
Molecular Dynamics Simulation of a Biomolecule
with High Speed, Low Power and Accuracy Using
GPU-Accelerated TSUBAME2.0 Supercomputer

Shiqiao Du∗, Takuro Udagawa∗, Toshio Endo∗ and Masakazu Sekijima∗
∗ Tokyo Institute of Technology, Tokyo, Japan

E-mail: sekijima@gsic.titech.ac.jp Tel/Fax: +81-03-5734-3325

Abstract—This paper describes the usability of GPU-
accelerated molecular dynamics (MD) simulations for studying
biomolecules from the viewpoints of speed, power consumption,
and accuracy. The results of simulations showed that GPUs were
considerably faster and more energy-efficient than CPUs and
their accuracy was high enough. The results computed by an 8
nodes, 16 GPU system were comparable to those of an 8 nodes,
96 CPU cores system; the GPUs produced an acceleration of
10 times and an energy reduction of 75%. These results are
encouraging enough for us to use GPUs for MD simulations.

I. INTRODUCTION

Molecular dynamics (MD) simulation is a powerful tool
for simulating the motion of molecules and obtaining detailed
information on interesting systems and phenomena. During a
simulation, one iteratively integrates numerically the equation
of motion of the whole system and the time series of the
positions and momentum of every molecule or atom, to
produce what is called the trajectory. MD is widely used in
computational biology, especially for studying the motion of
proteins1.

A critical problem of using MD as a tool for studying
protein motion is that it is computationally demanding. One
reason is that a solvated protein system usually contains 104−5

atoms, which means evaluations of the potential energy or the
force are exhausting tasks; the evaluation scales with O(N2),
where N is the number of atoms. Another reason is that as
the size of the protein to be simulated increases, we need a
much longer simulation (1 µs - 1 ms) to obtain a biologically
meaningful result.

To enhance the performance of MD and enable longer
simulations for larger systems, Graphics Processing Units
(GPUs) have begun to be used. GPUs, which were originally
developed for graphical calculations, have a lot of processors
that work in SIMD style and have very high parallel perfor-
mance. For example, one of the latest GPUs, the NVIDIA
Tesla M2090, has 512 CUDA cores, which execute such as
integer and single-precision floating-point calculations. It has
a peak performance of 1331 GFLOPS at single precision.
GPUs are also expected to be power-efficient devices because
their processors have a simpler structure compared with CPU
processors and they require less energy than CPU processors.

However, because GPUs have a simple structure, they are
good at simple calculations but poor at complicated ones.

Therefore, it is uncertain how much improvement can be
obtained from GPUs for a particular application. Another
issue is whether the results of a GPU-accelerated calculation
are consistent with those of a conventional CPU calculation
however efficient the GPU acceleration is.

In this paper, we report on the usefulness of GPU-
accelerated MD simulations from three viewpoints. One is the
speed of computation, another is the energy consumption, and
the other is the accuracy.

II. TSUBAME2.0

TSUBAME2.0 Architecture

The TSUBAME2.0 supercomputer began operation at
Tokyo Institute of Technology in November 2010. It has a
peak performance of 2.4 PFLOPS and a storage capacity of 7.1
PBytes. The system mainly consists of 1,408 Hewlett-Packard
Proliant SL390s G7 compute nodes equipped with CPUs and
GPUs to achieve an excellent power-performance ratio. The
nodes and storage systems are connected by a full-bisection
fat-tree QDR InfiniBand interconnect.

Fig. 1 shows the node architecture. Each node has two
Intel hexa-core Xeon X5670 CPUs, and twelve cores share
a 54 GByte memory. Moreover a node is equipped with three
NVIDIA Tesla M2050 GPUs. Each GPU has 14 streaming
multiprocessors (SMs), and each SM consists of 32 CUDA
cores that work in SIMD style. The peak performance of a
single GPU is 515 GFLOPS at double precision and 1.03
TFLOPS at single precision, while those of a Xeon CPU are
70.4G FLOPS and 140.8 GFLOPS, respectively. Besides its
higher computing performance, the M2050 GPU has a broad
memory bandwidth that plays an important role in ensuring
better application performance; the memory bandwidth of 150
GB/s is about five times larger than that of a Xeon CPU.
On the other hand, the GPU memory, whose size is 3 GB,
is separated and smaller than the CPU memory. Thus, before
conducting a computation on GPUs, the input data should be
copied from the CPU to GPU memory, via the PCI-Express
gen2 x16 path.

TSUBAME2.0’s excellent power-performance ratio
was cited in the Green500 supercomputer ranking
(www.green500.org) in November 2010. Its power-
performance ratio is 958 MFLOPS/watt, and the system

APSIPA ASC 2011 Xi’an



Fig. 1. TSUBAME2.0 node architecture

received ”the Greenest Production Supercomputer in the
World” award.

Power Measurement

We measured the power consumption during execution of
the AMBER application by using power monitoring facility of
Proliant SL390s nodes. Each node has a management system
called HP Integrated Lights-Out (iLO) 3, which provides
information including current power consumption in direct
current (DC). We made a simple program that periodically
checked and recorded the power consumption of nodes and
obtained the average consumption during execution of the
application. We noticed that the time resolution of the power
monitoring facility is about 10 seconds, which is coarser
than typical power meters; however, we consider that it is
still useful to evaluate the average power consumption, since
typical execution times are on the order of hours or even
longer.

III. MOLECULAR DYNAMICS SIMULATION

MD simulations are widely used for simulating the motions
of molecules in order to gain a deeper understanding of
chemical reactions, fluid flow, phase transitions, and other
physical phenomena due to molecular interactions. An MD
simulation is a numerical solution of the Newton’s equation
of motion,

mT d2q

dt2
= −∇U(q) (1)

where m,q and U are mass vector, position vector and poten-
tial energy, respectively. This continuous differential equation
is broken down into discrete small time steps, each of which
is an iteration of two parts: the force calculation (calculating
the forces from the evaluated conformational energies) and the
atom update (calculating new coordinates of the molecules).

The most important part of MD simulations has to do
with the parameters for calculating the potential energy or
forces, namely force-field. A number of force-fields have been
developed for simulating biomacromolecules such as proteins.
AMBER2 and CHARMM 3 are representative examples. In

those force-fields, the total potential energy is the sum of
different energy terms,

U(q) =
∑
bonds

kb(b− b0)
2 +

∑
angles

kθ(θ − θ0)
2

+
∑

torsions

Vn[1 + cos2(nφ− φ0)]

+
∑

i,j∈atoms

εij

(r0ij
rij

)12

− 2

(
r0ij
rij

)6
+

∑
i,j∈atoms

qiqj
rij

.

(2)

While the first three terms, i.e., bond, angle, and torsions,
explain the interaction energies of bonded atom pairs, the last
two, i.e., van der Waals (VDW) and Coulombic electrostatic,
are for interactions of non-bonded atom pairs. The parameters
of the force constants and equilibrium positions are determined
by ab initio quantum chemical calculation. Thus, eq. (2) is an
approximation to the exact quantum chemical energy. As can
be seen from eq (2), most of the computational time is spent
evaluating the non-bonded VDW and Coulomb terms, which
scale with the second power of the number of atoms O(N2).

IV. SPEED & ENERGY CONSUMPTION

To evaluate the calculation speed and energy consumption
of a GPU-accelerated MD, we ran PMEMD from version
11 of the Amber software suite for a target on ten different
specifications and compared their performances. The target
was a nucleosome (with 25095 atoms) with the generalized
Born (GB) model4, as shown in Fig. 2. We ran the MD
simulation for 10 ps with a 2-fs time step. We checked ten
different specifications of cores and nodes: 6 CPU cores, 1
node; 12 CPU cores, 1 node; 24 CPU cores, 2 nodes; 48
CPU cores, 4 nodes; 96 CPU cores, 8 nodes; 1 GPU, 1 node;
2 GPUs, 1 node; 4 GPUs, 2 nodes; 8 GPUs, 4 nodes; and
16 GPUs, 8 nodes. The SPDP precision model, in which
individual calculations are performed at single precision within

Fig. 2. Structure of the nucleosome



0.1

0.11

0.15

0.31

0.36

0.99

1.85

2.22

2.78

3.44

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

1node(6 CPU cores)

1node(12 CPU cores)

2nodes(24 CPU cores)

4nodes(48 CPU cores)

8nodes(96 CPU cores)

1node(1 GPU)

1node(2 GPUs)

2nodes(4 GPUs)

4nodes(8 GPUs)

8nodes(16GPUs)

ns/day

Fig. 3. Comparison of calculation speeds of all specifications in ns/day. Using
GPUs had a dramatic impact on accelerating the simulation.

the simulation and all accumulations are done at double preci-
sion, was used for the GPU implementation of PMEMD. We
measured the elapsed calculation time and power consumption
for each specification. Then we compared their performance
in terms of ns/day and energy consumption. Computational
speed was directly obtained in ns/day units from the PMEMD
output files. We used kilojoule units to compare the energy
consumptions, which were taken to be the product of the
elapsed calculation time and the power consumption. We got
the power consumption of each node during the calculation ev-
ery second. The average power consumption of each node was
calculated after the program stopped executing. We summed
the averaged power consumptions from all nodes for each
specification. These summed values were taken to be the power
consumption of the specifications.

Fig. 3 shows the calculation speed of each specification.
The results indicate the dramatic impact of GPU acceleration.
Comparing the 1 GPU, 1 node specification with the 96 CPU
cores, 8 nodes specification, we see that the GPU-accelerated
MD calculation was about three times faster. Comparing the
specifications in which the same numbers of nodes were used,
the GPU version was about ten times faster in all cases.

Fig. 4 shows the energy consumption of all specifications.
This result indicates that GPU acceleration resulted in a great
reduction in energy consumption. For example, the 8 nodes
GPU calculation consumed about seven times less energy than
the 8 nodes CPU calculation. We also found that the 1 node, 2
GPU specification was more efficient than the 1 node, 1 GPU
specification and that the 1 node, 12 CPU cores specification
was more efficient than the 1 node, 6 CPU cores specification.
These results lead us to conclude that running more CPUs or
GPUs in the same node is power efficient.

V. ACCURACY

We compared the simulated conformational space of two
trajectories computed by the CPU and GPU, respectively. The
difference between the two is that the trajectory of CPU was
generated by a fully double precision calculation, while that of

3,403

3,270

4,807

4,873

7,737

472

292

473

621

1,142

0 2000 4000 6000 8000 10000

1node(6 CPU cores)

1node(12 CPU cores)

2nodes(24 CPU cores)

4nodes(48 CPU cores)

8nodes(96 CPU cores)

1node(1 GPU)

1node(2 GPUs)

2nodes(4 GPUs)

4nodes(8 GPUs)

8nodes(16GPUs)

Energy Consump!on(KJ)

Fig. 4. Comparison of energy consumptions of all specifications in kilojoules.
Energy consumption was calculated as the product of the elapsed time and
the power consumption. Using GPUs led to a great reduction in energy
consumption.

Fig. 5. Native conformation of the Chignolin (1UAO).

the GPU was partly made up of single precision calculations.
Therefore, we can take the CPU result to be more precise ¡ to
be more accurate??¿ and see if GPU result is consistent with
it. For this purpose, we chose a small protein, Chignolin5,
since both the CPU and GPU can simulate it until equilibrium
in a feasible time. The native conformation of the Chignolin
is shown in Fig. 5. We ran a 1 µs MD simulation in 315
kelvine by using CPU or GPU systems. The two trajectories
were then analyzed. To compare their conformational spaces,
from every snapshot structure we extracted torsion angles,
which are known as the (φ, ψ) angles, and carried out principal
component analysis (PCA). In PCA, the sample covariance
matrix of the d-dimensional coordinates is decomposed by its
eigenvalues and eigenvectors,

C =
1

N

N∑
n

qnq
T
n =

d∑
i

λiviv
T
i , (3)



Fig. 6. Comparison of the conformational distributions in reduced principal space.



Fig. 7. Comparison of radii of gyration (Rg). The x-axis is the value of Rg
in Å units, and the y-axis is the probability distribution. The blue and green
histograms correspond to CPU and GPU data, respectively.

where C is the covariance matrix and λi and vi are the ith
eigenvalue and eigenvector pair, respectively. The correspond-
ing ith principal component of the nth observed coordinate is
just the projection vT

i qn.
We made the covariance matrix from the CPU trajectory

and projected it on the obtained principal axes. Tthe GPU
trajectory was also projected by using the same coefficients
obtained by the CPU. Fig. 6 compares the conformational
distributions in reduced principal component space. We chose
the first three principal components and plotted every pair of
axes, i.e. (1st-2nd, 1st-3rd, and 2nd-3rd principal components).
As the plots show, the conformational spaces generated by
the CPU and GPU are almost equivalent. The peaks in the
conformational distribution were found to be at the same
location in each case. Note that we started the MD simulation
with the same random number seed and thus the differences
between CPU and GPU were due to whether single or double
precision was used.

We also plotted the time series of the radius of gyration (Rg)
for the two cases in Fig. 7. Rg is a characteristic property for
polymer chains such as proteins. It can be calculated as

Rg =
√
〈(q− 〈q〉)2〉 (4)

where the bracket means the sample average and q is the
coordinate vector. The CPU and GPU data had equivalent dis-
tributions of Rg, implying that the GPU data were essentially
equivalent to those of the CPU calculation.

VI. CONCLUSIONS

In this study, we performed molecular dynamics simulation
using GPU on TSUBAME2.0 supercomputer. Then the per-
formance and result was compared to those of conventional
CPU molecular dynamics regarding calculation speed, energy
consumption and accuracy. Our experiment showed that using
GPUs could yield a great improvement in both the calculation
speed and energy consumption. Comparing 8 nodes 16 GPUs
result and 8 nodes 96 CPU cores result, we could achieve
about 10 times acceleration and 75 % energy reduction. And
the results of GPU molecular dynamics was consistent with
that of CPU molecular dynamics within acceptable range.

ACKNOWLEDGMENT

We would like to thank Akira Nukada for his help with the
power measurement. This work was supported in part by a JST
CREST research program entitled ”Ultra-Low-Power HPC”.

REFERENCES

[1] S.A. Adcock and J.A. McCammon. Molecular dynamics:
survey of methods for simulating the activity of proteins.
Chem Rev, 106(5):1589–1615, 2006.

[2] D.A. Case, T.E. Cheatham III, T. Darden, H. Gohlke,
R. Luo, K.M. Merz Jr, A. Onufriev, C. Simmerling,
B. Wang, and R.J. Woods. The Amber biomolecular
simulation programs. J Comput Chem, 26(16):1668–1688,
2005.

[3] B. R. Brooks, C. L. Brooks III, A. D. Mackerell, L. Nils-
son, R. J. Petrella, B. Roux, Y. Won, G. Archontis,
C. Bartels, S. Boresch A. Caflisch, L. Caves, Q. Cui, A. R.
Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im,
K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci,
R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor,
R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M.
York, and M. Karplus. CHARMM: the biomolecular
simulation program. J Comput Chem, 30(10):1545, 2009.

[4] P.S. Shenkin, F.P. Hollinger, and W.C. Still. The GB/SA
continuum model for solvation. A fast analytical method
for the calculation of approximate Born radii. J Phys Chem
A, 101(16):3005–3014, 1997.

[5] S. Honda, K. Yamasaki, Y. Sawada, and H. Morii. 10
residue folded peptide designed by segment statistics.
Structure, 12(8):1507–1518, 2004.


