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Abstract—In adaptive system identification, exploitation of
sparsity that may be inherent in the system leads to improved
performance of the identification algorithms. The recently pro-
posed ZA-LMS algorithm achieves this by introducing a “zero
attractor” term in the update equation that tries to pull the
coefficients towards zero, thus accelerating the convergence.
For systems whose sparsity level, however, varies over a wide
range, from highly sparse to non-sparse, the ZA-LMS algorithm,
however, performs poorly, as it can not distinguish between the
zero and the non-zero taps of the system. In this paper, we
propose a modified ZA-LMS algorithm for tackling the case of
variable sparseness, which selectively chooses the zero attractors
only for the “inactive” taps. The proposed method is very simple,
easy to implement and well supported by simulation studies.

I. INTRODUCTION

In practice, one often encounters systems that have a sparse
impulse response, with the degree of sparseness varying with
time and context. Examples of such systems include echo paths
for both network and acoustic echo [1]-[2], sparse wireless
multipath channels [3] and shallow underwater channels [4] for
acoustic communication. Conventional adaptive system identi-
fication algorithms like the LMS [5] and its variants, however,
do not make use of the a priori knowledge of the sparseness
of the system and thus perform poorly both in terms of steady
state excess mean square error (EMSE) and convergence
speed. In recent years, several algorithms have been proposed
that exploit the sparsity of the system and achieve better
performance, like the partial update LMS deploying either
statistical detection of active taps [6]-[7] or sequential partial
updating [8]-[9], the proportionate normalized LMS (PNLMS)
and its variants [10]-[11] etc. More recently, motivated by
LASSO [12] and the recent progresses in compressive sensing
[13]-[14], an alternative approach has been proposed in [15]
to identify sparse systems which introduces a /; norm (of the
coefficients) penalty in the cost function which favors sparsity.
This results in a modified LMS update with a zero attractor for
all the taps, named as the Zero-Attracting LMS (ZA-LMS). A
variant of the ZA-LMS is also proposed in [15] which employs
reweighted step sizes for the different taps to adjust to variable
sparsity. This is, however, associated with huge computational
burden due to the L division operations at each step, where L

is the number of taps in the filter. Separately, in [16], a class of
sparseness-controlled algorithms have been proposed, which
are robust against the variation of sparsity in the system model
while requiring again much higher computational complexity.

In this paper, we propose a modified ZA-LMS algorithm for
tackling the case of variable sparseness. The proposed algo-
rithm uses a gradient comparison mechanism for comparing
the sign of the standard LMS part in the ZA-LMS update
terms, with the sign of the so-called “zero attractor” and selec-
tively chooses the zero attractors only for the “inactive” taps.
The proposed method is very simple and easy to implement,
with simulation studies confirming its improved performance
over the conventional ZA-LMS algorithm.

II. REVIEW OF THE ZA-LMS ALGORITHM

In a ZA-LMS based adaptive filter, with (n) as input and
d(n) as the desired response, a L-th order filter coefficient
vector w(n) = [wo(n),wi(n), - ,wr_1(n)]T is updated in
time as [15],

ey

where x(n) = [z(n),z(n —1),---,2(n — L + 1|7 is
the input vector, y(n) = w7’ (n)x(n) is the filter output,
e(n) = d(n) — y(n) is the filter output error, all at the n*?
time index, p is a suitably chosen constant with very small
magnitude and p is the usual adaptation step size. In a system
identification problem, d(n) is the signal observed at the plant
output, i.e., d(n) = wZ,,x(n)+eopt(n), where w,; is the true
system coefficient vector and e,,:(n) is the observation noise,
independent of x(n) and with variance o2 = Ele2,,(n)].
Like the LMS algorithm, the ZA-LMS too converges in mean
though with a bias, under identical convergence condition,
namely, 0 < p < ﬁ, where R = E[x(n)xT(n)] is the
input autocorrelation matrix. The limiting value of the adaptive
filter coefficient vector is given by [15],

w(n +1) = w(n) + ue(n)x(n) — psgnlw(n)],

@)

n—oo

lim w(n) = wept — gR_lE[sgn[W(n)]],

where sgn[.] is the usual signum function. The term
—LR'E[sgn[w(n)]] in the RH.S. of (2) provides the



bias term. As compared to the standard LMS algorithm,
the ZA-LMS update equation (1) has an extra update term,
—psgn[w(n)]. This is the so-called zero attractor which tries
to pull the filter coefficients to zero and as a result, for the
zero taps, the convergence is accelerated. For the non-zero
taps, however, while the standard LMS update term in (1),
namely, pe(n)x(n) aims at convergence (in mean) of the tap
weights to their optimum values, the zero-attractor still tries
to attract the coefficients to zero, leading to slowing down of
the convergence for these taps. This is one major drawback
of the ZA-LMS algorithm, as it can not distinguish between
sparse and non-sparse systems. In this paper, we propose a
novel gradient comparison based mechanism to improve the
convergence properties of the ZA-LMS algorithm, making it
robust against variable system sparsity.

III. THE PROPOSED GRADIENT COMPARISON BASED
ALGORITHM

In the proposed gradient comparison based LMS (GC-LMS)
algorithm, the zero-attractors are selectively chosen for only
those taps that have polarity same as that of the gradient of the
squared instantaneous error. The compact form of the proposed
GC-LMS weight update equation is given by,

w(n+1)
= w(n) + pe(n)x(n) — pD(n)sgn(w(n)),
3)

where D(n) is a diagonal matrix with |0.5{sgn(e(n)x(n)) —
sgn(w(n))}| vector as diagonal, ie., D(n) =
diag[|0.5{sgn(e(n)x(n)) — sgn(w(n))}[).

To understand the functioning of the algorithm consider
the diagonal of D(n). The first term in this is given by
sgn(e(n)x(n)) where the vector e(n)x(n) provides the neg-
ative of the gradient of the squared instantaneous error, e?(n)
with respect to the tap weights at w = w(n). More specifi-
cally, e(n)x(n) = —%[%(0”) e %ﬂ]ﬂwzw("). Now, con-
sider the i*" tap weight w;(n), i = 0,1,---,L — 1. Let the
corresponding true system coefficient be denoted by wopt,;-
Then, first consider the case where wey:; 7 0. Of the two
possibilities, wepr,i > 0 and wepe,; < 0, we consider one
of them, say, wopt,; > 0 (the same logic would apply to
the case wopt; < 0 as well). If, suppose w;(n) > wWopt,i,
then, on an average, from the quadratic nature of the ez(n)
surface (as a function of wg(n), wi(n),....wr—1(n)), %
will be positive, i.e., [e(n)x(n)]; will be negative, meaning
[D(n)];; = 1, and thus, for the i*"tap, both the zero-
attractor term —p[sgn(w(n))]; and the LMS update term
ple(n)x(n)]; will be acting in the same sense. If, on the

other hand, w;(n) < wopt,;, ON an average, gj((’;)) will be
negative, i.e., [e(n)x(n)]; will be positive. Now, if w;(n) is
also positive, we will have [D(n)]; ; = 0, meaning, the effect
of the zero-attractor, —psgn[w;(n)] to pull w;(n) towards zero
will be neutralized and the update equation (3) will follow
the standard LMS update dynamics. If, on the other hand,

w;(n) < 0, by the same logic as above, [D(n)];; = 1,

meaning both the zero-attractor —psgn(w;(n)) and the LMS
update term, ple(n)x(n)]; will act in the same sense. If,
however, wop;; = 0, we always have [D(n);;] = 1 and
the update equation (3) turns out to be the simple ZA-LMS
algorithm.

So, the main goal for using the diagonal D(n) is not to
use the zero attractor whenever it is working against the
conventional LMS update, because the use of zero attractor is
only advantageous, in mean square error sense, if it strengthens
the standard LMS update dynamics.

Like the LMS algorithm and its several variants, the
proposed GC-LMS algorithm too converges in mean.
However, like the ZA-LMS algorithm, it too converges with
a bias, as explained in the theorem below.

Theorem 1 : In the proposed GC-LMS algorithm, the
mean coefficient vector E[w(n)] converges as n — oo for
2

lim E[w(n)] = E[w(o0)]

n—oo

— Wopt — IBLR*E[Dwo)sgn[w(oo)n.
“4)

Proof: Omitted.

IV. SIMULATION STUDIES

The proposed algorithm was simulated for identifying a
FIR system with 16 tap coefficients. Initially, the system was
taken to be highly sparse with only one non-zero element,
-0.9 in the first tap position and all other taps set to zero.
After 1000 time steps, the system was changed to a semi-
sparse system that has non-zero values only for the first five
tap coefficients, given as -0.9, 0.8,-0.5,0.6,-0.4. Finally, after
2000 time steps, the system was changed to a non-sparse sys-
tem, with w,,; = [—0.9,0.5,0.5,0.5,0.5,0.5,—0.76, —0.76,
—-0.76,—-0.76,0.3,0.9,—0.4,0.4, —0.6,0.7]. The simulation
was carried out for a total of 3000 iterations, with 4 = 0.07,
p = 0.0015, ¢2 = 0.001, and with the input z(n)
taken as a zero mean, unit variance white random process.
The simulation results are shown in Fig. 1 by plotting the
MSE against the iteration index n (obtained by averaging
e?(n) over 400 experiments) for the proposed algorithm (green
line) against that for the ZA-LMS (red line) and the standard
LMS (blue line) algorithms. It is easily seen from Fig.(1)
that for sparse and semi-sparse system models, the proposed
algorithm performs at par with the better of the ZA-LMS and
the LMS algorithms (former for sparse systems and latter for
semi-sparse systems). For highly non-sparse systems, however
the performance of the GC-LMS, though better than the
ZA-LMS, turns out to be somewhat inferior to that of the
standard LMS algorithm. Finally we have also simulated in
Fig. 2 the variation of the steady-state EMSE (for a particular
convergence speed) for the LMS (blue), the ZA-LMS (red)
and the proposed GC-LMS (green) algorithms as functions of



system sparsity (defined as the ratio of the number of nonzero
taps to the number of total taps, which varies in the range of
0 to 1 and which actually decreases with increasing sparsity.)

V. CONCLUSIONS

This paper addresses the issue of identification of sparse
systems with variable sparsity. For this, a new adaptive filter
has been proposed by modifying the recently proposed ZA-
LMS algorithm, which introduces certain “zero attractors”,
selectively for the unknown zero taps of the system, thus
accelerating the overall convergence. The proposed method
is very simple, easy to implement and well supported by
simulation studies.
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Fig. 1. The MSE versus no. of observations for the standard LMS (blue), the ZA-LMS (red) and the proposed GC-LMS (green) algorithms.
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Fig. 2. The steady-state EMSE versus system sparsity for the standard LMS (blue), the ZA-LMS (red) and the proposed GC-LMS (green) algorithm.



