to the
image, which makes the traces left by the first compression
easier to be detected.

(3) For the same QF2-QF1, the detection accuracy increase
dramatically with the increase of block size. It is because that
all the approaches are based on different statistical models,
larger image block results in better statistical performance.

(4) Among all the three methods, the proposed method
indeed outperforms the others especially when the image
block size is small. The reasons are that the BACM-based
method focuses on histogram in the spatial domain, which is
the first order statistics. The ICA-based method measures the
independency of BDCT coefficients by the objective function
according to 64 different segmentation schemes. Note that the
BACM-based and ICA-based methods will lead to the
insufficient statistics when the image block size is small. The
proposed method applies transition probability matrix to
model the thresholded difference JPEG 2-D arrays, which is a
kind of the second order statistics, so more information
conducted by SD-JPEG compression can be caught by the
proposed method than the BACM-based and ICA-based
methods when the image block size is small.

(5) The detection performance of the proposed method can
be improved when QF1 is larger than QF2 with the increase of

block size. The reason for this is that second order statistics of
the global JPEG 2-D array lead to better statistical
performance for larger block size. However, the detection
performance of the BACM-based and ICA-based method is
always close to the performance of random guessing (50%)
when QF1>QF2.

B. Detection of Copy-paste Image Forgery
Two examples of JPEG image forgery detection using the

proposed method are shown in Fig.4 and 5. All the original
images are come from the NRCS image database. The
composite JPEG images are generated as described in Section
II. Note that the quality factor QF1 is unknown in most cases,
but the quality factor QF2 can be obtained easily via
comparison of the current quantization table. Such problem
can be solved by training an appropriate SVM classifier. In
this experiment, {QF1, QF2} = {50, 90} and {60, 90} are
investigated for Fig.4 and 5 respectively. In order to detect the
following composite images, the quality factor QF1 can be
randomly chosen in the intervals [50, 90], QF2 is equal to 90.
1000 pairs of image blocks with the size 128×128 (i.e. 1000
SD-JPEG compressed blocks and 1000 single JPEG
compressed blocks) are generated from the UCID database.
SD-JPEG compressed blocks are generated with the quality
factor QF1, QF2 and random coordinate shifts. Single JPEG
compressed blocks are generated only with the quality factor
QF2 and same coordinate shifts. Each pair of SD-JPEG
compressed block and single JPEG compressed block have
the same size and image contents for each bmp images. Half
of them, i.e. 500 SD-JPEG compressed blocks and 500 single
JPEG compressed blocks are randomly chosen to train the
SVM classifier and others for testing. The classifier is
selected to yield a 1% false positive rate (a single JPEG
compressed block is incorrectly classified as a SD-JPEG
compressed block). The trained classifier is applied to identify
all the blocks of the following composite images. A median
filter is used to further remove the isolated blocks which are
falsely identified as the SD-JPEG compressed blocks. The
detected tampered regions are masked in black as shown in
Fig.4 (c) and 5 (c).

From Fig.4 and 5, we notice that the proposed method can
detect and locate the tampered regions accurately. It should be
pointed out that the proposed approach can detect and locate
the tempered regions with the assumption that the first JPEG
compression uses a lower quality factor than the second JPEG
compression. It will fail when the first JPEG compression
uses a higher quality factor than the second compression.

 (a) (b) (c)

Fig.4. An example of JPEG image forgery detection: (a) composite JPEG
image; (b) ground truth of (a), the tampered region are bounded by the red

contour;(c) detected tampered region by the proposed method.

 (a) (b) (c)

Fig.5. Another example of JPEG image forgery detection: (a) composite
JPEG image;(b) ground truth of (a), the tampered region are bounded by the

red contour;(c) detected tampered region by the proposed method.

V. CONCLUSIONS

In this paper, an effective SD-JPEG compression detection
method based on Markovian transition probability matrix is
proposed. Elements in a JPEG 2-D array are often correlated
for a single JPEG compressed block. The SD-JPEG
compression artifacts disturb the JPEG 2-D array, weakening
the correlation among the elements of the JPEG 2-D array.
Such artifacts can be enhanced by the difference JPEG 2-D
arrays along four directions (i.e., horizontal, vertical, main
diagonal and minor diagonal). The transition probability
matrix, which characterizes the Markov random process, is
used to model these thresholded difference JPEG 2-D arrays.
All the elements of these transition probability matrices are
served as features to train the SVM classifier to discriminate
the SD-JPEG compression from the single JPEG compression.
The experimental results have proved that the proposed
method is more effective than the BACM-based and ICA-
based methods especially when the image block size is small.
We also performed experiments to detect and locate the
tampered regions of two composite JPEG images. The results
show that the proposed approach can detect and locate the
tempered blocks accurately when the first JPEG compression
uses a lower quality factor than the second JPEG compression.
The future work is to focus on the theoretical analysis of the
SD-JPEG compression, improving detection accuracy to
make the proposed approach closer to practical application,
and exploring new SD-JPEG compression detection schemes.

ACKNOWLEDGEMENTS

The work described in this paper is funded by National
Science Foundation of China (61071152, 60702043), 973
Program (2010CB731403, 2010CB731406) of China,
Shanghai Educational Development Foundation and Project
of Beijing Key Laboratory of Communication and
Information System of Beijing Jiao Tong University.

REFERENCES
[1] M. Barni, “Effectiveness of exhaustive search and template matching

against watermark desynchronization,” IEEE Signal Processing Letters,
vol.12, no. 2, pp. 158–161, February 2005.

[2] M. L. Miller, G. J. Doerr, and I. J. Cox, “Applying informed coding and
embedding to design a robust high-capacity watermark,” IEEE Trans.
on Image Processing, vol. 13, no. 6, pp. 792–807, June 2004.

[3] A. C. Popescu and H. Farid, “Exposing digital forgeries by detecting
traces of re-sampling”, IEEE Trans. on Signal Processing, vol. 53, no.2,
pp.758-767, February 2005.

[4] H. Farid, “A survey of image forgery detection,” IEEE Signal
Processing Magazine, vol. 2, no. 26, pp. 16–25, March 2009.

[5] X. Zhao, J. Li, S. Li and S. Wang, “Detecting digital image splicing in

chroma spaces,” Proc. of International Workshop on Digital Water-
marking (IWDW 2010), Seoul, Korea, pp.12-22, October 2010.

[6] J. Lukas and J. Fridrich, “Estimation of primary quantization matrix in
double compressed jpeg images,” Proc. of Digital Forensic Research
Workshop, Cleveland, Ohio, USA, pp.5-8, August 2003.

[7] A. C. Popescu, “Statistical tools for digital image forensics,” PhD thesis,
Dartmouth College, Hanover, NH, USA, December 2004. (Advised by
H. Farid).

[8] D. Fu, Y. Q. Shi and Q. Su, “A generalized benford's law for jpeg
coefficients and its applications in image forensics,” Proc. of SPIE
Electronic Imaging, Security and Watermarking of Multimedia Contents
IX, San Jose, CA, vol. 6505, pp. 1L1-1L11, 2007.

[9] B. Li, Y. Q. Shi and J. Huang, “Detecting doubly compressed JPEG
images by using Mode Based First Digit Features,” Proc. of IEEE
Workshop on Multimedia Signal Processing (MMSP2008), Cairns,
Queensland, Australia, pp.730-735, October 2008.

[10] C. Chen, Y. Q. Shi and W. Su, “A machine learning based scheme for
double JPEG compression detection,” Proc. of IEEE International
Conference on Pattern Recognition (ICPR 2008), Tampa, Florida, USA,
pp.1-4, December 2008.

[11] W. Luo, Z. Qu, J. Huang and G. Qiu, “A novel method for detecting
cropped and recompressed image block,” Proc. of IEEE International
Conference on Acoustic, Speech and Signal Processing (ICASSP’ 07),
Honolulu, Hawaii, vol.2, pp. 217-220, April 2007.

[12] Y. L. Chen and C. T. Hsu, “Image tampering detection by blocking
periodicity analysis in JPEG compressed images,” Proc. of IEEE
International Workshop on Multimedia Signal Processing (MMSP 2008),
Cairns, QLD, Australia, pp. 803-808, November 2008.

[13] Z. Qu, W. Luo and J. Huang, “A convolutive mixing model for shifted
double JPEG compression with application to passive image
authentication,” Proc. of IEEE International Conference on Acoustic,
Speech and Signal Processing, Las Vegas, Nevada, USA, pp. 1661-
1664, March 2008.

[14] P. Sallee, Matlab JPEG Toolbox [Online]: http://www.philsallee.com/
jpegtbx/index.html.

[15] G. Schaefer and M. Stich, “UCID: An uncompressed color image
database,” Proc. SPIE Storage and Retrieval Methods and Applications
for Multimedia, San Jose, CA, vol. 5307, pp. 472–480, 2003.

[16] NRCS Photo Gallery 2005 [Online]: http://photogallery.nrcs. usda.gov/.
[17] Chang. C. C. and Lin, C. J. LIBSVM: A Library for Support Vector

Machines. 2001. http://www.csie.ntu.edu.tw/cjlin/libsvm.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

