
A Configurable Dialogue Platform for

ASORO Robots
Ridong Jiang, Yeow Kee Tan, Dilip Kumar Limbu, Tran Anh Tung and Haizhou Li,
Institute for Infocomm Research, 1 Fusionopolis Way, #21-01, Connexis, Singapore 138632

E-mail: {rjiang, yktan,dklimbu,tanhdung, hli }@i2r.a-star.edu.sg

Abstract—This paper is concerned with the architectural
design and development of a spoken dialogue platform for robots.
The platform adopts modular software architecture and event
driven communication paradigm which makes speech enabled
hardware devices and software components configurable and
reusable. The platform is able to integrate heterogeneous
dialogue components (such as speech recognizer, natural
language understanding, speech synthesizer, etc.) through
message-oriented middleware and a number of adaptors in a
plug-and-play fashion. The dialogue system is empowered by a
multi-purpose XML-based dialogue engine which is capable for
pipeline information flow construction, programmable event
mediation, multi-topic dialogue modeling and different types of
knowledge representation. The proposed platform provides a
generic framework for the easy and quick construction of robust,
efficient and flexible spoken dialogue applications ranging from
simple state-based dialogue prototype to complex frame-based
and plan-based, mixed-initiative, multi-topic spoken dialogue
applications. Most importantly, the system is cross platform,
domain independent, service oriented, extensible through
various plug-ins and capable of knowledge sharing within
components. The platform has been deployed on various robots
(robotic butler, smart home helper robot, receptionist, etc.) in
A*STAR Social Robotics (ASORO) laboratory for the creation
of different spoken dialogues. Results showed that components
can be reused and configured for different robots without any
programming effort while the development cycle was reduced
significantly.

I. INTRODUCTION

Spoken dialogue systems, as an intuitive, flexible, natural
and inexpensive means of communication between users and
machines, have obtained an increasingly widespread use in a
wide variety of applications: voice-operated cell phones, car
navigation systems, commercial information retrieval, gaming,
education, healthcare and talking agents, etc [1].

In recent years, with the rapid advancement of social
mobile robot and its wide application to various domains,
spoken dialogue technology plays pivotal roles in human
robot interface (HRI) and social robot intelligence. With more
and more social robots are making their way into the world of
our everyday life, for instance, bank tellers, tour guides, elder
care nurses, home maids and receptionists [2~5], there is an
increasing need on spoken dialogue applications which can be
equipped on various robots for natural and intuitive human-
machine communication. As we know, different robots come
with different functionalities and their hardware
configurations vary from one to another. For instance, some

robots require close-talk microphone to record speech, while
some other robots use microphone array for speech input.
There are cases that a robot needs audio streaming as input for
speech recognition. In the mean time, these robots are running
on different software platforms, e.g. Microsoft Windows,
Linux and Macintosh. All these facts pose a great challenge to
us: How to design a spoken dialogue platform that works for
as many robots as possible without repeating effort? More
specifically, this in fact proposes requirements on spoken
dialogue platform in the following aspects: a) Capable of
integrating heterogeneous dialogue components locally or
remotely; b) Capable of representing tasks, dialogue move
and knowledge in different domains; c) Configurable, scalable
and extensible when robot hardware changes, upgrades or
robot transforms; d) Ease of use for users without
programming background; e) Interoperability across platform.

The aforementioned challenges and our past experience
working on different social robots motivate us to develop a
component pluggable event driven spoken dialogue platform
which targets for a broad spectrum of domains. A component
can be any spoken dialogue module such as speech recognizer,
natural language parser, speech synthesizer, etc. It can also be
a hardware device which performs a specific function such as
microphone, push-to-talk device. More generally, a
component can be an algorithm (e.g. voice activity detection),
a database connection, a graphic user interface or a remote
agent. These components are integrated into the spoken
dialogue framework by generic or tailored adaptors. Once a
component is integrated, it provides services to the framework.
In the mean time it can also share all the resources or services
within current framework. To develop a new spoken dialogue
application, what one needs to do is to assemble required
components in a configuration file or dynamically
load/unload the necessary components through dialogue script
based on the current situation. The communication between
different components can be done by triggering events which
embed different messages for different purposes in a unified
format. TCP/IP messages are also allowed and compatible
when components are located on different machines. One
message can be sent directly from one component to another
one, it can also be relayed and routed in XML script through
which message transforming, redirecting and handling are
possible. Pipeline information flow and dialogue flow are
managed by XML script through built-in finite state machine
and/or frame-based slot filling.

APSIPA ASC 2011 Xi’an

In this paper, we start by reviewing some related spoken
dialogue frameworks in section II. Then the system
architecture is presented in section III. After that, the dialogue
modeling supported by the platform is described in section IV.
Section V presents a case study on how the platform can be
used to configure the speech interface for a receptionist robot
with minimum effort. Finally, we conclude our work on the
configurable spoken dialogue platform and some possible
future enhancement.

II. RELATED WORK

Building a spoken dialogue application is a complex task.
One has to deal with spoken dialogue related components, for
instance, sound recording, voice activity detection (VAD),
speech recognition, natural language understanding(NLU),
natural language generation (NLG), text to speech (TTS), etc
[1]. In the mean time, a dialogue manager is needed to
manage the communication between these components, as
well as task representation, domain knowledge representation,
dialogue flow control, turn taking, confirmation, error-
handling. For natural and intuitive communication, ambiguity,
context, initiative, dialogue history, reasoning and planning
must also be properly addressed. In addition, some other
features such as system flexibility, extensibility,
maintainability, cross-platform and ease of use must also be
considered when building up practical spoken dialogue
applications.

Much effort has been made by researchers from academic
and industrial institutions. A notable project is American
DARPA communicator project [6][7]. The Galaxy
Communicator software infrastructure is a distributed,
message-based, hub-and-spoke infrastructure optimized for
constructing spoken dialogue systems. Each component is
implemented as a separate process that connects to a traffic
router - the Galaxy hub. The messages are sent through the
hub, which forwards them to the appropriate destination. The
routing logic is described via simple configuration script.
Many spoken dialogue systems were developed on top of
Galaxy II communicator, for instance, Olympus dialogue
system [8], AT&T Spoken dialogue system [9]. Galaxy II
based systems treat every component as a separate server. It
needs the support of Python and environment setting. The hub
script provides every limited programming capability.
Another widely used dialogue system is information state
update based approach. Trindikit [10] is a toolbox for building
dialogue managers based on an information state and dialogue
move engine. DIPPER [11] is implemented on top of Open
Agent Architecture and it comes with its own dialogue
management component which is similar to Trindikit. ISU-
based systems require open agent architecture for
communication and non-free dialect of the programming
language Prolog for information state update and dialogue
control [12]. VoiceXML is another widely used dialogue
system for creating distributed voice applications that users
can access from any telephone. However, VoiceXML lacks
features on database access, programming logic control,
modeling of returning dialogue flow, etc. [13].

The spoken dialogue platform presented in this paper
employs loose component coupling, event-driven paradigm
and service oriented architecture for component reuse. The
component can be either a local plug-in or remote agent.
Messages can be generated, mediated or transformed in
programmable message centre. The dialogue system supports
state-based and frame-based (or their mix) dialogue
management techniques. The built-in dialogue topic engine
enables multi-topic and topic changing management as well
as support of different dialogue strategies: user-initiative,
system-initiative and mixed-initiative. The dialogue system is
driven by structured and extensible XML script which in fact
becomes a powerful programming language supporting
variables, array, list, string handling, expression, if/else, for
loop, functions, timer, file I/O, database, etc. Most
importantly, the dialogue platform can be enhanced by new
plug-in development, for instance, plug-in for the support of
artificial intelligence markup language (AIML) and ontology.

III. SYSTEM ARCHITECTURE

The dialogue platform is composed of a dialogue manager,
a number of dialogue components, middleware interface to
remote agent and graphic user interface, as shown in Fig. 1.

A. Message Centre
The message centre is an event-driven messaging engine

for the effective message routing. Every message from
different sources is passing through this hub. It provides a
mechanism for the communication between dialogue
components, as well as remote agents. All messages from
different sources are represented in a unified form and can be
dispatched and handled in the same way. A message may
come from a local or remote dialogue component, XML script
command or a user command issued by graphic user interface.
A typical message usually includes time stamp, message
source (module identifier), purpose of the message
(command) and a series of parameters. This type of message
is handled by message centre based on current situation. For
instance, a recording buffer full event from microphone can
be directed to a VAD module or multiple speech recognizers
by event hub script programming. Besides the above basic
elements of a message, some messages include event sink
information, i.e. where this message will be going to.
Following command is a message sent to microphone to
request sound recording:

<post module="Microphone" command="start_mic"/>
Fig. 2 shows conceptual diagram of the message centre

with the possible inputs and output. Functionally, the message
centre is able to process all events in three ways as displayed
in Fig.2. First is the direct message relaying. One message can
be directly forwarded to one or multiple target agents with or
without the change of parameters. Second is that the event is
filtered by simple if/then rules, and then based on the filtering
result the system decides how to forward or generate an event.
The last is event handling by a piece of XML script program.
This is the most complicated and intelligent event processing.
The script program will base on the receiving event, the

current context and internal state of the robot to decide how to
proceed with the current and new events.

The construction of pipeline information flow can be easily
implemented by message centre programming in XML. This
brings great flexibility for spoken dialogue development
based on components. Following statement invokes an event
in the context of speech recognition and sends recognition
result to language understanding module for processing.
“_LPARAM1_” is the first parameter sent from speech
recognizer component which represents the text of
recognition result.

<post module=“NLU” command=“DoNLU”
param=“_LPARAM1_”/>

B. Dialogue Engine
Dialogue engine is the core functional element in dialogue

manager. It consists of finite state machine, frame manager
and dialogue topic engine. Finite state machine is used for
simple dialogue task representation and fast spoken dialogue
prototyping. In one state, entry action, exit action, input action
and transition action can be defined in XML script. In the
mean time, within every state, all programming statements
supported by the engine (assignment of variables, function
calls, timers, etc) can be used. Frame manager is suitable for
more complex dialogue management. In this case, dialogue is
modeled as frames and filling of semantic slots. This avoids
predefined states and transition network. Hence it is more

flexible and natural for communication. Dialogue topic engine
is designed for modeling and management of multiple topics.
It registers and manages all the dialogue topics, actively
initiates a conversation and asks questions related to a topic
for more information so that all semantic slots are filled. The
topic engine makes it possible for multiple topics
conversation. Users can switch topics and continue a previous
unfinished topic. The dialogue engine allows mixed use on all
these elements. For instance, a dialogue task can be modeled
as a number of frames and the frames are registered with topic
engine for topic management. With this the dialogue system
becomes a frame-based, mixed-initiative, multi-topic dialogue
system. However, the system still allows a small subtask to be
finished by a dialogue state such as confirmation. When this
dialogue state is activated, it captures all events and tries to
finish its task and then continues frame-based dialogue
management.

The dialogue engine is fully driven by XML script such as
the finite state representation, state transition network,
structured topic representation, etc. The dialogue engine
works seamlessly with the XML script engine which will be
described with more details in the following subsection. Any
XML script programming statement can be used in the
description of tasks related to dialogue engine. For instance a
normal function call is allowed in the field of semantic slot
filling. Similarly, inside a function definition, state transition
can be done if the transition condition is triggered for
whatever reason.

M
id

dl
ew

ar
e

In
te

rf
ac

e
R

ec
or

di
ng

VA
D

R
ec

og
ni

ze
r

TT
S

N
LU

N
LG

D
at

ab
as

e

Fig.1 Conceptual diagram of message centre

Fig.2 Conceptual diagram of message centre

C. XML Script Engine
Script engine is an execution component for dialogue

engine. In addition, it is used for system configuration (XML
setting file), event hub programming, pipelined information
flow construction and XML script programming. In selecting
a language for dialogue modeling, we realized that XML
would be the most appropriate and promising language to use.
In fact, XML is becoming a dominant scripting language for
information storing, organization and business logic control
because of its portability, extensibility, reusability and
structured nature. In terms of programming capability, the
script engine is becoming a full-fledged XML script engine
which supports scoped variables, arrays, list, string handling,
expression, if/else statement, arithmetic and logic operators,
for loop, functions, timer, file I/O as well as database access.

D. API for Plug-in
If a dialogue component is integrated into the framework as

a plug-in, API is provided for easy integration. Once a
component is integrated, it is able to share all the resource
provided by the framework and other plug-ins. For instance,
access database through a database plug-in, sending a TCP/IP
message to remote agent through the framework, etc. API is
packed as various adaptors. Some adaptors are tailored for
particular plug-ins. For example, a TTS adaptor is prepared
for text-to-speech component. It defines standard interface for
speech synthesizer. Currently, adaptors for TTS, VAD,
microphone, speech recognition and natural language
understanding are available for quick integration of respective
dialogue components. We have successfully integrated Far
talk and close talk microphones, Windows TTS (SAPI),
Loquendo TTS, our in-house developed speech recognizer –
Abacus, Dragon recognizer, robust language understanding,
keyword spotting, etc. into the framework. All these
integrated components can be reused in different projects by
configuration in a XML setting file or by dynamic
load/unload in XML script. A generic adaptor provides
generic interface for all plug-ins. Followings are three
important interfaces provided by the generic adaptor for
component communication:

• OnMessage – This is the interface for a component
to handle all coming messages from external sources.
The message can come from a remote agent, other
component in the framework, or the framework itself,
which fires the message in XML script or through its
graphic user interface.

• FireEvent – Interface to fire an event by the
particular component. This event can be captured by
event hub and handled in XML script, or relayed to
one or many other components.

• SendMessage – This is the interface to communicate
with remote agent through the platform. This creates
a way for new plug-ins to directly communicate with
remote agents or dialogue components. For instance,
a dialogue plug-in can directly send a message to the
robot to perform certain actions or even request
information from a particular sensor.

The adaptors are developed with the concept of object
oriented programming. The tailored adaptors inherit from the
generic adaptor. A new plug-in will inherit from the generic
adaptor or one tailored adaptor. New plug-in can be quickly
developed with the support of generic adaptor “IPlugin” or
other tailed adaptors because these adaptors provide interfaces
and data structures to facilitate the communication between
the new plug-in and the platform. Through these interfaces,
the new plug-in provides services to other plug-ins and XML
script. In the mean time the new plug-in also shares all the
resources provided by other plug-ins. For instance, a keyword
spotting plug-in is able to access database through the
functions provided by a database plug-in.

E. Middleware Interface
Middleware interface provides a standard communication

protocol to facilitate the information transmission between
remote agent and the dialogue framework. Currently,
Transmission Control Protocol (TCP) structured message is
used by the system. TCP protocol ensures that every message
for intercommunication can be sent to destination without any
possibility of message loss. There are two types of messages:
text and binary. Message type can be identified by a particular
field in the message. In the mean time, every message also
includes the following fields for clear and efficient
communication: Time stamp, Component identifier, the
command (purpose) of this message, and a list of parameters
which is delimited by comma [14]. The communication
middleware can be extended to support service oriented
communication middleware such as SOAP and CORBA.

A dialogue component can also be developed as standalone
remote agent which communicates with the dialogue platform
through middleware interface. For instance, Nuance
recognizer, Loquendo TTS, Microphone array and speech
enhancement were integrated into the platform for different
robots.

F. Graphic User Interface
The spoken dialogue platform provides a standard graphic

user interface to show the current status of a human robot

interaction such as dialogue states, dialogue move, event
details, value of variable, etc. The interface is configurable to
certain extend based on the settings in a XML setting file.
Every dialogue component integrated into the platform is also
able to print out messages to this graphic user interface. Its
basic functions can be summarized as follows:

• Display server information – The interface displays
server information such as IP address and socket port
number. The connection with remote server can be
manually controlled through this interface.

• Display all messages and status of finite state
machine (FSM) – There is a console to display all
receiving messages, sending messages, the current
state of FSM and its transition. In addition, the
console can be set to display limited debug
information such as to track the change of variable
value.

• Tool for firing events – Through the interface, an
event can be fired in the similar way of script
programming. For instance, dynamically load/unload
a plug-in, send a message to remote agent, invoke a
command to a particular plug-in, etc.

• Reload XML script – One brilliant feature of the
platform is that at any time, the XML script can be
edited and reloaded on the fly without termination of
the dialogue application. System is reset and the
dialogue restarts from beginning based on the edited
XML script. Through the graphic user interface, this
can be done with the ease of one mouse click.

IV. DIALOGUE MODELING

Since a spoken dialogue system mediates the
communication between human and an information system,
first the information system must be modeled with proper
structure and knowledge. The knowledge can be organized as
common knowledge and domain knowledge. Domain
knowledge is closely related to the specific dialogue task. In
the mean time, dialogue task must be represented to facilitate
the communication so that natural conversation and user’s
interaction goals can be achieved. Finally, the interaction
management [15] which deals with the dialogue initiative and
turn taking must also be addressed in the dialogue modeling.

The spoken dialogue platform for ASORO robots supports
knowledge representation in the forms of XML script,
database query, artificial intelligence markup language
(AIML) and ontology. The dialogue task modeling and
different dialogue strategies can be done through built-in state
machine automata and frame-based multi-topic management.
For process-oriented task, e.g. spoken dialogue for robots
performing fetch-and-carry task, state machine automata is
more suitable to represent the process. For information-
oriented task, it will be quite clumsy to predefine the dialogue
into different states, e.g. the information query about facilities
in a building complex. The frame-based dialogue modeling
can better address the problems related to information-

oriented task. For very complex task which include both
process-oriented and information-oriented actions, the
proposed dialogue platform allows mixed representation of
these two types of tasks as well as the dialogue management.

A. State-based Task Representation
This is the simplest task representation. Dialogue is

modeled as a state transition network. First task is
decomposed into predetermined steps or stages [16]. In every
state, expected events are processed and grammars relating to
this particular step are used. Then transitions are designed
based on the dialogue control logic. The transition is triggered
by certain events or after execution of a piece of XML script.
The advantage of this task representation is easy to build,
possesses better task success rate. However, it inhibits user’s
opportunity to take initiative, usually requires explicit
confirmation and longer dialogue, hence it is not efficient and
less natural.

In the modeling of state-based dialogue task, the platform
allows following fields to be used in a dialogue state:

• Entrance – defines the first entry when the current
state is started. Some initialization can be done in
this field.

• Exit – opposite to the Entrance, this field defines the
actions for leaving this state, for instance, calling
some clearing functions when the dialogue exits
from the current state.

• Messages – defines actions responding to different
messages. Only when the state is in active state, the
platform will direct messages to this state. This is the
field handling various messages from agents or
components.

• Online – defines message handler which responses to
the event when a remote agent is online.

• Offline – defines message handler which responses to
the event when a remote agent is offline.

• functions – a place holder where script functions are
defined.

The transition action from current state to another state can
be defined in any field as shown above. The transition
statement can be embedded in a function or inside an if
statement as shown below:

<if cond="_FrameDone==true">
 <transit state="Wait"/>
</if>

B. Frame-based Task Representation and Multi-topic
Management

In the frame-based task representation, the dialogue is
modeled as frames and filling of semantic slots. This
representation is more flexible than state-based task
representation because dialogue flow is not predefined. It
allows mixed-initiative and more informative answers. It is
more natural. The challenge for this representation is to model
very complex dialogue which may include many dialogue

topics. Current dialogue platform provides a mechanism to
effectively model a dialogue topic. Every topic encapsulates
semantic slots, methods, constraints, facts and rules. In the
mean time, confirmation and attributes-based knowledge
query can be performed in a topic. Fig. 3 demonstrates how
the platform transforms an utterance to a knowledge query.

 First, the dialogue manager passes an utterance from
speech recognition engine to natural language understanding
(NLU) component. After analyzing the utterance, the NLU
component posts a message to topic classifier with its parsing
result. The topic classifier detects the topic and activates
dialogue topic manager for matching and slot filling on the
detected topic. Based on the slot filling results, the topic
manager will dynamically form a knowledge query statement.
The query statement then is sent to knowledge manager for
acquiring of the related knowledge. The acquired knowledge
will be posted back to the dialogue manager in the form of an
event which may lead to a response to the user. Some of the
process is demonstrated in case study in section V.

The knowledge can be built into a topic in XML script. A
database plug-in and an AIML plug-in were developed to
enable the platform for the access of database and knowledge
defined in AIML language. We are also in the process to
develop an agent which is capable of manipulating ontology.
The communication between the ontology agent and the
platform is through communication middleware.

Natural Language
unserstanding

Topic
Classifier

Semantic Frames

Attribute Attribute Attribute●●●

Knowledge
Manager

Database XML Script AIML OWL

Utterance

Fig.3 Working model of frame-based dialogue system

The platform allows multi-topic definition as well as multi-
topic management for the modeling of complex dialogue
applications. In the case study described in section V, the
multiple tasks of a receptionist robot were defined in XML
script. To enable mix-initiative dialogue strategy, topics must
be registered with the topic manager. Once a topic is
registered, the topic manger will actively check the status of
every topic after an event for slot filling. If a dialogue topic is
completed, consequent action will be taken, for instance
registering the visitor to visitor database. Then the topic
manager may actively change the communication to another
registered topic and start the conversation of a new topic. If
there is one uncompleted topic due to interruption, the system
will give higher priority to the uncompleted topic and
continue the conversion based on the status before
interruption.

V. CASE STUDY

A. Receptionist Robot and Task Description
We have developed a receptionist robot based on this

configurable spoken dialogue platform. The receptionist robot
is a social robot designed to interact and serve visitors in
office environment. This robot is equipped with speech
recognition, sound localization, vision understanding and
motion control for head, body and hands movement. The
spoken dialogue designed for this receptionist robot is for
receptionist task such as appointment, call transfer and taxi
booking. In addition, the robot will be able to present
information about building amenities within Fusionopolis and
general inquiry about weather information and traffic
information. Specifically, the robot must be able to response
and talk about following topics:

• General greeting and bidding good bye
• Appointment: Visitor would like to meet someone or

call someone. The robot will check the appointment
database and notify the staff involved

• Facility enquiry: Visitor would like to check the
availability of facilities or ask for more information
about a specific facility

• Call transfer: Search the contact of a staff and
transfer a phone call

• Taxi booking: Book a taxi and SMS the booked taxi
plate number to visitor

• General enquiry: Visitor would like to check weather
information and traffic information

B. Dialogue Configuration
As presented in the section of system architecture, dialogue

components can be reused by just specifying the components
in XML configuration file. In this design, all the components
used are from existing components developed by our
laboratory as shown in Fig. 4.

 <Plugins>
 <Plugin>SR_WinTTS</Plugin>
 <Plugin>SR_SpeechEnhancement</Plugin>
 <Plugin>SR_Dragon</Plugin>
 <Plugin>SR_SLUR</Plugin>
 <Plugin>SR_NLG</Plugin>
 <Plugin>MySQLDatabase</Plugin>
 </Plugins>

Fig.4 Components Setting for Receptionist Dialogue

In this setting, we use far talk microphone array to record

speech, Dragon speech recognizer for speech recognition, our
in-house developed spoken language understanding module to
interpret the utterance, in-house developed NLG module
which supports AIML to generate response, Windows SAPI is
used for speech synthesis. In addition, a database component
is used to access our staff database and facility database. A
component can be replaced by any other component of the
same type. For instance, if we change “SR_WinTTS” in Fig.
4 to “SR_Loquendo”, then the TTS of current dialogue
system is changed to Loquendo without any other changes
involved. Most importantly, the pipeline information flow can

also be constructed by a message handler as shown in Fig. 5.
As shown in Fig.5, once the message handler is registered,

it starts to direct messages from one component to another
component. First the microphone triggers the “BufferFull”
event and sends a message to the message centre when its
recording buffer is full. The message handler catches this
message and posts a message to speech recognizer with the
buffered audio stream. The speech recognizer then performs
speech recognition and sends a message “RecognitionResult”
to the message centre with its recognition result. Then the
message centre directs this message to natural langue
understanding component. The natural language
understanding module will send back its result in message
“FrameInfo” when it finishes the parsing. With the result
from natural language understanding, the message centre
passes the understanding result to dialogue manager to do
topic classification and semantic frame filling. The dialogue
manager will call natural language generation module based
on the context and embedded knowledge. The natural
language generation component then generates the response
and posts its result to the message centre in its message
“Speak”. Once receiving the “Speak” message, the message
centre will direct this message to speech synthesizer. Finally
the system responds to the user in speech. The pipeline
information flow is graphically shown in Fig. 6.

<handler name="CommonHandler">
 <messages>
 <component>
 <Record>
 <BufferFull>
 <post module="ASR" command="DoRecognition"/>
 </BufferFull>
 </Record>
 <ASR>
 <RecognitionResult>
 <var name="text" expr="_LPARAM1_"/>
 <call function="NameVariationMap">
 <var expr="text"/>
 </call>
 <post module="NLU" command="DoNLU" param="text"/>
 </RecognitionResult>
 </ASR>
 <NLU>
 <FrameInfo>
 <object name="nluRes" class="list"/>
 <getlist name="nluRes"/>
 <fire param="nluRes"/>
 </FrameInfo>
 <NoResult>
 <speak param="Sorry. I do not fully understand your talk…"/>
 </NoResult>
 </NLU>
 <NLG>
 <Speak>
 <speak param="_LPARAM1_"/>
 </Speak>
 </NLG>
 </component>
 </messages>
</handler>

Fig.5 Construction of pipeline information flow

C. Database for Receptionist
The receptionist functions rely very much on receptionist

database. We built up a MySql database with following tables
to support the receptionist tasks:

• Staff database – More than six hundred entries with
staff ID, salutation, full name, designation, telephone
number, email address, department, location, etc.

• Facility database – About fifty entries with facility
ID, name, category, tags, unit number, description
and contact number

• Meeting database – This is a database recording
everyday’s meeting information. It includes meeting
time, venue, visitor information, etc.

• Visitor database – Database recording visitor’s
information such as visitor’s name, salutation,
contact number, email address, organization, etc.

Fig.6 Diagram of pipeline information flow formed in Fig. 5

Currently, meeting database and visitor database have not
been integrated yet. Staff database and facility database can
be connected and queried in XML script by commands
“connectdb” and “querydb”. Following statements query staff
names from staff database by current database connection:

<object name="staffList" class="list"/>
<querydb param="’select staff_name from rr_staff’"

return="staffList"/>
In addition, spelling variation of names was done in script

so that the dialogue system is still able to understand staff
names when they are called in different sequences

D. Task Representation
A dialogue topic can be represented as state or frame in

XML script. A frame consists of a number of slots. A slot
includes several attributes which are designed for question
generation, value constraint and action. Typically, a slot can
include following attributes:

• name – Name of the slot. It cannot be repeated in the
same frame

• type – A slot can be functional slot or informational
slot. Functional slot must be filled up in order to
complete the frame, while informational slot is
optional

• expression – This attribute allows a slot to have a
default value, which can be an expression

• question – Question for this sot. Dialogue manager
always attempts to finish a topic. It will check every
functional slot in current frame. If this slot is not
filled, it will pose this question and try to seek the
slot value from user

In addition, a slot can have following sub-nodes for
constraints and actions:

• cardinality – Represent the constraints of current slot
• help – Similar to “question” attribute, this is more

generic representation for questions for this slot.
Many variations of questions can be used

• filled – Specify actions to be executed when this slot
is filled up. Any action is allowed, for instance,
sending a message to TTS for speech, call a function,
query a database, transit to a new dialogue state, etc.

<slot name="FacilityName"
 type="Functional"
 expr="unknown"
 question="Which facility do you want to know more?" >
 <cardinality type="set">
 <value>Swimming pool</value>
 <value>Sky garden</value>
 <value>Auditorium</value>
 <value>Star home</value>
 </cardinality>
 <filled>
 <querydb param="'select * from facility where name=\''+this.FacilityName+'\''"

 return="dbRes"/>
 <post module="NLG" command="Generate" param="dbRes[6]"/>
 </filled>
 </slot>

Fig. 7 Sample slot representation on facility name

Fig. 7 shows an example on facility name slot which
includes most of the attributes and sub-nodes stated above.
The slot “FacilityName” is a functional slot which must be
filled up for further conversation. Here we assume that the
allowable facilities are swimming pool, sky garden,
auditorium and star home. <filled> action can be defined in
slot level as shown in Fig. 7. Alternatively, it can be defined
in frame level. In the frame level, <filled> node is defined for
the action when all its functional slots are filled. When one
topic is completed, the dialogue topic engine will search all
the registered topics and try to continue: a) a previously
unfinished topic because of topic changing; b) a new topic if
no any unfinished topic exists. This new topic will be set as
current topic. The system will initiate the conversation if the
user has not done so.

For the proper design of slots of a topic, it would be very
helpful to analyze possible conversations and queries. Based
on the analysis, categorized information can be used to decide
what kind of slots should be defined. For instance, facility
information query can be done by facility name, category,
location, etc. Hence, facility name, category and location can
be the slots of facility. However, the category, location,
product type and action should be informational slots. These
slots do not directly contribute to the fulfillment of the topic
“Facility”, they are attributes that can be used to help
information query about facility. Fig. 8 shows conceptual
frame deisgn of facility frame.

Facility enquiry can be based on one or multiple slots, for
instance:

User: Where is the swimming pool ? (name)
Receptionist: The swimming pool is on the twenty third
floor,…
User: Is there any food court in Fusionopolis ? (category)
Receptionist: Yes, there is one food court named Food Chain
food court at basement one.

User: Can I find any Coffee shop on the first floor? (product
type, location)
Receptionist:Yes, Starbucks Coffee and Ya Kun Toastwich
are on the first floor.

Name:

Category:

Location:

Product type:

Action:

Confirmation

Response

Fig. 8 Conceptual frame design for facility

We represent all the dialogue tasks in different dialogue

frames and integrate the dialogue system with MySql
database. A robust spoken language understanding component
is used to transform speech recognitions results into
interpretable representation of meaning. The representation
can further be mapped into topics and semantic slots.
Preliminary test was carried out on our social robotics test-
bed, OLIVIA [17][18]. The receptionist is able to actively
manage all its tasks and reply to the user based on the
information from database and current dialogue status. Table
1 shows sample communication between user (U) and
receptionist (R) on different topics.

VI. CONCLUSION AND FUTURE WORK

This paper presents a configurable spoken dialogue
platform for ASORO robots. The platform is able to integrate

TABLE I

SAMPLE CONVERSATION BETWEEN USER AND ROBOT

Communication Comments

R1: Good morning, how can I help you? System initiative

U1: I am David from Comptec to meet Dr. Jeffery Ho.

U2: By the way, is there any coffee shop on this seond floor? User initiative & change topic

R2: No, however, there are two coffee shops on the first floor, namely, Starbucks
Coffee and Ya Kun Toastwich.

Query Database by category and
location

U3: How about food court?

R3: There is one food court named Food Chain food court at basement one. Query Database by category

R4: What’s the time of your appointment? Change initiative & continue
unfinished topic

U4: 10:30am.

R5: Just a moment. I will call Dr. Jeffery Ho. Frame completed

heterogeneous dialogue components and engines through
communication middleware or a number of adaptors in a
plug-and-play fashion. The proposed technology employs
object-oriented approach, loose component coupling, event
driven paradigm, hub-and-spoke topology and service
oriented architecture to facilitate the easy construction of
robust and efficient spoken dialogue applications. The
platform supports state-based and frame-based/plan-based
dialogue techniques, user-initiative, system-initiative and
mixed-initiative dialgoue strategies, multi-topic and topic
changing management, confirmation, database query, etc.
Compared with other XML-based dialgoue system, the
current dialgoue framework empowered by a full-fledged
XML script engine which supports scoped variables, arrays,
list, string handling, expression, if/else statement, for loop,
functions, timer, socket communication, file I/O, as well as
pipeline information flow programming. In addition, the
platform is domain independent, lightweight and does not
require any other supporting software or environment setting.
Most importantly, it can be enhanced by new plug-in
development with API provided by the framework. Our
practice on the receptionist robot showed that the
development cycle for a new spoken dialogue system can be
greatly reduced by its nature of configurability and
component reusability as well as the powerful XML-based
dialogue engine. The new dialogue system based on the
platform is robust because users only need to deal with XML
script for task modeling, dialogue move control and
knowledge representation. No any programming effort is
needed on the core dialogue framework.

For the future work, the communication middleware can be
enhanced to support more protocols. In the mean time we also
intent to develop more plug-ins to increase the pool of
dialogue components. The inspiring functions of the
components include robust information retrieval for robot,
interface to make use of different types of knowledge base
and ontology.

ACKNOWLEDGMENT

The research described in this paper is the result of
collaborative effort of colleagues in the Lab of Agency for
Science, Technology and Research (A*STAR) Social
Robotics (ASORO) of Singapore and Mr. Yen-Lu Chow from
WholeTree Technologies, their contributions are gratefully
acknowledged.

REFERENCES

[1] MICHAEL F. MCTEAR, “Spoken Dialogue Technology:
Enabling the Conversational User Interface”, ACM Computing
Surveys, Vol. 34, No. 1, March 2002, pp. 90–169.

[2] Terrence Fong, Illah Nourbakhsh, Kerstin Dautenhahn: A
survey of socially interactive robots, Robotics and Autonomous
Systems 42 (2003) 143–166.

[3] Enzo Mumolo, Massimiliano Nolich and Gianni Vercelli, An
Interactive Receptionist Robot for Users with Vocal Pathologies,
Proceedings of the 2007 IEEE 10th International Conference on

Rehabilitation Robotics, June 12-15, Noordwijk, The
Netherlands.

[4] Nisimura, R. Uchida, T. Lee, A. Saruwatari, H. Shikano, K.
Matsumoto, Y., ASKA: receptionist robot with speech dialogue
system, Proceedings of the 2002 IEEE/RSJ, International
Conference on Intelligent Robots and System, Lausanne
Seitzerland, 1314- 1319 vol.2.

[5] Illah R. Nourbakhsh, Clay Kunz, Thomas Willeke, The Mobot
Museum Robot Installations: A Five Year Experiment,
International Conference on Intelligent Robots and Systems, (pp.
3636 - 3641). Las Vegas, NV: IEEE, 2003.

[6] Galaxy Communicator Documentation:
http://communicator.sourceforge.net/sites/MITRE/distributions/
GalaxyCommunicator/docs/manual/index.html.

[7] Seneff, S., Hurley, E., Lau, R., Pao, C., Schmid, P. and Zue, V,
“Galaxy-II: A Reference Architecture for Conversational
System Development,” Proceedings of the 5th International
Conference on Spoken Language Processing (ICSLP ’98), pp.
931-934, Sydney, Australia, December, 1998.

[8] Dan Bohus, Antoine Raux, Thomas K. Harris, Maxine Eskenazi,
Alexander I. Rudnicky, Olympus: an open-source framework
for conversational spoken language interface research.
Proceedings of HLT-NAACL 2007 workshop on Bridging the
Gap: Academic and Industrial Research in Dialog Technology
(2007).

[9] Levin, E., Narayanan, S., Pieraccini, R., Biatov, K., Bocchieri,
E., Di Fabbrizio, G., Eckert, W., Lee, S., Pokrovsky, A., Rahim,
M., Ruscitti, P., and Walker, M The AT&T-DARPA
Communicator mixed-initiative spoken dialog system,
Proceedings of the Sixth International Conference on Spoken
Language Processing (ICSLP’2000), Beijing, China, pp. 122-
125, 2000.

[10] Staffan Larsson, David R Traum, Information state and dialogue
management in the TRINDI dialogue move engine toolkit,
Natural Language Engineering, Volum 6, Issue 3-4, 323 – 340,
2000.

[11] J. Bos, E. Klein, O. Lemon, T. Oka, “DIPPER: Description and
Formalisation of an Information-State Update Dialogue System
Architecture”, Proceedings of the Fourth SIGdial Workshop of
Discourse and Dialogue, 2003.

[12] Peter Ljunglöf, Trindikit.py : An open-source Python library for
developing ISU-based dialogue systems. In Proceedings
IWSDS'09, 1st International Workshop on Spoken Dialogue
Systems Technology Workshop, Kloster Irsee, Germany, 2009.

[13] S.W. Hamerich, Y.H. Wang, V. Schubert, V. Schless and S. Igel,
“XML-Based Dialogue Descriptions in the GEMINI Project”.
Proceedings of the “Berliner XML-Tage 2003, Germany, pp.
404-412.

[14] Ridong Jiang, Yeow Kee Tan, Haizhou Li, Chern Yuen Wong
Anthony, Dilip Kumar Limbu, Development of Event-Driven
Dialogue System for Social Mobile Robot, Global Congress on
Intelligent Systems (GCIS 2009), 117~121, Xiamen, China.

[15] David Schlangen, Modelling dialogue: Challenges and
Approaches, Künstliche Intelligenz. (the Journal of the Section
on Artificial Intelligence of the German Association for
Computer Science); 3/05; pp.23--28; July 2005

[16] Michael F. McTear. Spoken Dialogue Technology. Springer
Verlag, London, Berlin, 2004.

[17] Por, L.T.C. Tay, A. Limbu, D.K., Olivia 2.0 @ TechFest 09:
Receptionist robot impressed visitors with lively interactions,
Human-Robot Interaction (HRI), 2010 5th ACM/IEEE
International Conference, 351-351. Osaka, Japan.

[18] ASORO (A*STAR Social Robotics) OLIVIA Robot:
http://www.asoro.a-star.edu.sg/robots_olivia.html

