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Abstract—The paper introduces a novel auditory BCI/BMI
paradigm based on combined sound timbre and horizontal plane
spatial locations as informative cues. The presented concept is
based on responses to eight-directional audio stimuli withvarious
tonal and environmental sound stimuli. The approach is based
on a monitoring of brain electrical activity by means of the
electroencephalogram (EEG). The previously developed by the
authors spatial auditory stimulus is extended to varying intimbre
sound stimuli which feature helps the subjects to attend to the
targets. The main achievement discussed in the paper is an offline
BCI analysis based on an optimization of electrode locations on
the scalp and evoked response latency for further classification
results improvement. The so developed new BCI paradigm is
more user-friendly and it leads to better results comparing to
previously utilized simple tonal or steady-state stimuli.

I. I NTRODUCTION

A concept of a spatial auditory stimulus creates a very
interesting possibility to target “the less crucial” auditory
activity. We propose to utilize spatial audio stimuli design
with a target application in a new BCI/BMI paradigms where
users consciously direct their attention to different locations
in surround sound environment with various tonal frequency
stimuli [1], as depicted in Figure 1. Contemporary applications
limit their scope to frontal surround sound loudspeakers [2],
while our proposal includes also rear loudspeakers sound pre-
sentation allowing for eight commands BCI/BMI applications
(full octagonal surround sound loudspeakers setup).

In the approach first proposed in [3] it was shown that
responses in a spatial tonal stimuli within the 7.1 channels
surround sound system (subjects were positioned in the middle
of the loudspeakers systems and requested to direct attention
to single direction loudspeakers) were distinguishable inEEG
for targets and non-targets interfacing commands. The target
and non-target direction sequences were presented randomly.
The current proposal extends the design to fully octagonal
loudspeakers setup with stimuli direction sequences presented
also randomly.

Within this framework, the subjects are asked to focus their
attention to a direction of the tonal or environmental sound.

The EEG responses are recorded with an EEG amplifier. Ad-
ditionally vertical and horizontal eye-movements are recorded
in order to have a reference signal indicting potential muscle
activity used later in artifacts removal algorithm.

In the presented study we decided first to process only
“artifact-free-data” (eye blinks, facial muscle and head move-
ments, etc. trials were discarded) in order to validate the
proposed spatial auditory stimuli paradigm. To reduce com-
putational complexity of the interfacing approach we propose
channel and event-related-potentials (ERP) response samples
selection in order to optimize classification results.

This approach allows for EEG channels selection optimiza-
tion and ERP regions-of-interest (ROI) for target and non-
target stimuli optimization by adaptively finding only the
components carrying brain activities maximizing the contrasts
between responses when the subjects attend or ignore the
spatial stimuli. The so obtained brain activity spatial patterns
clearly follow the expectations of stronger activities in parietal
and temporal cortical areas, which are known for spatial
stimuli processing [4].

The paper is organized as follows. In the next section the
experimental paradigm is described together with EEG pre-
processing steps. Next the channel selection and ERP response
period optimization procedures for each subject are described.
Finally classification results and discussion conclude thepaper.

II. M ETHODS

The experiments to validate the proposed spatial audi-
tory BCI/BMI paradigm were conducted in a Laboratory for
Advanced Brain Signal Processing, RIKEN Brain Science
Institute in Wako-shi, Saitama, Japan with agreement of the
institute’s ethical committee guidelines. All experimental pro-
cedures and this study targets were explained to the subjects
who agreed to participate voluntarily by signing consent
forms. EEG signals were recorded with 64 channels active
electrodes EEG caps with BIOSEMIActiveTwosystem. The
stimuli sounds were played through loudspeakers positioned in
octagonal setting around a head of a subject. All experiments
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Fig. 1. Spatial auditory BCI/BMI paradigm concept with octagonal loud-
speaker arrangement.

were conducted in a silent and low reverberation room in
order to limit an interference of “environmental noise” in this
preliminary study in order to validate usability of all front- and
rear-head sound usability (in contrast to a study conductedin
a noisy environment which failed to utilize back loudspeakers
for BCI/BMI application [2] - only psychoacoustic experiment
for rear-head loudspeakers succeeded there).

A diagram of stimuli and further described in this section
steps of EEG processing, electrodes positions optimization,
feature extraction and final classification are depicted in Fig-
ure 1.

A. Spatial Auditory BCI/BMI Paradigm

We propose to utilize a concept of a horizontal two-
dimensional sounds spatial sources arrangement of stimuli
paradigm in order to evoke P300 (“aha response”) discrim-
inating subject’s intentionally attended target and non-target
directions. We test the hypothesis whether the evoked in
EEG ERP signals are feasible for a future multi-command
(eight commands in the proposed case) BCI/BMI application
similarly as it was developed in visual domain [5].

B. Experiment Description

EEG recording experiment for offline BCI/BMI paradigm
testing were conducted with six healthy subjects (five males

and one female; age range20 − 50 years). The subjects
were instructed to sit in a comfortable chair in center of
eight octagonally positioned loudspeakers. The elevationof the
loudspeakers was fixed to the subjects’ ear level. Instructions
which target direction to attend was given visually on a display
located in front of them. A visual fixation cross was also
presented on that display to avoid unnecessary eye movements.

Two types of auditory stimuli were presented spatially to the
subjects in the octagonal speaker system through only single
speaker at a time. The first stimuli was composed of a400ms
long (the longer stimuli comparing to results from [2] was
chosen to create more spatial localization realistic situation)
and 440Hz sinusoidal tone with10ms linear raise and decay
to avoid “click-effect.” The low frequency tone was chosen
to evaluate feasibility of an inter-aural-time-delay (ITD) brain
auditory localization principle only [6]. The second stimuli
was a sound of a car horn recorded on a noisy street and
presented also in a form of400ms long waveforms with10ms
linear raise and decay periods. This second stimuli represented
a “broadband” acoustic waveform targeting both brain auditory
mechanisms of inter-aural-level-difference (ILD) and ITD. The
sound directions were presented in random order to avoid
habituation effects.

III. A NALYSIS

The EEG analysis leading to final eight-directions-spatial
auditory classification for target and non-target locations is
composed of three steps as follows:

• a EEG signal preprocessing (filtering and artifact re-
moval);

• an informative electrodes selection and ERP’s ROI opti-
mization for further classification outcome maximization;

• a final classification of evoked responses within each of
ten chosen “best channels.”

A. EEG Preprocessing

The recorded raw EEG 64 channel signals with BIOSEMI
ActiveTwosystem have to be first referenced by removing
mean values of all channels. Next a notch filter is applied
at 50Hz center frequency to remove power line noise in-
terference. Two Butterworth5th order low-pass and high-
pass filters are applied next with cutoff frequencies at0.5Hz
and25Hz respectively to remove low frequency and DC-shift
interferences. The low-pass filtering removes possible muscle
frequency artifacts. Next the signals are segmented creating
event related epochs starting at0ms of the stimulus onset
and ending at500ms after it (see Figure 2). In a next step
eye movement artifacts rejection is carried out. Spatial stimuli
are known to cause uncontrolled eye movements which in the
current approach are removed with a threshold value set at
80µV (signal voltage above EEG activity level). The EEG
conversion from the original BIOSEMI BDF format and the
above preprocessing steps were conducted within SPM8 pack-
age [7]. The rejected epochs are not processed further sincein
current approach an emphasis is put forward on the spatial
paradigm validation. An example with artifact cleaned and
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Fig. 2. Results of ERP P300 response for frontal (upper panel) and rear (lower
panel) speakers confirming the feasibility of the proposed approach. The zero
stands for stimuli onsets. The blue/dashed lines depict non-target (no P300
response after300ms) responses and red/solid traces visualize attended spatial
targets (obvious positive EEG response deflections after in300 − 500ms
range).
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Fig. 3. ROC analysis results of a good channel candidate (col1: black/upper
trace) discriminating and a “chance level” one (col2: red/lower trace). Analysis
conducted with [10], [11].

averaged epochs separately for frontal and rear loudspeakers
is presented in Figure 2. This confirms a feasibility to utilize
all frontal and rear channels, since in averaged ERPs those
responses are clearly easy to distinguish in300− 500ms time
range.

B. Electrodes and ERP Features Selection for Classification

In order to find ten electrodes from the original 64 channels
recordings which for each subject would discriminate the ERP
responses for target and non-target responses, we propose to
test the two measures. The first one is based on a classical
linear-discriminant-analysis (LDA) [8] classification applied
to all channels separately. The best classification resultsset
of ten channels from 64 available in a training set would
be later applied to test sets. The second proposed measure
is based on a receiver operating characteristic (ROC) [9]
applied to quantify the separability of two single-trial response
distributions for each sample point of ERPs (see Figure 2 with
averaged ERP responses for targets and non-targets suggesting
that ROI there shall be chosen from around350 − 500ms).
While LDA is a standard classification method the ROC
related measures are usually used to evaluate the performance
of classifiers, they can also quantify the discriminabilityof
feature distributions leading to classifiers optimization. An
advantage over other methods for feature selection is that ROC
analysis does not rely on the assumption that the distributions
are Gaussian [9]. The ROC curve derived from perfectly mixed
distributions is the diagonal line (a no-discrimination line as
presented approximately in Figure 3 for not chosen channel).
The numbers along the major diagonal of ROC graph represent



Fig. 4. Results of classical LDA application to binary classification of a spatial
tonal 440Hz stimuli applied to all electrodes for a single subject in six cross-
validation trials are visualized in the left column while the best resulting
electrodes are presented in the right column for each subject. All graphs have
the same scaling.

the correct decisions made, and the numbers off this diagonal
represent the errors of the confusion between the classes. The
sensitivity (also called a true positive rate) of a classifier is
calculated as:

sensitivity =
PCC

TP
; (1)

and the classifier specificity is as:

specificity =
TN

TP + TN
; (2)

where PCC stands forpositives correctly classified; TP

for total positives; TN for true negatives; andFP for false
positives respectively. The results of ROC analysis for the
chosen and discarded EEG channels are presented in Figure 3.

In order to choose channels with EEG ERP features leading
to best classification results we utilize a separability index
which is calculated as an area under the curve (AUC) between
the ROC curve and the no-discrimination line (diagonal)
multiplied by two to relate it to the Wilcoxon test of ranks
or the Gini coefficient [9]. We decided to choose ten channels
scoring with highest AUC for each subject and within each
experimental paradigm (440Hz tone and car horn in the
current study). Additionally within each of the chosen channels
the best discriminable two areas were chosen taking only
50ms regions around AUC maxima derived from0 − 200ms
and 200 − 500ms regions. Those two vectors of single-trial
ERP subregions formed features used in subsequent LDA
classification within each channel.

Finally the EEG ERP responses were classified into tar-
gets and non-targets using two approaches to validate the
proposed electrodes and ROI estimation with ROC together
with classical LDA applied to all electrodes and the P300
response region. For classical LDA the results are visualized
in Figure 4, where classification outcomes are shown for all
electrodes together with the ten best electrode candidates.
For the proposed approach of ROC based channel and ERP
ROI selection the best electrode candidates are visualizedin
Figure 5, where the ten best electrodes are indicated in red for
each subject and condition. The detailed results are discussed
in the next section.

IV. RESULTS

The results of the proposed approach to compare target
and non-target evoked potentials have been summarized in
Figures 6 and 7. In Figure 6 it has been shown that the
proposed approach to identify the ten best electrodes and
ERP response ROI based on ROC analysis had allowed for
a gain of classification results ranging from an increase of
8% boost at the best for subject#1 and tonal stimuli of
440Hz comparing to classical application of LDA analysis
to P300 response area for all electrodes and the whole ERP
region. In case of acar horn stimuli, the best classification
increase has been obtained also at the level of5% for the
same subject. Figure 7 presents a comparison of target vs. non-
target classification results for frontal and rear loudspeaker
sound directions confirming the hypothesis of a possibility



Fig. 5. Results of the proposed ROC analysis based channel selection for all
six subjects and two stimuli cases revealing the temporal and parietal scalp
regions as best candidates for spatial stimuli P300 responses identification.

to utilize those direction modalities despite of the known in
psychoacoustics “front–back–confusion” effect.

A variability of the results for various subjects and con-
ditions calls still for further research in this area which our
group will continue.

V. CONCLUSIONS

In the paper it has been shown that in contrary to the
contemporary results with the spatial auditory BCI/BMI
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Fig. 6. Percentage of correctly classified spatial audio BCI/BMI P300 (“aha”)
responses with LDA classifiers derived from three experimental sessions
for each subject (blue/solid lines) and based on ten best electrode results
(red/dotted lines). Chance level is50%. LDA analysis conducted with [10],
[12], [13].

paradigms, which fail to utilize rear-head loudspeakers, it is
possible to achieve good results for a fully surround sound
octagonal loudspeakers setup.

The developed by the authors approach to select the optimal
ten channels and ERP ROI intervals resulted with very good
classification results for all eight sound stimuli directions. This
has been achieved for two types of400ms long acoustical
stimuli targeting ITD and ILD auditory spatial localization
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Fig. 7. Comparison of classification responses to frontal (top panel) and
rear/back (bottom panel) loudspeakers stimuli directionsfor six subjects and
two stimuli conditions. The results confirm only slight subjects’ preferences
to frontal stimuli directions except of subject#6 who had better results for
rear sound directions.

features. In both cases the classification results obtainedwith
classical LDA and with the proposed combination of ROC-
based channel and ERP’s ROI selection, which boosted the
classification outcomes, were significantly over a chance level
of the P300 response based binary paradigm.

Still the results in the offline BCI/BMI mode are not fully
satisfactory calling for further research in order to achieve
better classification outcomes for an online application which

shall be also constructed with virtual-acoustical-space simula-
tion via headphones warn by the subject.
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