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Abstract—The goal of a good speech-to-lips conversion system
is to synthesize high quality, realistic lips movement which
is time synchronized with the input speech. Previously, the
maximum probability estimation of visual trajectory by Gaussian
Mixture Model (GMM) has been successfully proposed and
tested for speech-to-lips conversion. It works as a sentence level
batch process that convert acoustic speech signals to visual
lips movement trajectory. In this paper, we propose a moving
window based, low delay speech-to-lips conversion method for
real-time communication applications. The new approach is an
approximation of the MLE-GMM conversion but can render
lips movement on-the-fly with a low time latency. Experimental
results on the LIPS2009 dataset shows that proposed real-time
method can achieve a latency of less than 100ms while maintain
comparable quality as the batch method.

I. INTRODUCTION

Speech-driven lips conversion aims at synthesizing lip
movements that are consistent and time synchronous with
given human speech signals. It has a wide range of practical
applications in multimedia communication as well as human-
computer interactions. For example, an avatar-based video
phone can be implemented by transferring only the speech
signals and the corresponding talking head can be rendered
at the receiving end with a very low data rate of “hidden”
information. Personalized speech-driven avatar can also be
rendered in video games or other augmented reality scenario.

Two main aspects that can affect the practical use of this
technique: the intelligibility of the visual lips movements and
the latency which is the delay when users see the output lips
animation after their speech arrives the system. Low latency
is a crucial requirement in certain applications of lip synthesis
such as video conference.

Various approaches have been proposed for the synthesis
of lips movement from speech. However, most of them focus
on the quality of visual output but neglect the latency part,
and few can at the same time achieve both high-quality lips
animation and low latency.

Earlier work in the literature includes phoneme/viseme
mapping and key-frame interpolation which work on a per-
frame basis [1]. They are suitable for real-time applications,
but the quality of the rendered lips movements is not as good
as later methods in terms of intelligibility and smoothness [2].
Hidden Markov Model (HMM) and its variants have also been
widely used for predict lips movement from speech. These
methods [2] depend on a set of HMMs, using model sequence

Fig. 1. An illustration of the speech-driven lips conversion system. The input
is speech only and the output is audio-visual signal

as an intermediate stage which requires Viterbi decoding that
brings segmentation and phone identification errors. An EM-
like procedure named HMM inversion (HMMI) has also been
proposed [3], which is too computationally intensive for low-
cost real-time applications.

Another approach in speech-to-lips rendering is to use
Gaussian Mixture Models (GMM). In this method, the joint
probability density of audio-visual features is modeled by a
GMM. Two different ways to perform speech-to-lips con-
version with GMM are: 1) The frame-by-frame conversion
subject to minimum mean square error [4]; 2) The maximum
probability estimation of trajectory [5] [6], which use both
static and dynamic feature statistics. While the former method
works on each frame and is suitable for real-time applica-
tions, it may lead to converted trajectories with inaccurate
dynamic characteristic without imposing inter-frame dynamic
constraints in the conversion. On the other hand, the maximum
probability method by incorporating dynamic statistics have
been shown to significantly improve the quality of converted
trajectory. However, it needs all acoustic feature frames in an
utterance to be available and processed simultaneously, thus
hinders its usage in real-time applications.

In this paper, we modify the batch conversion algorithm
by introducing a sliding time window and performing the
computation in a recursive sense. We evaluated the algorithm
on LIPS2009 Visual Speech Synthesis Challenge Task [7].
The proposed algorithm shows the quality of rendered lips
movements is comparable to the batch method in [6] in terms
of the commonly accepted objective metrics.

The rest of the paper is organized as follows. In Section 2 we
give an overview of the batch processing needed conversion
method. In Section 3 we propose the sequential sliding window
method for rendering for low delay real-time applications. In
Section 4 we present experimental results. In Section 5 we
draw our conclusions.
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II. SPEECH-TO-LIPS CONVERSION

As illustrated in Fig. 1, a speech-to-lips conversion system
can render realistic lips movements that are in sync with input
human voice. Speech-to-lips conversion core module plays a
central role in mapping acoustic signals to a video sequence.
The statistical correlation between audio and visual space is
exploited in such a module. In the literature, it is often named
audio-visual mapping or conversion.
A. Audio-visual Modeling with GMM

We define the acoustic and visual feature vector sequences
as x = [x>1 , . . . , x

>
T ]> and y = [y>1 , . . . , y

>
T ]>, respectively.

Audio-visual conversion defines a mapping function from x to
y. The joint probability density of xt and yt can be modeled
statistically as a Gaussian mixture model (GMM)

P (zt|λ) =

M∑
m=1

wmN (zt;µm,Σm) (1)

where zt is the augmented super-vector [x>t , y
>
t ]>, m is the

index of the m-th mixture component, and wm is the weight
of m-th mixture component. In the pdf, µ and Σ denotes the
mean vector and covariance matrix of a Gaussian component
distribution, which can be written explicitly in terms of x and
y as:

µm =

[
µ
(x)
m

µ
(y)
m

]
,Σm =

[
Σ

(xx)
m Σ

(xy)
m

Σ
(yx)
m Σ

(yy)
m

]
(2)

λ = {w, µ,Σ} denotes for all parameters for the joint
audio-visual GMM. It can be estimated from the training data
by maximizing the likelihood (ML), or other training criteria
like minimum converted trajectory error (MCTE) proposed
which has been shown to achieve better performance [6].
B. MLE-based Conversion

MLE-based conversion was first proposed for voice conver-
sion [5], and was later adopted for speech-to-lips conversion
[6]. In this method, the D-dimensional vector yt is extended
to 2D-dimensional vector Yt as Yt = [y>t ,∆y

>
t ]>. The se-

quence Y = [Y1, Y2, . . . , YT ] could be represented as a linear
transform of the static (instantaneous observation) vectors y,
Y = Wy, such that ∆yt = 1

2 (yt+1− yt−1). In a similar way,
x is extended to X.

The conditional probability density is formulated as,

P (Y|X, λ) =
∑
all m

P (m|X, λ)P (Y|X,m, λ)

≈
T∏

t=0

M∑
m=1

P (m|Xt, λ)P (Yt|Xt,m, λ) (3)

The conversion is performed by maximize the conditional
probability to obtain the estimate vector ŷ

ŷ = arg max
y

P (Wy|X, λ) (4)

In practice, we make several approximations to reduce the
complexity in solving Eq. 4. First, the summation in Eq. 3 is
approximated by the Maximum A Posterior (MAP) mixture
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Fig. 2. Batch and real-time (sliding window) speech-to-lips conversion

component, m̂t,

P (Y|X, λ) ≈
T∏

t=0

P (m̂t|Xt, λ)P (Yt|Xt, m̂t, λ) (5)

where m̂t = arg maxmP (m|Xt, λ). With this approximation,
Eq. 4 can then be solved in a closed form,

ŷ = (W>D
(Y )
m̂

−1
W )−1W>D

(Y )
m̂

−1
E

(Y )
m̂ (6)

where

E
(Y )
m̂ =

[
E

(Y )
m̂1,1

, . . . ; . . . ; . . . , E
(Y )
m̂T ,T

]
(7)

D
(Y )
m̂

−1
= diag

[
D

(Y )
m̂1

−1
, . . . ; . . . ; . . . , D

(Y )
m̂T

−1]
(8)

and

E
(Y )
m̂t,t

= µ
(Y )
m̂t

+ Σ
(Y X)
m̂t

Σ(XX)
mt

−1
(Xt − µ(X)

m̂t
) (9)
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Σ
(XX)
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Σ

(XY )
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(10)

Second, to have a robust estimation of covariance matrix
Σ, we assume that, the off-diagonal terms Σ

(XY )
m and Σ

(Y X)
m

are all null matrices, and Σ
(XX)
m and Σ

(Y Y )
m are diagonal. In

other words, correlations between different dimensions in the
joint space (X,Y ) are ignored. Eventually, Eq. 9 and 10 are
simplified to

E
(Y )
m̂t,t
≈ µ(Y )

m̂t
D

(Y )
m̂t
≈ Σ

(Y Y )
m̂t

(11)

Note that E(Y )
m̂t,t

and D(Y )
m̂t

require for all m̂t. Consequently,
the conversion requires all acoustic frames X of an utterance
to be available before solving the simultaneous equations to
obtain the relation in Eq. 6. This is usually impossible in real-
time.

III. LOW-DELAY CONVERSION

The latency denotes the time delay between an available
acoustic frame and the rendered corresponding lips move-
ment. A long latency can cause inconvenience in real-time
communications between human and machine. Therefore, a
low latency is highly desirable for many practical talking head
applications.

As illustrated in Fig. 2, in a batch mode MLE-based
conversion, all acoustic features in an utterance are converted
simultaneously. The total system latency is the length of
acoustic utterance plus computation time in all stages.



We want to achieve a low latency for real-time applications,
but retain high quality of rendered lips movements. For this
purpose, we propose a sliding window-based real-time speech-
to-lips conversion method.
A. Sliding Window-based Real-time Conversion

For real-time processing of sequence [X1, X2, . . . , XT ], ŷt
needs to be rendered as soon as Xt is available. While batch
conversion waits until all frames in XT become available to
obtain ŷt, we can approximate it using only [X1, X2, . . . , Xt]
that are available at time t, solve the batch conversion problem
in these frames. Then yt can be obtained sequentially with
time.

Furthermore, frames Xi in the long past often have few
influence on Xj than the recent frames. A sliding window
approach that considers only the most recent L frames is
appropriate to reduce computation load and hopefully without
deteriorating the output quality appreciably.

In the sliding window approach, we define

E
(Y )
m̂,t,L =

[
Em̂t−L+1,t−L+1

(Y ), . . . ; . . . ; . . . , Em̂t,t
(Y )
]
(12)

D
(Y )
m̂,t,L = diag

[
Dm̂

(Y )
t−L+1, . . . ; . . . ; . . . , Dm̂

(Y )
t

]
(13)

as the statistics in a sliding window ranges from frame index
t−L+1 to t. Batch conversion in section 2 can be performed
in the window as:

ŷt,L = arg maxP (WLyt,L|Xt,L)

= (W>L D
(Y )
m̂,t,L

−1
WL)−1W>L

D
(Y )
m̂,t,L

−1
E

(Y )
m̂,t,L (14)

and have the estimation of ŷt:

ŷt = ŷt,L(L) (15)
In practice, we observed that if a few frames come after

Xt can provide important dynamic constraints between ŷt and
ŷ>t, thus improve the estimation of trajectory ŷ. Therefore, we
allow look-ahead frames, that is, to wait until Xt+h become
available before estimate ŷt. Here h is the number of look-
ahead frames.

ŷt = ŷt+h,L(L− h) (16)

As illustrated in Fig. 2, the methods work as follows. At the
time t+h, L most recent frames are put into sliding window.
Then batch conversion is performed on the sequence inside
this window by Eq. 14, gives a local trajectory ŷt+h,L. In
this local trajectory we keep only the L-th item ŷt+h,L(L) as
the estimation of ŷt and discard the rest. In the next step, the
window slides forward for one frame and solve for ŷt+1.

Initially at t = 0, E(Y )
m̂,t+h,L and D(Y )

m̂,t+h,L

−1
are set to be

all zero. When new frame become available, we update the
two matrix in a recursive manner similar to [8],

E
(Y )
m̂,t+h+1,L = JE

(Y )
m̂,t+h,LJ

> + ∆Et+h+1 (17)

D
(Y )
m̂,t+h+1,L

−1
= JD

(Y )
m̂,t+h,L

−1
J> + ∆Dt+h+1 (18)

where elements no longer in the window are thrown out by J ,

J =

[
0LD×D ILD×LD

0D×D 0D×LD

]
(19)

and new components is added by,

∆Et+h+1 =
[
0, . . . ; . . . ; . . . , E

(Y )
m̂t+h+1,t+h+1

]
(20)

∆Dt+h+1 = diag
[
0, . . . ; . . . ; . . . , D

(Y )
m̂t+h+1

−1]
(21)

Eq. 14 can be solved by Cholesky decomposition as derived
in [9]. It operates on the order of O(LM) if the covariance
matrix is diagonal. M is the dimensionality of Y .

In this method, the synthesis of ŷt still makes use of the
inter-frame constraints brought about by dynamic features, but
limited in the window. In other words, the proposed approach
use local solution in Eq. 14 to approximate the utterance-wide
solution in Eq. 6. In our observation, with reasonable window
length and look-ahead frames (we use L = 200 and h =
10), the synthesized trajectories will be very closed to there
counterpart from batch conversion.

Fig. 2 indicates the latency of this method: the length of
look-ahead frames plus computation time for solving Eq. 14
in sliding window. Although increasing the latency, look-ahead
frames can significantly improve the quality of conversion, as
mentioned in [8] and observed in our experiments. Therefore
we tolerate a small number of look-ahead frames, which can
be treated as a trade-off between the latency of system and
the fidelity of output trajectory.

IV. EVALUATIONS

A. Experimental Setup
We employ the LIPS 2008/2009 Visual Speech Synthe-

sis Challenge data [7] to evaluate the proposed conversion
method. The dataset has 278 video files with the corresponding
audio tracks, each is a separately recorded English sentence
spoken neutrally by a female native speaker. The video frame
rate is 50 frames per second. For each image in a video
sequence, Principle Component Analysis (PCA) projection is
performed on the automatically detected and aligned mouth
image, resulting in a reduced, 60-dimensional visual parameter
vector. Mel-frequency Cepstral Coefficient (MFCC) vectors of
the acoustic speech signals are extracted with a 20ms time
window shifted every 5ms. The visual parameter vectors are
interpolated up to the same frame rate as the audio speech
MFCCs.

We compare the performance of proposed low-delay speech-
to-lips conversion method with the batch conversion. In addi-
tion, we evaluate both the performance and the latency of real-
time conversion with different length of sliding windows and
different number of look-ahead frames. The trade-off between
high rendering quality and low time latency in this system is
therefore investigated.
B. Objective Evaluation

The performance of conversion is evaluated objectively by
two metrics, in two, open and close, tests. In the “close” test
we use all available data for both training and conversion while
in the “open” test, we use a leave-20-out cross validation
experiment and the errors averaged over all the folds to
calibrate the performance.



MSE ACC
open close open close

Batch 7.69e5 5.27e5 0.406 0.598
Real-time 9.11e5 7.21e5 0.400 0.547

TABLE I
OBJECTIVE EVALUATIONS, LOOK-AHEAD=10 FRAMES
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Fig. 3. Trajectory of Top PCA dimensions

We use Mean Square Error (MSE) and Average Correlation
Coefficient (ACC) as objective performance measures. They
are defined as,

MSE =
1

T

T∑
t=1

||ŷt − yt|| (22)

ACC =
1

TD

T∑
t=1

D∑
d=1

(yt,d − µyd)(ŷt,d − µŷd
)

σyd
σŷd

(23)

In Table I, we observe the performance degradation which
results from the approximation used in the real-time system.
Fig. 3 shows the converted visual trajectory between the batch
and real-time sequential conversion. Compared with batch
conversion, the trajectory synthesized in a sliding window has
a larger distance away from ground truth, resulting in a larger
MSE. Nevertheless, it still retains a smooth trajectory and more
importantly, a shape that is very similar to the ground truth.
In other words, the proposed method can reproduce proper
dynamic characteristics in its output trajectory. This can also
be demonstrated by the ACC measure, in which the difference
between batch and real-time conversion is rather small.
C. Rendering Performance versus Latency

As discussed in Section 3, the look-ahead parameter serves
as a trade-off between high rendering performance and low
time latency. To investigate the effects of look-ahead frames
quantitatively, we perform the objective evaluation with differ-
ent look-aheads. As shown in Fig. 4, the MSE is large without
look-ahead but decreasing rapidly as look-ahead number in-
creases.

In practical, we use 10 look-ahead frames as a compromise
of rendering performance and latency. Since the frame shift
is 5ms, latency induced by look-ahead will be 50ms. Other
possible causes of latency includes:
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Fig. 4. Performance under different number of look-ahead frames

• Acoustic feature and its delta parameter extraction also
needs a short time window, the length is set at 20ms in
our experiments.

• Time for computation. This is minor since the computa-
tion of the proposed algorithm is linear on L and M .

As a final performance assessment, we ran the complete
speech-to-lips system on a PC with live input of audio speech
signals. The actual latency turns out to be less than 100 ms, and
the audio-visual delay is almost negligible to human viewers.

V. CONCLUSION

In this paper, we modify the batch GMM-based, speech-to-
lips conversion method for low latency, real-time applications,
with a sliding window covering the most recent frames and
a look-ahead. Experimental results on the LIPS 2009 dataset
demonstrate the effectiveness of the proposed method. It can
approach the performance of the previous batch method in
both the quality of synthesized trajectory and low latency.
Look-ahead frames can be set as a control parameter that can
compromise synthesized trajectory fidelity and the resultant
latency.
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