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Abstract—Scalable video is an efficient and effective solution 
to stream video over heterogeneous networks to different clients, 
where a full resolution video bit stream can be adapted or 
truncated to meet the diverse network bandwidth requirements. 
Usually, there are several options to extract video streams for a 
given network bandwidth. To guarantee the high quality of 
service (QoS) or quality of experience (QoE) (for example, 
motion smoothness, etc) at a receiver, we propose an Equivalent 
Mean Square Error (Eq-MSE) scheme which is developed based 
on spatial and temporal frequency analysis of input video 
content. It is known that motion intensive content (like sports 
video) typically requires higher frame rate for smooth playback, 
and a relative lower frame rate is sufficient to provide decent 
visual quality for stationary videos. Proposed Eq-MSE is used to 
derive such minimal frame rate (MinFR) for different videos to 
guarantee motion smoothness. A simplified rate model is further 
introduced to obtain the quantization parameter (QP) given the 
MinFR, model parameters and network bandwidth. Thus, model 
derived QP and MinFR are employed to extract the proper video 
sub-stream from a full resolution scalable stream. It is noted that 
our proposed model based scalable adaptation is video content 
dependent. Compared with the default scalable video adaptation 
without considering the video content impact, our proposed 
scheme can provide better perceptual video quality by 
conducting the subjective video quality assessment.  

I. INTRODUCTION 

With the advances of semi-conductor and access network 
technologies, real-time video streaming becomes more and 
more popular in our daily life. For example, we can easily 
enjoy the videos hosted at famous video-sharing communities 
(such as Youtube, Hulu, Tudou, etc) through wired or 
wireless networks using personal computer or mobile devices. 
How to provide the high quality of service (QoS) or quality of 
experience (QoE) to different users over heterogeneous 
networks is a crucial problem for the success of video 
streaming application. We propose to use the scalable video, 
where a full resolution scalable video stream can be adapted 
or truncated at the network gateway or proxy to meet different 
requirements imposed by the subscribed users and/or 
underlying access networks. We choose to use the scalable 
extension of the H.264/AVC (SVC) [1], [2] to enable the 
video bit stream scalability, due to its high coding efficiency 
and friendly network interface. 

SVC includes temporal, spatial, SNR and combined 
scalabilities. Temporal scalability is enabled by the 
hierarchical prediction, such as hierarchical B-pictures [3]. 

Spatial scalability is achieved by encoding each supported 
spatial resolution into one layer. To improve the coding 
efficiency, inter-layer prediction is applied to remove the 
inter-layer redundancy, such as inter-layer intra prediction, 
inter-layer motion/mode prediction and residual prediction. 
SNR scalability includes coarse grain scalability (CGS) and 
medium grain scalability (MGS) [4]. CGS is a special 
example of the spatial salability with the same spatial 
resolution for different layers. To achieve the SNR refinement, 
we usually use different quantization parameters at different 
SNR layers. As an example, higher QP is chosen at lower 
SNR layer while finer QP is applied at higher SNR layer. It is 
noted that CGS provides limited bit stream extraction point 
(i.e., number of extraction point is the number of CGS layers). 
To provide more extraction points, MGS divides the 
refinement coefficients at enhancement layer into several 
fragments so that it can provide a progressive enhancement 
and graceful SNR degradation. On the other hand, MGS is not 
restricted to use the reference signal at current layer. Thus, 
coding efficiency is also improved for MGS by using 
reference pictures at enhancement layer. However, it also 
introduces the decoder drift if there is any packet loss at 
enhancement layer. Therefore, key picture [1] is used to reach 
the tradeoff between the coding efficiency and decoder drift. 
More information regarding the SVC techniques can be found 
in [1]. In this paper, we focus on the joint temporal and SNR 
scalability, and defer the spatial scalability as our future study. 

As aforementioned, layered structure is employed in SVC 
to provide scalability. A typical full-resolution scalable video 
stream consists of a base layer (BL) and one or more 
enhancement layers (EL). Each enhancement layer is able to 
improve the resolution with respect to spatial, temporal or 
SNR. Fig. 1 depicts the layered SVC with one BL and two 
ELs. As shown, the smallest picture is reconstructed using the 
sub-stream extracted at base layer. It is QCIF (176 x 144) 
resolution with frame rate at 7.5 frames per second (fps). The 
intermediate picture is reconstructed using the base layer and 
enhancement layer #1, with CIF (352 x 288) resolution at 15 
fps. The third picture is reconstructed by decoding all layers 
(i.e., 1 BL and 2 ELs). It is 4CIF (704 x 576) resolution at 30 
fps. As known that BL can be decoded independently, while 
decoding EL requires the data of its reference layers. 
Different extraction points usually lead to different quality of 
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experience. How to extract the proper sub-stream to meet the 
network bandwidth while providing enhanced QoE at receiver 
is a crucial problem for scalable video adaptation. In this 
work, we define the QoE as the perceptual video quality. 

 

 
Fig. 1  SVC base layer and enhancement layers. 

 

Usually, video content have a significant impact on the 
perceptual quality.  For example, a sufficiently larger frame 
rate is necessary for a motion intensive video to maintain the 
continuity of the object movement to avoid jitter and 
guarantee the motion smoothness, while for stationary video, 
a relatively lower frame rate is enough to provide the decent 
video quality. For motion-intensive content, bit stream 
extracted at higher frame rate is favored. On the other hand, if 
there are larger high-frequency components (i.e., rich texture) 
in a single frame of the video, a finer quantization to reach 
better spatial quality is typically preferred. To solve this 
challenging problem, we analyze the spatial and temporal 
frequency of the input video content, and propose an 
Equivalent Mean Square Error (Eq-MSE) scheme to derive 
the minimal frame rate (MinFR) for different video sources to 
guarantee the motion smoothness and excellent QoE of the 
decoded video.  We further simplify the rate model proposed 
in [9], and apply it to obtain the exact quantization parameter 
(QP) based on the network bandwidth requirement, MinFR 
and model parameters. In this work, we propose a simple 
table look-up method to estimate the model parameters. 
Alternatively, model parameters can be embedded in the full-
resolution scalable video stream. It requires several bytes to 
embed the model parameters for a whole sequence which is 
far less than the video stream payload.  

This paper is organized as follows. Section II introduces the 
temporal frequency induced by object movement in a video 
sequence (i.e., motion). In Section III we introduce spatial 
frequency of the general object in a picture and propose the 
Eq-MSE to derive the minimal frame rate for different input 
video sources. Simplified rate model is presented in Section 
IV together with the look-up table based model parameter 
prediction. Subjective test evaluation and experimental results 
are shown in Section V. Section VI concludes the paper and 
discusses the future directions. 

II. TEMPORAL FREQUENCY INDUCED BY MOTION 

Spatial frequency is introduced in [5]. We exemplify a 
simple case to show the spatial frequency in Figure 2. 

 

      
(a)                                            (b) 

Fig. 2  2D Sinusoidal signals.(a)  ,x yf f  = (5,0); (b)  ,x yf f  = (3,5). 

 
Horizontal and vertical units are the width and height of the 

image, respectively. Therefore, xf = 5 means that there are 5 

cycles along each row. 
Fig. 2(a) shows that the direction of spatial frequency is 

horizontal. If the plane moves vertically, then the eye will not 
perceive any changes no matter how fast the plane moves. 
Once its motion is tilted from the vertical direction, the eye 
will start to perceive temporal changes. The perceived change 
is most rapid when the plane moves horizontally.  

 

 
 (a)                                             (b) 

Fig. 3  Object is moving at velocity of  ,x yv v . 

 
Fig. 3 depicts that every point  ,x y  at t = 0 is shifted by 

 ,x yv t v t  to  ,x yx v t y v t   at time t due to the motion. 

Alternatively, a point  ,x y  at time t corresponds to a point 

 ,x yx v t y v t   at time 0. Let the image of the object at time 

0 be  0 ,x y  and its moving velocities in horizontal and 

vertical directions by xv  and yv . The image of the object at 

time t is： 

   0, , ,x yx y t x v t y v t                          (1) 

We perform the Continuous Space Fourier Transform 
(CSFT) on (1), where the CSFT of a signal ( )x  is defined as: 

( ) ( ) exp( 2 )K

T
c R

f x j f x dx                     (2) 

where 1 2[ , ,..., ]T K
Kf f f f R   representing the continuous 

domain frequency variable. 
Hence we can have: 
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    (3) 

where  0 ,x yf f  represents the 2D CSFT of  0 ,x y . This 

function means that a spatial pattern characterized by  ,x yf f  

in the object will lead to a temporal frequency, i.e.,  

t x x y yf f v f v                                 (4) 

For a video signal, the temporal frequency is 2D position 
dependent. For a fixed 2D position (x, y), its temporal 
frequency is defined as the number of cycles per second 
usually denoted by Hertz (Hz). 

From (4) we can draw a conclusion that the temporal 
frequency depends on not only the motion, but also the spatial 
frequency of the object. 

III. SPATIAL FREQUENCY OF GENERAL OBJECT IN A PICTURE 

Video frame is typically represented by non-overlapped 
macroblock partitions for almost all video coding standards. 
SVC inherits the same MB partition from the H.264/AVC. 
Usually, an arbitrary object inside an image contains several 
macroblocks. In the following paragraphs, we introduce how 
to derive the SF of a general shape object inside an image or 
video frame. 

A.  The same tf  and the different MSE 

We study the two special instances: the SF is 

 ,x yf f =(1,0) and  ,x yf f =(2,0), see from Fig. 4(a), (b). 

The size of a picture is W H . The objects of this two 

pictures are moving at the same speed:  ,x yv v =(v,0), we 

denote the value at ( , )x y  in picture by  ,tf x y . After a 

sufficient short time t , the value is changed to  ,t tf x y .  

  
(a)                                        (b)                                      (c) 

Fig. 4  2D Sinusoidal signals. 

(a)  ,x yf f  = (1, 0); (b)  ,x yf f  = (2, 0); (c)  ,x yf f  = (0, 1). 

 
The equation of Mean Square Error (MSE) was introduced 

between the two pictures: 

     
2

1 1

1
, , ,

W H

t t t
x y

MSE x y f x y f x y
WH 

 

            (5) 

The MSE of Fig. 4(a) at time t and t t   is: 
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And the MSE of Fig .4(b) at time t and t t   is: 

  2 2
4( )

4 4
, ( rr) ( rr)b

H
MSE x y H v t E v t E

WH W
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Err is the difference gray value between black and white in 
Fig.4.  

We can notice that the MSE value of Fig. 4(b) is twice 
larger than the same one of Fig. 4(a). If the SF is 

 ,x yf f =(n,0), it will induce n times MSE value to 

 ,x yf f =(1,0). 

Peak Signal Noise Ratio (PSNR) is commonly used to 
measure the coding efficiency, i.e., 

 22 1

10lg

n

MSE
dBPSNR



                                (6) 

where  2
2 1n   is the square of maximum possible signal 

value, n is the number of bits to represent each pixel. It is 
noted that the larger MSE is, the smaller PSNR is. 

From Fig. 4(a) and Fig. 4(c), we can learn that the two 
pictures induce the same tf  but their MSE and PSNR are 

quite different. The utilization of MSE or PSNR as the 
adaptive parameter is not very reasonable. The Fig. 4(a) and 
Fig. 4(c) are moving at speed ( ,0)v  and (0, )v , respectively. 

As we can see, they have the same temporal frequency 
at tf v  , but their MSE values are obviously different with 

ratio at /H W . 

B.  Equivalent Mean Square Error (Eq-MSE) 

We propose an Eq-MSE method to calculate the SF of 
general objects in a picture and find the appropriate frame rate 
[6], [7]. 

 

 
Fig. 5 Illustrative figure for object in general picture. 

 
Fig. 5 illustrates that the size of black column is w h and 

picture size is W H . We use tBf  to represent the induced 

frame rate by the object, which is defined as:  
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where  ,0xMSEf f  is  ,MSE x y  when the picture SF is 

 ,0xf , and  0, yMSEf f  is  ,MSE x y  when the picture SF 

is  0, yf . xv  and yv are velocities in horizontal and vertical 

directions. 
We regard the SF of a general picture is: 
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  (8) 

The objects in a picture that induce the frame rate from 
moving from arbitrary directions are: 
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where   is all the MBs in the picture. xv  and yv are 

velocities in horizontal and vertical directions of 
corresponding MB. We get the mode and number of MB in a 
picture, and then choose the other picture within the same 
GOP to get MVs according to every MB. The ratio between 
MVs number in MB and the time interval between two frames 

are xv  and yv . For example, the x

h
v

H
  and y

w
v

W
  of 

sequence Mobile are 12.2, 9.4, respectively. Its MinFR is 
12.2+9.4=21.6. Note that with a real signal, the CSFT is 

symmetric, so that for every frequency component at  ,x yf f , 

there is also a component at  ,x yf f   with the same 

magnitude. The corresponding temporal frequency caused by 
this other component is x x y yf v f v  [5].  

Equation (9) is the function of minimal frame rate (MinFR) 
that makes the video motion smoothness without jitter. 

IV. SIMPLIFIED RATE MODEL 

During the past decade, lots of work has been done to make 
a significant improvement of SVC. As a kernel module, the 
extraction of  bit stream was a topic of numerous research 
works. A major drawback of video coding method is that its 
prioritization policy is independent of the video content [8]. 

In [9], [10], Wang and Ma have proposed two analytical 
models regarding the rate and perceptual quality for scalable 
video focusing on the joint temporal and SNR scalability. 
Specifically, the rate model is the product of a power function 
of quantization stepsize q  and frame rate t, 

                     max
min max

( , ) ( ) ( )a bq t
R q t R

q t
                        (10) 

where max min max= ( , )R R q t , a  and b  are content dependent 

parameters, minq and maxt  are constants, equal to 16 and 30Hz, 

respectively. Different test sequences have different a values. 
They are quite similar. It is almost independent of video 
content. In this paper, we mainly analyze the video affected 
induced by frame rate.  

As well known, within a GOP, the key frame is encoded 
independently while other frames refer to the key frame and 
the target of encoding is the difference between them. When 
the MVs are large in a video, there is significant difference 
between two frames. That means the data that will be encoded 
are large, and vice versa. 

We use the equation  

                              
max

( , )
( ; )

( , )

R q t
R t q

R q t
                              (11) 

to present normalized rate vs. temporal resolution (NRT) 
under the same quantization stepsize q . ( , )R q t  is the bit rate 

obtained with chosen quantization stepsize q  and frame rate 

t  [10].  
We consider two extreme situations. One situation implies 

that MVs are so large that it is entirely different between the 
frames in a GOP. Every frame needs to be encoded 
independently. The other one supposes no difference between 
two frames in a GOP. Only the key frame needs to be 
encoded. Fig. 6 depicts two NRT of extreme situations. 
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Fig. 6  Normalized rate vs. temporal resolution (NRT) of two extreme 

situations. 

It is easy to understand that any curve of video sequences 
NRT is between the two lines. Due to the motion estimation, 
motion compensation techniques, the NRT curve is not linear. 
According to [9], [10], we suppose that ny x , x is the NRT, 

(0,1)n . Parameter n depends on the content of video 

sequence. When the video sequence has larger MVs, the n is 
closer to 1. 

Parameter b of (10) indicates how fast the rate drops when 
the frame rate decreases, with a larger b  indicating a faster 
drop. The higher motion sequences should have larger 
parameter b  while lower motion sequences should have 
smaller one. The larger MVs are between two frames, the 
larger frame rate and parameter b  will be, and vice versa. 



We set parameter b  to several discrete value 

 0.06,0.15,0.20,0.51b . According to MinFR of four 

sequences, we can get the predicted parameter b from Tab.1.  
 

TABLE. 1 THE MAP OF THE PARAMETER B AND MINFR 

Parameter b 0.06 0.15 0.20 0.51 

MinFR [2,8) [8,15) [15,23) [23,30] 

 
Tab.2 depicts the parameters of different sequences for the 

rate model. We get the parameter b by using the least square 
method to make the least error of the rate model. 

We use CIF test sequences to compare the NRT of model 
accuracy and the predict method which mentioned in this 
paper and use [11], [12] reference software code. Fig. 7 
depicts the two curves of the NRT. 

 
TABLE. 2 THE PARAMETERS FOR THE RATE MODEL 

sequence akiyo city mobile football
a 1.021 1.057 1.007 1.064 
b 0.061 0.144 0.203 0.512 

predict b 0.06 0.14 0.20 0.51 
RMSE/Rmax 2.10% 2.87% 2.07% 2.04%

Pre-b RMSE/Rmax 2.11% 2.88% 2.07% 2.04%
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(a)                                                                                             (b) 
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(c)                                                                                               (d) 

Fig. 7  Normalized rate vs. temporal resolution (NRT) using the accurate and predicted parameter b, respectively. 

 
To the higher motion sequences, the NRT curve using 

accurate and predicted parameter b  are almost coincide. 
While to the lower motion sequences, there is a little bit of 
difference at low frame rate between the two NRT curves. 
However, the error induced into the rate model could be 
ignored. 

V. EXPERIMENTAL RESULTS 

Due to 1.875 fps is rarely used, we set 8 pictures per GOP. 
Assuming maximum frame rate is 30 fps, we can have four 
different frame rates, i.e., 30, 15, 7.5 and 3.75 fps. Each video 
sequence is coded with 6 GOPs (48 frames) for simple.  

The bit rate R is chosen as the extraction point of two sub 
streams. Its range should match extraction methods of sub0 
and sub1. We extract the Optimal Combination (OC) sub 

stream sub1 that is composed by MinFR and QP which is 
calculated by R and parameter b. Then we extract the Frame 
Rate Different from OC (FDOC) sub stream sub0 that is 
constrained by bit rate R and frame rate t. Tab.3 depicts the 
target bit rate for each sequence. Moreover, the QP can be 
calculated by (10). Due to the parameter a  has little 
difference among the four video sequences, we set 1.02a   
for simplicity. Finally, we extract sub stream sub1 according 
to QP and MinFR. 

 
TABLE. 3 THE MAXIMUM AND TARGET BIT RATE FOR SEQUENCES 

Sequence Akiyo City Mobile Football 

Max rate (kbps) 506 1296 2616 2917 

Bit rate (kbps) 120 800 1000 1100 



 
Fig. 8 Illustrative Flowchart for Bit Stream Extraction. 
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Fig. 9 Sequences subjective test comparative results of sub0 and sub1. 

 

To evaluate the subjective quality of extracted video 
bitstream, we invite 15 viewers to give the subjective ratings 
for decoded video from FDOC sub stream sub0 and OC sub 
stream sub1 session, respectively. Sub0 is the default scalable 
video adaptation without considering the video content impact, 
while sub1 is our proposed model based on scalable 
adaptation with dependent video content. We use 11 ranks 
(i.e., 0~10) for the subjective tests ranging from the worst to 
the best and conduct the subjective assessments strictly 
following [13]. Fig. 9 depicts the subjective test results of four 
sequences. It is noted that “City”， “Mobile” and “Football” 
apparently have better perceptual rating for sub1 session, 
while “Akiyo” is quite similar between sub1 and sub0. We 
can see that the Eq-MSE method is providing better-decoded 
video quality at a given bit rate. 

VI. CONCLUSIONS 

In this paper, we propose the Eq-MSE scheme, which is 
developed based on the spatial and temporal frequency 
analysis of the video content. This scheme is used to derive 
the MinFR for different videos and in consequence, so as to 
guarantee the motion smoothness for decent decoded video 
quality. A simplified rate model is further introduced to obtain 
the QP given the MinFR, model parameters and network 
bandwidth. Thus, model derived QP and MinFR are employed 
to extract the proper video sub-stream from a full resolution 

scalable stream. Our proposed model is based on scalable 
adaptation and video content dependent. Compared with the 
default scalable video adaptation without considering the 
video content impact, our proposed scheme can provide better 
perceptual video quality at the same bit rate according to the 
subjective quality assessments. The scheme is well suited for 
practical applications. In future research, we will further 
investigate more video contents to verify our proposed 
method. 
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