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Abstract—Electroencephalography (EEG) based preliminary
examination system has been proposed in the clinical brain
death determination. This paper presents a novel data analysis
algorithm based on multivariate empirical mode decomposition
(MEMD) to calculate and evaluate the energy of EEG recorded
from the comatose patients and brain deaths. MEMD is an
extended approach of empirical mode decomposition (EMD),
in which it overcomes the problem of the decomposed number
and frequency, and enable to extract brain activity features
from multi-channel EEG simultaneously. Comparison with the
previous study by used EMD, not only the performance of
computation complexity but also the accuracy of data analysis is
improved.

I. I NTRODUCTION

The concept of brain death, first appeared in 1960’s, is
defined as the irreversible and complete loss of all brain
activity including involuntary activity necessary to sustain life
due to total necrosis of cerebral neurons following loss of
blood flow and oxygenation [1]. Based on this definition,
for example, the Japanese established the criterion including
following major items to diagnose the brain death: 1) Deep
coma: unresponsive to external visual, auditory and tactile
stimuli and be incapable of communication; 2) Pupil test: no
pupils’ response to light and pupils dilate to 4mm; 3) Brain
stem reflexes test: absence of reflex such as cough reflex,
corneal reflex, painful stimuli; 4) Apnea test: patient’s loss
of spontaneous respiration after disconnecting the ventilator;
5) EEG confirmatory test: persistence of brain dysfunction, six
hours with a confirmatory EEG, flat EEG at level of 2µV/mm.
In the standard process of brain death diagnosis, it involves
certain risk and takes a long time (e.g., the need of removing
the respiratory machine and 30 minutes’ EEG confirmatory
test).

For supporting the diagnosis of brain death, we have pro-
posed an EEG preliminary examination system as a reliable
yet safety and rapid way for the determination of brain death
[2]. That is, after above items 1)- 3) have been verified,
and an EEG preliminary examination along with real-time
recorded data analysis method is applied to detect the brain
wave activity at the bedside of patient. On the condition of
positive examined result, we suggest to stop the brain death
diagnosis process and spend more time on the medical care.

Otherwise, the rest tests will be carried out as in the standard
diagnosis procedure.

In the preliminary examination system [2], [3], several
EEG data analysis algorithms such as independent component
analysis (ICA)[3] and approximate entropy (ApEn) [2], [4]
have been proposed to evaluate the state of comatose patients
and quasi brain death patients.

Empirical mode decomposition (EMD) [5] is a fully data-
driven approach that decomposes a signal into oscillations
inherent to the data, referred to as intrinsic mode functions
(IMFs). Applied EMD to evaluate the differences of EEG
energy between comatose patients and quasi brain deaths since
the power of brain activities from comatose patient is usually
higher than that of non-activity components from quasi brain
death [6]. However, EMD has a shortcoming in channel by
channel EEG decomposition.

This paper presents a novel data analysis algorithm based
on multivariate empirical mode decomposition (MEMD) to
calculate and evaluate the energy of EEG recorded from
patients. MEMD is an extensions approach of EMD, in which
the main advantage is that enable to extract brain activity
features from multi-channel EEG simultaneously, and also the
number of features extraction are marched. The experimental
results illustrate that the MEMD is effective in extracting
the underlying data, and show good performance on the
classification of comatose patient and brain death groups.

II. M ETHOD OFEEG DATA ANALYSIS

A. Existing EMD Algorithm

EMD decomposes the original signal into a finite set of
amplitude- and/or frequency-modulated components, termed
IMFs, which represent its inherent oscillatory modes [5]. More
specifically, for a real-valued signalx(k), the standard EMD
finds a set ofN IMFs {ci(k)}Ni=1, and a monotonic residue
signalr(k), so that

x(k) =
n∑

i=1

ci(k) + r(k). (1)

IMFs ci(k) are defined so as to have symmetric upper and
lower envelopes, with the number of zero crossings and the
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number of extrema differing at most by one. The process to
obtain the IMFs is called sifting algorithm.

The first complex extension of EMD was proposed in [7].
An extension of EMD to analyze complex/bivariate data which
operates fully in the complex domain was first proposed in
[8], termed rotation-invariant EMD (RI-EMD). An algorithm
which gives more accurate values of the local mean is the
bivariate EMD (BEMD) [9], where the envelopes correspond-
ing to multiple directions in the complex plane are generated,
and then averaged to obtain the local mean. An extension
of EMD to trivariate signals has been recently proposed in
[10]; the estimation of the local mean and envelopes of
a trivariate signal is performed by taking projections along
multiple directions in three-dimensional spaces.

B. The Proposedn-Variate EMD Algorithm[11]

For multivariate signals, the local maxima and minima may
not be defined directly because the fields of complex numbers
and quaternions are not ordered [10]. Moreover, the notion of
‘oscillatory modes’ defining an IMF is rather confusing for
multivariate signals. To deal with these problems, the multiple
real-valued projections of the signal is proposed in [11]. The
extrema of such projected signals are then interpolated com-
ponentwise to yield the desired multidimensional envelopes of
the signal. In MEMD, we choose a suitable set of direction
vectors inn-dimensional spaces by using: (i) uniform angular
coordinates and (ii) low-discrepancy pointsets.

The problem of finding a suitable set of direction vectors
that the calculation of the local mean in ann-dimensional
space depends on can be treated as that of finding a uniform
sampling scheme on ann sphere. For the generation of a
pointset on an(n − 1) sphere, consider then sphere with
centre pointC and radiusR, given by

R =

n+1∑
j=1

(xj − Cj)
2. (2)

A coordinate system in an n-dimensional Euclidean space
can then be defined to serve as a pointset on an(n−1) sphere.
Let {θ1, θ2, · · · , θn−1} be the(n−1) angular coordinates, then
an n-dimensional coordinate system having{xi}ni=1 as then
coordinates on a unit(n− 1) sphere is given by

xn = sin(θ1)× · · · × sin(θn−2)× sin(θn−1). (3)

Discrepancy can be regarded as a quantitative measure for
the irregularity (non-uniformity) of a distribution, and may
be used for the generation of the so-called ‘low discrepancy
pointset’, leading to a more uniform distribution on then
sphere. A convenient method for generating multidimensional
‘low-discrepancy’ sequences involves the family of Halton
and Hammersley sequences. Letx1, x2, · · · , xn be the first
n prime numbers, then theith sample of a one-dimensional
Halton sequence, denoted byrxi is given by

rxi =
a0
x

+
a1
x

2
+

a2
x

3
+ · · ·+ as

x

s+1
, (4)

Fig. 1: The layout of six exploring electrodes.

where base-x representation ofi is given by

i = a0 + a1 × x+ a2 × x2 + · · ·+ as × xs. (5)

Starting fromi = 0, the ith sample of the Halton sequence
then becomes

(rx1
i , rx2

i , rx3
i , · · · , rxn

i ). (6)

Consider a sequence ofn-dimensional vectors{v(t)}Tt=1 =
{v1(t), v2(t), · · · , vn(t)} which represents a multivariate sig-
nal withn-components, andxθk = {xk

1 , x
k
2 , · · · , xk

n} denoting
a set of direction vectors along the directions given by angles
θk = {θk1 , θk2 , · · · , θkn−1} on an (n − 1) sphere. Then, the
proposed multivariate extension of EMD suitable for operating
on general nonlinear and non-stationaryn-variate time series
is summarized in the following.

1) Choose a suitable pointset for sampling on an(n − 1)
sphere.

2) Calculate a projection, denoted bypθk(t)}Tt=1, of the
input signal{v(t)}Tt=1 along the direction vectorxθk ,
for all k (the whole set of direction vectors), giving
pθk(t)}Kk=1 as the set of projections.

3) Find the time instants{tθki } corresponding to the max-
ima of the set of projected signalspθk(t)}Kk=1.

4) Interpolate[tθki ,v(tθki )] to obtain multivariate envelope
curveseθk(t)}Kk=1.

5) For a set ofK direction vectors, the meanm(t) of the
envelope curves is calculated as

m(t) =
1

K

K∑
k=1

eθk(t). (7)

6) Extract the ‘detail’d(t) usingd(t) = x(t)−m(t). If the
‘detail’ d(t) fulfills the stoppage criterion for a multi-
variate IMF, apply the above procedure tox(t) − d(t),
otherwise apply it tod(t).

The stoppage criterion for multivariate IMFs is similar to the
standard one in EMD, which requires IMFs to be designed in
such a way that the number of extrema and the zero crossings
differ at most by one forS consecutive iterations of the sifting
algorithm. The optimal empirical value ofS has been observed
to be in the range of 2–3 [12]. In the MEMD, we apply
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(a) Decomposed IMFs for multi-channel EEG.
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(b) Denoised EEG signal in time and frequency domains.

Fig. 2: An example for comatose patient used MEMD.

this criterion to all projections of the input signal and stop
the sifting process once the stopping condition is met for all
projections.

III. E XPERIMENTS AND RESULTS

The EEG preliminary examination was carried out in a
hospital in Shanghai. A portable EEG system (NEUROSCAN
ESI) was used to record the patient’s brain activity. The EEG
data was directly recorded at the bedside of the patients in
the intensive care unit (ICU). In the EEG recording, only

nine electrodes are chosen to apply to patients. Among these
electrodes, six exploring electrodes (Fp1, Fp2, F3, F4, F7
and F8) as well as GND were placed on the forehead, and
two electrodes (A1, A2) as the reference were placed on the
earlobes based on the standardized 10-20 system (Fig. 1). The
sampling rate of EEG was 1000 Hz and the resistances of the
electrodes were set to less than 10 kΩ.

With the permission of the patients’ families, a total of 35
comatose and quasi brain death patients with the age ranging
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(a) Decomposed IMFs for multi-channel EEG.
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(b) Denoised EEG signal in time and frequency domains.

Fig. 3: An example for quasi brain death patient used MEMD.

from 18 to 85 years had been examined by using EEG from
June 2004 to March 2006. In this paper, we present the
experimental results for 20 comatose patients, 14 quasi brain
deaths and one case a patient changed from comatose state
to quasi brain death state. In the following sections, we will
present two typical clinical cases, the first case appeared in a
comatose state and another appeared a quasi brain death state.
Then we present a summary of average power of all patients’
physiological brain activities.

A. A Patient in a Comatose State

This case is concerned with an 18-year-old male patient.
The EEG examination was performed in June 2004 with a
comatose state. His pupil dilated to 2mm, and a respiratory
machine was used. The EEG recording lasted 38 seconds.

As showed in Fig. 2(a), the decomposing condition of
channel Fp1, Fp2, F3, F4, F7 and F8 expressed asX1, X2, X3,
X4, X5 andX6 in the time range 1s is selected randomly. By
applying the MEMD method described in Section II, we obtain
9 IMF components (C1 to C9) within different frequency from
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Fig. 4: The EEG energy of with a comatose state and a quasi brain death state

high to low. In the ordinary EMD analysis, each channel can
be decomposed by 8-11 IMF components with a uncertain
quantity, and only one channel can be analysised by the EMD
at the same time. However, in the MEMD analysis, the IMF
components of each channel has the same quantity, and we
can obtain all the IMF components of each channel by MEMD
analysis at the same time. Each IMF carries a single frequency
mode, illustrating the alignment of common scales within
different channels. Therefore, generally in our experiment, the
IMF components from C1 to C3 that within the same high
frequency scales refer to electrical interference or other noise
from environment that contains in the recorded EEG. The
residual component (r) is not the typical useful components
considered, either.

The desired components from C4 to C9 are combined to
form the denoised EEG signal, and changed into frequency
domain by fast Fourier transform (FFT). As showed in Fig.
2(b), the upper line gives each channel’s denoised EEG signal
in time domain, and the lower line display the denoised EEG
signal of each channel in their frequency domain. With y-
coordinate in the scope from 0 to 5000 in the frequency
domain, we find the value of power spectra at 2-10Hz is very
high. This patient’s maximum value of 6 channels in power
spectra was between 3439 to 4295 that reflects a high intensity
of brain activity. The analysis result indicated the patient still
had strong physiological brain activity, and in fact, the patient
was in a comatose state. With the aid of further therapy, this
patient regained consciousness.

B. A Patient in a Quasi Brain Death State

The second is a 36-year-old male patient (Patient 23). With
the family’s consent, the EEG examination was performed in
June 2005 when the patient had no brain-stem reflexes and the
pupil had dilated to 4.5 mm(quasi brain death state). The EEG
recording lasted 902 seconds. The time range 1s was selected
randomly. We obtained MEMD result of 9 IMF components
of each channel.

As showed in Fig. 3(a), with the same analysis of the first
patient, the IMF components from C1 to C3 that within the
same high frequency scales refer to electrical interference or
other noise from environment that contains in the recorded
EEG. The residual component (r) is not the typical useful
components considered, either.

The desired components from C4 to C9 are combined to
form the denoised EEG signal, and changed into frequency
domain by fast Fourier transform (FFT). Fig. 3 is showed
each channel’s denoised EEG signal in their time domain and
frequency domain. Comparing to the first patient’s denoised
EEG signal, we can not distinguish the comatose patient from
the quasi brain death patient in their time domain. But from
the power spectrum in frequency domain(the lower line of Fig.
3(b)), with y-coordinate in the same scope from 0 to 5000, this
patient’s maximum value of 6 channels’ power spectra is only
between 581.3 to 954.4, contrary to the first patient’s power
spectrum(the lower line of fig.2(b)), the value is in a low range.
The analysis result indicate that this patient’ physiological
brain activity is extremely low.



C. The EEG Power Spectrum of Each patient

Brain activities show their power in spectral pattern. We
integrate the power spectra with all channels in 0-20Hz in
frequency domain, and we define the result value of this the
power of physiological brain activity. Fig. 4 show the average
power of physiological brain activity of 35 patients in 36
cases with 6 channels in one second. In Fig. 4, from case C1
to case C21, the maximum average power of physiological
brain activity goes up over 6.00×104, and their minimum
average power is above 1.00×104. It probably illustrates that
the brain activities really exist. Contrary to this, (D22-D36)
cases reflected no spectral power over 9.00×103. From Fig.
4, we can distinguish the patient in the comatose state from
the quasi brain death state clearly.

IV. CONCLUSIONS

In this paper, we proposed an EEG data analysis approach
based on multivariate empirical mode decomposition for eval-
uating the EEG energy recorded from the comatose and quasi
brain death patients. By used MEMD, it enables to extract
brain activity features from multi-channel EEG simultane-
ously, which is important to calculate the EEG energy in a
same platform of all patients. It is obviously that the EEG
energy from comatose patients is much higher than that of
quasi brain deaths since the brain of comatose patients is
activity. This data analyzed result is completely identical to
the result achieved from clinical brain death determination.
In the future studies, more patients’ EEG data collection and
blind testing are necessary.
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