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Abstract—
 
This paper presents a new symbol-rate timing 

recovery approach based on adaptive interpolation to reduce the 

sampling frequency of analog-to-digital converter (ADC) and 

power consumption for low-energy high-speed wireless 

communication system, such as ultra-wideband (UWB) system. 

Using a principle of maximum absolute-squared sum (MASS), 

the ADC can select the optimal clock phase provided by a 

multiple clock generator to sample the incoming signals at the 

symbol rate. Adaptive interpolation is then introduced to 

compensate for the performance lose caused by residual timing 

error due to insufficient amount of clock phases. Both the least 

mean square (LMS) algorithm and recursive least square (RLS) 

algorithm can be applied on the adaptive interpolation filter. 

Simulation results show that adaptive interpolation can improve 

the performance by decreasing the residual timing error, and the 

RLS interpolator outperforms the LMS one at the cost of 

increased complexity. 

I. INTRODUCTION 

Timing recovery plays an important role in ensuring precise 

signal decoding performance as it affects the sampling phase 

and frequency of analog-to-digital convertor (ADC) for 

incoming signals. The ADC sampling frequency reflects a 

trade-off between system performance and power 

consumption, which has become a crucial issue in the design 
of wireless communication systems. An approach proposed in 

[1-3] applies a fixed multirate sampling clock (at Nyquist rate 

or a higher rate) for ADC to sample the incoming signals, and 

then use them to reconstruct the symbol-rate signals with a 

interpolation algorithm. Another approach proposed for 

symbol timing synchronization [4,5] employs a polyphase 

filterbank to perform the interpolation. It eliminates the need 

of a separate interpolation filter and incorporates maximum 

likelihood timing techniques. However, both methods above 

require a sampling rate greater than the Nyquist rate, which 

will increase the difficulty for circuit design and result in high 
power consumption for high speed applications. 

To decrease the power consumption and use symbol-rate 

sampling approach in high-speed communication system, a 

dynamic sample-timing controller (DSTC) and phase-tunable 

clock generator (PTCG) are introduced in wireless orthogonal 
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frequency division multiplexing (OFDM) systems [6]. The 

DSTC searches for the optimal sampling phase at the symbol 

rate provided by the PTCG to reduce extra power consump-

tion. But the performance relies on the number of clock 

phases, insufficient number of clocks will lead to significant 

performance degradation. To reduce the number of clocks, an 

interpolation method based on baud-rate sampling is proposed 

in [7] by exploiting the structure of pulse amplitude 
modulation (PAM) signals in Gigabit Ethernet communica-

tion, and the detailed implementation is given in [8]. 

This work proposes a timing recovery method by employ-

ing a set of multiphase clocks to reduce the sampling 

frequency to symbol rate with a method of maximum  

absolute-squared sum (MASS) to control the sampling. Then 

adaptive interpolation is introduced to eliminate the residual 

timing error caused by insufficient amount of clock phases. 

Both least mean square (LMS) and recursive least square 

(RLS) adaptive algorithms [9] are applied on the updating of 
the coefficients of the adaptive interpolation filter. 

The rest of the paper is organized as follows: Section II 

demonstrates the system architecture and detailed implement-

ation of the proposed approach. MASS sampling control was 

introduced in Section III. Section IV explores the application 

of LMS and RLS algorithms on the adaptive interpolation 

filter. Simulation results and conclusions are shown in Section 

V and Section VI, respectively.  

II. SYSTEM MODEL 

A. System Overview 

This approach adopts a digital multiple clock generator to 

provide a series of clocks running at the symbol rate. 
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Fig. 1. Multi-clock generator. 

As illustrated in Fig.1, these clocks have the same phase 

space and are treated as clock candidates by a multiplexer to 

drive the ADC. With the sampling clock selection signal 
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provided by the MASS method, the ADC can sample the 

incoming signals with a selected optimal clock, which is close 

to the ideal sample instant. The proposed timing recovery 

system is shown in Fig. 2, including a timing loop [2-3] and 

an adaptive interpolation block. 
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          Fig. 2. System architecture of the proposed timing recovery method. 
 

The incoming analog signal ( )x t is sampled at the thk  

symbol corresponding to value ( )x k by the ADC with an 

optimal clock phase selected by MASS. Due to the 

insufficient number of clock phases of the multiple clock 

generator or clock jittering, there is usually a residual timing 

error (as illustrated in Fig. 3) between the sampling instant 

and the ideal sampling instant, causing a difference between 

the sampled value and desired value. Hence an adaptive 
interpolator is employed to implement a process of 

interpolation with the sampled symbol-rate values to 

eliminate the difference. The rest of the system loop contains 

a timing error detector, a loop filter, and a controller.  

t
2t

1t Residual Timing ErrorSampling Instant

Ideal Sampling Instant

Fig. 3. Residual timing error. 

B. System Implementation 

Since this system works at a symbol rate, the Mueller-

Müller timing error detection algorithm [10] is employed. The 

timing error information can be calculated by 

ˆ ˆ[ ( 1) ( ) ( 1) ( )]errort Re r k r k r k r k                      (1) 

where ( )r k is the thk  sampled signal and ˆ( )r k is its decision 

value,  denotes the conjugate operation and Re denotes the 

real part. The implementation structure is shown in Fig. 2. For 

QPSK modulation, two modules are employed for the in-

phase and quadrature components in our simulation. 

The loop filter as showed in Fig. 2 is a classic proportional 

integrator, containing a proportion path and an integration 

path.  

The controller is a modification one to that of used in [2]. 

Both the phase selection information and residual timing error 

are derived from the fractional interval
k  by quantizing 

k  

with the number of clock phases. 

III. MASS SAMPLING CONTROL 

Since we want the ADC to sample at a symbol rate and 

reconstruct the desired signal, the sampling phase should be 

optimal after the phase adjusting stage. The MASS sampling 

control method selects the phase closest to the ideal sampling 

instant.  

Assume signal at transmitter is ( )Tx t , the total filter 

response of transmitter and receiver is ( )f t , then the received 

signal is given by 

   ( ) ( ) ( ) ( )R Tx t x t f t w t                               (2) 

where ( )w t is additive white Gaussian noise (AWGN). 

Considering the ADC sampling phase offset t , Let 

[ ] [( ) ]t sf n f n t T  , where sT is the symbol period and t is 

confined to | | 0.5.t   The optimal sampling phase optt  

according to a max signal-to-ISI [6] is defined as 
2
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The normalized expected value of sampled signal is given as  

 
2 22 2

,
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E x n f f n 


                  (4) 

where 2

w  denotes the power of the AWGN. Based on 

equation (3), (4) can be rewritten as 

 
22 2

,
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| [ ] | ( 1) ( [ ] ).R t t t w t t

n

E x n SIR I I f n


        (5) 

Then we can see that the optimal sampling phase 

corresponds to a maximum  2

,| [ ] |R tE x n . However, the 

calculation of the expected value is unrealistic. So we use the 
maximum absolute-square sum of finite symbols instead of 

 2

,| [ ] |R tE x n , i.e. at the stage of adjusting phases, each 

symbol is sampled by all the clock phases with different t , 

then choose the phase that results in the maximum absolute 

squared sum as the optimal phase optt . At this stage, the 

sampling phase is selected by the controller of the loop.  

IV. ADAPTIVE INTERPOLATION 

As illustrated in Fig. 3, a residual timing error may exist 

between the sampled signal and the ideal value, so in this 

section we exploit how interpolation is used to compensate      

for this difference. Suppose the sampled incoming signal at 

thk  symbol is 



1( ) ( ) ( ) *
k

n

s n s s kx k x kT a h kT nT t a h                 (6) 

where 
k

a denotes the thk  symbol value,
kh denotes the sample 

of the total impulse response before the timing recovery and 

1t is the timing phase offset that can be expressed as the 

sampling instant, as illustrated in Fig.3. Since the ideal 

sampling instant is
2t ,  the desired sampled signal is 

k( ) ( )s n k n k

n

Tr k r k a g g a                      (7) 

where 
k 2( )sh kT tg  corresponds to the optimal sample of 

the total impulse response. Then ( )sr kT  can be rewritten as 

1 1( ) ( ( )) ( ) ( )s k k s s k kr kT g h x kT x kT h g                 (8) 

where 1

kh is the sample of the inverse of the continuous 

impulse response ( )h t . So the desired signal can be obtained 

by filtering the sampled signal with a linear filter 
kf  

( 1 *k k kf h g ), i.e. the interpolator.  

 Considering that the 1

kh and 
kg are unknown, by using 

first order Taylor approximation [7], we can get 
kg by 

'

k k kg h t h                                 (9) 

where 2 1t t t   is the residual timing error and '

kh is the 

sample of the derivation of ( )h t .Then the interpolation filter 

kf  can be given by 

1 ' 1 '*( ) ( ) ( * ).k k k k k kf h h t h k t h h                (10) 

On substituting (10) into (8) and let 1 '*k k kw h h , we can 

get the desired signal  

( ) ( ( ) )

.
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r kT x f x k t w

x t w x
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
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                 (11) 

So the desired signal can be obtained by calculating nw . 

The solution is to make it an adaptive FIR filter and update it 

with adaptive algorithms. 

A. Leas Mean Square (LMS) Algorithm 

First adaptive algorithm introduced is the Least Mean 

Square (LMS) [9] algorithm.  Assume the weight vector of 

the N-tap filter is 

0 1 1
[ ( ), ( ), , ( )] .T

Nnw w n w n w n


                    (12) 

The incoming sampled signals are 

[ ( ), ( 1), , ( 1)] .T

nx x n x n x n N                    (13) 

For the recovered signal ( )r n , the corresponding desired 

signal is ( )d n , which is supplied by the training sequence at 

the beginning and by the decision value later. So the error 

( )e n is given by 

( ) ( ) ( ) ( (n) ( )) .n k n

n

e n d n r n d x n t w x          (14) 

Then we can get the gradient vector as 

2
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
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
                      (15) 

Substituting (15) into the updating of the weight vector, we 

can get the recursive equation 
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                           (16) 

where  is the step size of the LMS algorithm. 

B. Recursive Least Square (RLS) Algorithm 

To gain a faster convergence speed and better tracking 

ability, we can also use the Recursive Least Square (RLS) [9] 

algorithm to update the weight vector ( )w n adaptively.  

Considering the RLS updating procedure for ( )w n   and the 

data structure of recovered signal in (11), we need to make 

some modifications to use the RLS algorithm. 

 First, the desired signal is rewritten as the difference 

between the desired signal and the sampled signal, given by 

                   ( ) ( ) ( ).d n d n x n                                    (17) 

 Second, the input vector of the adaptive filter is modified 

as the multiplication product of the sampled signal and the 

residual timing error, as 

                       ( ) ( )x n t x n                                         (18) 

Substituting (17) and (18) into the recursive process of the 

RLS, we can get the adaptive updating method for
nw , given 

by 

Initialization: 0w  0
1
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

                            (22) 

where H denotes Hermite transposition, I is a N N unit 

matrix,  is a small positive constant and  is forgetting 

factor in the range of (0,1).  

V. SIMULATION RESULTS 

This section investigates the performance of the proposed 

timing recovery method via computer simulation. In this 

simulation, QPSK modulation is employed and signals are 

transmitted in an AWGN channel where the SNR is set to be 

30 dB. 200 symbols are used for the MASS module to select 

the sampling phase, during this period, the sampling phase is 

provided by the controller and the interpolator coefficients are 

trained. The numbers of the clock phases are chosen to be 8 

and 16 respectively. Simulation considers the worst condition, 

in which the ideal sampling instant is just between two 

adjacent phases. 

Fig. 4 shows the comparison of the sampled signal and the 

recovered signal based on RLS interpolation in terms of 



constellation map. We can see that the residual timing error is 

well compensated after interpolation, and with the increase of 

the number of clock phases, a significant performance 

improvement is obtained. 

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

(a)
-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(b)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

(c)
-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(d)  
Fig. 4. Constellation maps of (a) sampled signal and (b) recovered signal of 8 

phases; (c) sampled signal and (d) recovered signal of 16 phases. 

 

To compare the interpolation performance between LMS 

and RLS interpolators, the time-averaged signal-to-

interference (SIR) [11] is introduced, which is defined as 
2
{ ( )}

( ) 10 log
{ ( )}

E r n
SIR n

var r n
                          (23) 

where ( )r n is the thn  recovered signal of interpolator. Fig.5 

shows the simulation results of the LMS interpolation and 

RLS interpolation. The SIR is calculated in 300 independent 

simulations. It is shown in Fig. 5 that the RLS interpolation 

has a better performance than LMS even when the sampling 

phases increase. Since RLS algorithm is more complex than 

LMS algorithm, the results also reflect a tradeoff between 

performance and complexity. 

 
Fig.5. SIR of recovered signal: LMS vs. RLS. 

VI. CONCLUSIONS 

In this paper, a novel symbol-rate timing recovery approach 

is proposed for low-energy high-speed wireless 

communication system to reduce the sampling frequency and 

power consumption. Continuous signals are sampled at the 

symbol rate by the ADC based on evenly spaced multiple 

clocks which run at the symbol rate. A MASS method is used 

to select the optimal sampling phase. LMS and RLS 
algorithms based interpolation approaches are introduced to 

compensate for the performance lose caused by the residual 

timing error. Simulation results show that sampled signals are 

significantly recovered after the interpolation process, and 

increasing in the number of clock phases will also improve 

the performance. It is also shown that the RLS interpolator 

outperforms the LMS one given the same amount of clock 

phases, which reflects a tradeoff between the performance and 
the complexity. 
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