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Abstract—This paper addresses extensions of the Least Angle
Regression (LARS) algorithm from two different aspects: (i) from
quadratic to more general objectives, and (ii) from `1-norm to
`p-norm for p < 1. The equiangular vector, which is the key of
LARS, is reproduced in connection with the Riemannian metric
induced by the objective function, thereby making the extensions
feasible. It is shown, in the case of p < 1, that two types of
trajectory — the c-trajectory and the λ-trajectory — need to be
distinguished by revealing the discontinuity of the λ-trajectory.

I. INTRODUCTION

The sparsity-seeking property of `1-norm has widely been
studied and used in the signal processing and statistical
communities (there also exist literatures on this topic in the
information theory community). The value of this property
has been explored for sparse signal recovery as well as model
selection. In particular, one of the main researches on this
topic in signal processing is compressed sensing (see [1]–[3]
among many others), while that in statistics is Lasso [4], which
stands for least absolute shrinkage and selection operator.
The models of the two researches have similarity but are
different from at least two perspectives. A typical formulation
of compressed sensing is given as follows:

min
β∈Rn

‖β‖1 s.t. XTβ = y, (1)

where X ∈ R
n×d and y ∈ R

d are given under the condition
n � d. Namely, a highly underdetermined linear system is
assumed, and it is required to find the minimum `1-norm
solution among the infinitely many solutions. It has been
widely known that the problem in (1) is a reasonable convex
relaxation of the following sparse optimization:

min
β∈Rn

‖β‖0 s.t. XTβ = y, (2)

where ‖·‖0 counts the number of nonzero components; the
solutions of (1) and (2) coincide under certain conditions
ensuring sufficient sparsity of the `0 solution. On the other
hand, the original formulation of Lasso is given as follows:

min
β∈Rn

∥∥∥XTβ − y

∥∥∥
2

2
s.t. ‖β‖1 ≤ c, c > 0, (3)

where X ∈ R
n×d and y ∈ R

d are given under the condition
n < d. In contrast to the case of compressed sensing, an
overdetermined linear system is assumed, and it is required to
minimize the discrepancy under a restricted model complexity.

Efron et al. have proposed the Least Angle Regression
(LARS) algorithm [5], which constructs the solution path (or

the trajectory) of Lasso efficiently. The key of LARS is the use
of equiangular vectors and the trajectory consists of piecewise
straight lines given by the equiangular vectors. In [6], LARS
has been applied to the problem in (1) in the underdetermined
case. The ultimate goal in this work is to extend LARS to
the case of non-quadratic (convex) cost function and/or the
case of `p-norm for p < 1. Unfortunately, however, the notion
of equiangular vector cannot be extended straightforwardly to
those cases, since the trajectory is no longer piecewise straight
lines in the β-coordinates. In the case of p = 1, an extension of
LARS based on information geometry [7] has been presented
in [8] using geodesics in dually flat spaces in place of straight
lines (note: the trajectory is piecewise straight lines in the
dual coordinates). The case of p < 1 is of particular interest
because of its more attractive properties compared to the case
of p = 1 [9], [10]. To the best of authors’ knowledge, no result
has been reported regarding an extension of LARS to the case
of p < 1.

In this paper, we distinguish two problems which we call
the c-trajectory problem and the λ-trajectory problem. The c-
trajectory problem is the problem of finding a solution path
of convex cost minimization under an `p-norm constraint; a
simple example is the problem in (3), where c is a control
parameter. The λ-trajectory problem, on the other hand, is
the problem of finding a solution path of (unconstrained)
regularized cost minimization; its corresponding counterpart
of (3) is given as

min
β∈Rn

∥∥∥XTβ − y

∥∥∥
2

2
+ λ ‖β‖1 , λ > 0. (4)

The problems in (3) and (4) are equivalent under an ap-
propriate correspondence of c and λ. It should be remarked
however that the two problems should be distinguished when
we address an extension to the case of the `p-norm constraint
for p < 1.

In the first part of this paper, we consider the case of p = 1.
We present an extended LARS algorithm with a minimum
notion of information geometry. A link between the trajectory
and the dual geodesic projection is presented with the classical
sufficient condition for unconstrained optimality. The proposed
algorithm is derived through simple differential equations. A
simple linear regression problem is considered as an example,
and the equiangular vector of LARS is derived in connection
with the Riemannian metric induced by the cost function (the
metric is in fact Euclidean as the cost is quadratic in this
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case). Another interesting problem with a non-quadratic cost
function is also introduced.

In the second part of this paper, we consider the case of
p < 1. The λ-trajectory is shown to be a subset of the c-
trajectory, and therefore the two trajectories should be distin-
guished. Some properties of those trajectories are separately
investigated, including discontinuity of the λ-trajectory. Some
discussion on the construction of the trajectories is presented
with an illustrative example of the c-trajectory.

II. c-TRAJECTORY AND λ-TRAJECTORY PROBLEMS

Let ϕ : R
n → R be a strictly-convex twice-differentiable

function defined on the n dimensional Euclidean space R
n,

and Fp : R
n → R, β 7→ 1

p ‖β‖p
p = 1

p

∑n
i=1 |βi|p, for p > 0. In

the case of LARS (or Lasso), ϕ is quadratic and p = 1; see (3).
In this case, the strict convexity corresponds to overdetermined
systems (n < d).

Consider the following two problems.
Problem 1 (c-Trajectory Problem): Find the trajectory of

solutions (a solution path) of the following problem (for all
c ≥ 0):

Pc : min
β∈Rn

ϕ(β) subject to Fp(β) ≤ c. (5)

Problem 2 (λ-Trajectory Problem): Find the trajectory of
solutions of the following problem (for all λ ≥ 0):

Pλ : min
β∈Rn

ϕ(β) + λFp(β). (6)

Let β
∗
c denote a solution of (5) and β

∗
λ a solution of (6).

It is clear that β∗
c |c=0 = β∗

λ|λ=∞ = 0n and β∗
c |c=∞ =

β∗
λ|λ=0 = β∗ := argminβ∈Rn ϕ(β), where 0n ∈ R

n stands
for the length-n zero vector. If Fp is convex (i.e., p ≥ 1),
due to Lagrangian duality, the solution of (5) can be obtained
by solving (6) (with the λ value chosen properly) which is
unconstrained and thus relatively easy to solve in general. The
c-trajectory and the λ-trajectory thus coincide with each other.
This however does no longer hold when Fp is nonconvex (i.e.,
p < 1), as will be seen in Section IV.

III. THE CASE OF p = 1

In this section, we assume that p = 1 so that Fp is convex
and it also promotes the sparsity of β (i.e., it has a feature to
attract each component of β to zero). As already mentioned,
the c-trajectory and the λ-trajectory coincide in this case, and
hence we simply call it the trajectory. A simple approach to
construct the trajectory will be shown below.

A. Derivative of the Trajectory

Let us give some definitions first.
Definition 1: Given a continuous convex function f : R

n →
R, the subdifferential of f at any y ∈ R

n, defined as ∂f(y) :=
{a ∈ R

n : 〈x − y,a〉+f(y) ≤ f(x), ∀x ∈ R
n}, is nonempty,

where 〈·, ·〉 stands for the standard inner product. An element
of the subdifferential ∂f(y) is called a subgradient of f at y.

The function F1 is nondifferentiable but continuous and
convex, and hence it has nonempty subdifferential. A subgra-
dient of F1 at β := [β1, β2, · · · , βn]T ∈ R

n, which we denote
by ∇F1(β), is given as follows:

[∇F1(β)]i

{
= sgn(βi) if βi 6= 0
∈ [−1, 1] if βi = 0

(i = 1, 2, · · · , n), (7)

where [·]i stands for the ith component of a vector and sgn(·)
the signum function. Due to the convexity of ϕ and F1, β∗

c ∈
{β ∈ R

n : F1(β) ≤ c} is a solution of Pc if and only if there
exist a subgradient ∇F1(β

∗
c) and an αc ≥ 0 such that

∇ϕ(β∗
c) + αc∇F1(β

∗
c) = 0n. (8)

Clearly, β∗
c is also a solution of Pλ for λ = αc. For any

function f : R
n → R differentiable in terms of βi 6= 0, we

define

∇A f(β) :=




∂

∂βi1

f(β)

∂

∂βi2

f(β)

...
∂

∂βim

f(β)




∈ R
m

where A := {i1, i2, · · · , im} := {i ∈ {1, 2, · · · , n} : βi 6= 0}
denotes the set of active indices for β := [β1, β2, · · · , βn]T

(m is the number of nonzero components of β). Then, from
(8), we immediately have the following:

∇Aϕ(β∗
λ) + λ∇AF1(β

∗
λ) = 0m. (9)

Differentiating (9) with respect to λ, we thus obtain

[∇A∇Aϕ(β∗
λ) + λ∇A∇AF1(β

∗
λ)]β̇

∗

λ,A

= ∇A∇Aϕ(β∗
λ)β̇

∗

λ,A = −∇AF1(β
∗
λ), (10)

where β̇
∗

λ,A := dβ∗
λ,A/dλ with β

∗
λ,A obtained by elim-

inating all the zero components from β∗
λ. Note here that

∇A∇AF1(β) = Om, where Om denotes the m × m zero
matrix. Since the strict convexity of ϕ guarantees the positive
definiteness (thereby nonsingularity) of ∇A∇Aϕ(β∗

λ), we
have

β̇
∗

λ,A = − [∇A∇Aϕ(β∗
λ)]

−1
∇AF1(β

∗
λ). (11)

B. Trajectory and Dual Geodesic Projection

From the discussion in the previous subsection, we obtain
the following observations.

Observation 1:
1) The trajectory is a piecewise smooth continuous curve.
2) Suppose that all the components of β are nonzero. Along

the piecewise smooth curve, the direction of the gradient
of ϕ keeps constant (see (8)). Consider the coordinate
transform η := ∇ϕ(β), which is one to one due to
the strict convexity of ϕ, and it is called the Legendre
transform. The η-coordinates are called the dual affine
coordinates. Equation (8) suggests that η∗

λ := ∇ϕ(β∗
λ)



draws a straight line in the dual coordinates and it is
called a dual geodesic. The same applies to the case
where there exist zero components in β; in this case we
may consider the lower dimensional space.

3) Suppose that all the components of β are nonzero.
Let Bλ(3 β∗

λ) stands for the face of the polyhedron
{β ∈ R

n : F1(β) ≤ F1(β
∗
λ)}. It is then clear that

〈∇F1(β
∗
λ),β∗

λ − y〉 = 0 for any y ∈ Bλ (with the
standard inner product 〈·, ·〉); in words ∇F1(β

∗
λ) is

orthogonal to Bλ. It is therefore seen that the curve
of β∗

λ is also orthogonal to Bλ in the sense of the
Riemannian metric; i.e.,

〈
β̇
∗

λ,β
∗
λ − y

〉
∇∇ϕ(β∗

λ
)
= 0

for any y ∈ Bλ. This implies that the trajectory gives
the dual geodesic projection of β

∗ onto the hypersurface
Bλ. The same applies to the case where there exist zero
components in β.

C. Extended LARS Algorithm

We now extend the LARS algorithm. In analogy with
LARS, we set the initial point to β0 := 0n. We now need to
find in which direction to step. Viewing the trajectory with Pc,
the direction is given by the negative Minkowskian-gradient
of ϕ. The Minkowskian-gradient of ϕ at β is defined as
such a vector a := [a1, a2, · · · , an]T ∈ R

n that maximizes
〈∇ϕ(β),a〉 subject to F1(a) = 1. Assume for simplicity
that there exists a unique i∗ that maximizes |ηi| among
i = 1, 2, · · · , n, i.e. I := argmaxi=1,2,··· ,n |ηi| = {i∗}, where
η := [η1, η2, · · · , ηn]T := ∇ϕ(β). The Minkowskian-gradient
is then given as

ai =

{
sgn ηi if i = i∗

0 otherwise.

One can thus depart the initial point 0n in the negative
Minkowskian-gradient direction, i.e. −a. Taking a careful look
at (8) together with (7), one can readily see that the trajectory
should move along the i∗th coordinate until |ηi∗ | becomes
no longer the unique maximum among |ηi|s (i.e., only the
i∗th component of β should be decreased, or increased,
depending on the sign of ηi∗). At some point, we will have
|ηi∗ | = |ηj∗ | = max{|η1| , |η2| , · · · , |ηn|} for some j∗ 6= i∗.
This is a turning point of the trajectory, and we redefine
I := {i∗, j∗}. The direction to step on the i∗-j∗ plane is
given by

−β̇n,I :=
[
∇I∇Iϕ(βn,I)

]−1
∇IF1(βn,I), (12)

where βn,I := [βn,i∗ , βn,j∗ ]
T and ∇I denotes the partial

derivatives only in terms of the components corresponding
to the indices in I (in this case, ∇I := [ ∂

∂βi∗
, ∂

∂βj∗
]T).

Although ∂
∂βj∗

F1(βn,I) is not uniquely determined (see (7)),
it is determined as

∂

∂βj∗
F1(βn,I) = sgn(−ηj∗) = sgn

(
−[∇ϕ(βn,I)]j∗

)
.

The negative sign in (12) is due to the fact that λ decreases as
we step along the trajectory in our way. The trajectory curve
from the turning point (to the next turning point if n ≥ 3) is
constructed by updating βn,I as follows:

βn+1,I := βn,I + µ[∇I∇Iϕ(βn,I)]−1
∇F1(βn,I), (13)

where µ > 0 is a small constant. The next turning point
comes when we will have |ηi∗ | = |ηj∗ | = |ηk∗ | =
max{|η1| , |η2| , · · · , |ηn|} for some k∗ 6∈ {i∗, j∗}, and in
this case we redefine I := {i∗, j∗, k∗}. One can follow
the above idea until the trajectory finally reaches β∗(:=
argminβ∈Rn ϕ(β)). In addition to the trajectory, we can also
obtain the λ value at each point on the trajectory based on (8)
as follows:

λ = |[∇ϕ(βn)]i∗ | .
D. Example 1: Quadratic Function

A typical example is the linear regression. Consider the
following linear model:

yt = 〈βo,xt〉 + nt, t = 1, 2, · · · , d,
where xt ∈ R

n are called the design vectors (assumed
available), βo the explanatory vector to be estimated, yt the
response variables which are observed, and nt the ambient
noise subject to the Gaussian distribution N (0, σ2). Consider
the statistical model where the joint probability of y1, y2, · · · ,
yd given x1, x2, · · · , xd, and β is given by

p(yt|xt,β) = exp

(
−1

2

d∑

t=1

(yt − 〈β,xt〉)2
)
.

In order to maximize this probability, one can alternatively
minimize its negative log likelihood, which is given as follows:

ϕ(β) := − log(p(yt|xt,β)) =
1

2

d∑

t=1

(yt − 〈β,xt〉)2

=
1

2

∥∥∥y − XTβ

∥∥∥
2

2
, β ∈ R

n, (14)

where y := [y1, y2, · · · , yd]
T ∈ R

d and X :=
[x1,x2, · · · ,xd] ∈ R

n×d. This is a typical cost function in
least squares problems. Lasso formulates the linear regression
problem as the constrained minimization problem (5) for the
quadratic function in (15) and p = 1 (the `1-norm constraint)
under the assumption of an overdetermined system (n < d). If
rank(X) = n, ϕ(β) is strictly convex with its unique global
minimizer given by β∗ = (XXT)−1Xy. In this case, we
have

ϕ(β) = (β − β∗)TG(β − β∗), β ∈ R
n, (15)

where

G := XXT = ∇∇ϕ(β), ∀β ∈ R
n.

Namely the metric is constant over R
n. Also we define

GI := ∇I∇Iϕ(β) ∈ R
|I|×|I|, ∀β ∈ R

n.



Let {e1, e2, · · · , e|I|} be the standard basis of R
|I|. Then we

have
∣∣∣∣
〈
ei, β̇n,I

〉
GI

∣∣∣∣ =
∣∣eT

i ∇IF1(βn,I)
∣∣ = 1. (16)

LARS exploits the property in (16). As the negative differential
−β̇n,I is constant from a turning point to the next one, the
trajectory is a straight line in the β-coordinates (as well as in
the η-coordinates).

E. Example 2: Non-Quadratic Function

We consider the 0-1 response case (i.e., yt = ±1) with the
joint probability of y1, y2, · · · , yd (n < d) given x1, x2, · · · ,
xd, and β is given by

p(yt|xt,β) =

d∏

t=1

exp(yt 〈β,xt〉)
1 + exp(〈β,xt〉)

=
d∏

t=1

exp (yt 〈β,xt〉 − ψ(β,xt)) , (17)

where

ψ(β,xt) := log (1 + exp(〈β,xt〉)) .

In this case, the negative log likelihood is given as follows:

ϕ(β) =

d∑

t=1

[log (1 + exp 〈β,xt〉) − yt 〈β,xt〉] .

Its gradient and Hessian are given respectively as follows:

∇ϕ(β) =

d∑

t=1

[
exp 〈β,xt〉

1 + exp 〈β,xt〉
− yt

]
xt (18)

∇∇ϕ(β) =
d∑

t=1

ζ(xt,β)xtx
T

t , (19)

where

ζ(xt,β) := exp 〈β,xt〉

× (1 + 〈β,xt〉2)(1 + exp 〈β,xt〉) + 〈β,xt〉2 exp 〈β,xt〉
[1 + exp 〈β,xt〉]2

.

It is clear that ζ(xt,β) > 0 for any xt,β ∈ R
n, and hence the

Hessian is positive definite (and thus ϕ(β) is strictly convex1)
provided that x1,x2, · · · ,xd spans R

n.

IV. THE CASE OF p < 1

We now consider the case of p < 1, where the function
Fp is nonconvex. In this case, unlike the case of p = 1,
the nice relation between the trajectory and the dual geodesic
projection does no longer hold, although each point on the c-
trajectory can be characterized as a dual geodesic projection.

1Let f : R
N → R be twice differentiable. Then, if ∇∇f(β) is positive

definite, then f is strictly convex. The converse is not true in general; the
converse is true in the particular case of quadratic functions [11].

A. Difference Between c-Trajectory and λ-Trajectory

We first show the following observation.
Observation 2: For 0 < p < 1, the λ-trajectory is a proper

subset of the c-trajectory.
Sketch of Proof : Given an arbitrary λ ≥ 0, let β∗

λ is a solution
of Pλ. Define cλ := Fp(β

∗
λ). Assume that β∗

λ is not a solution
of Pcλ

; i.e., there exists some β̂ such that Fp(β̂) ≤ cλ =

Fp(β
∗
λ) and ϕ(β̂) < ϕ(β∗

λ). It can then immediately be shown
that

ϕ(β̂) + λFp(β̂) < ϕ(β∗
λ) + λFp(β

∗
λ),

which contradicts the fact that β∗
λ is a solution of Pλ. This

verifies that β
∗
λ is a solution of Pcλ

. It will be shown in the
following subsections that the c-trajectory is continuous at β =
0n whereas the λ-trajectory is discontinuous at β = 0n for
0 < p < 1. 2

The observation above implies that we need to distinguish
the two trajectories for 0 < p < 1. In analogy with the case of
p = 1, it holds that β∗

c |c=0 = β∗
λ|λ=∞ = 0n and β∗

c |c=∞ =
β∗

λ|λ=0 = β∗ := argminβ∈Rn ϕ(β).

B. c-Trajectory

Observation 3: For any c ≤ Fp(β
∗), it holds that Fp(β

∗
c) =

c; in words β∗
c lies on the boundary of the feasible set of Pc.

Proof : Assume that Fp(β
∗
c) < c. Then there exists βα :=

αβ∗
c +(1−α)β∗, α ∈ [0, 1), such that Fp(βα) = c. The strict

convexity of ϕ ensures that β∗ is the unique global minimizer
of ϕ over R

n. Hence it follows that ϕ(βα) ≤ αϕ(β∗
c) + (1−

α)ϕ(β∗) < ϕ(β∗
c), indicating that β∗

c is not a solution of Pc.
This verifies that Fp(β

∗
c) = c. 2

Observation 3 implicitly ensures the continuity of the c-
trajectory at β = 0n. We define the Fp-gradient of ϕ at β

is defined as such a vector a := [a1, a2, · · · , aN ]T ∈ R
n that

maximizes 〈∇ϕ(β),a〉 subject to Fp(a) = 1/p. Then we
obtain the following observation.

Observation 4: Assume that there exists a unique i∗ that
maximizes |ηi| among i = 1, 2, · · · , n, where η :=
[η1, η2, · · · , ηn]T := ∇ϕ(β). Then, at the point β = 0n,
the Fp-gradient of ϕ for any 0 < p < 1 coincides with its
Minkowskian gradient.
Proof : We mention that the Fp-gradient of ϕ at β can be
defined also as such a vector a := [a1, a2, · · · , aN ]T ∈ R

n

that maximizes 〈∇ϕ(β),a〉 subject to Fp(a) ≤ 1/p, instead
of Fp(a) = 1/p. The claim is readily verified by noting that
Fp(a) ≤ 1/p⇒ F1(a) ≤ 1. 2

Observation 4 suggests that the c-trajectory for 0 < p < 1
leaves the point 0n in the same direction as for p = 1.

C. λ-Trajectory

We consider a simple one-dimensional case of the λ-
trajectory problem: let ϕ(β) := 1

2 (β − 2)2 and F1/2(β) :=

2|β|1/2. The graphs of the cost function for several values
of λ are illustrated in Fig. 1. It is seen that each graph has
two local minima, one at β = 0 and the other at some point
βλ ∈ [1.333, 1.8]. Also it can be seen that, although βλ is the
unique global minimizer for λ = 0.3 and λ = 0.5, both βλ
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Fig. 2. The c-trajectory (blue) and the λ-trajectory (red) for ϕ(β) :=
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∥∥2

2
and p = 1/2.

and the origin are the global minimizers for λ = 0.77, and βλ

is no longer the global minimizer for λ = 0.9. This suggests
that the λ-trajectory in this simple example is discontinuous
and it ’jumps’ from the continuous curve of βλ to the origin;
the ’jump’ occurs at λ ≈ 0.77.

A question arises: could the λ-trajectory have any other
discontinuous points? To answer it simply, let us con-
sider the following special two-dimensional case: ϕ(β) :=
1
2

∥∥β − [2, 1]T
∥∥2

2
and F1/2(β) := 2(|β1|1/2 + |β2|1/2). In

this case, ϕ(β) + λF1/2(β) = f1(β1) + f2(β2), where
f1(β) := 1

2 (β − 2)2 + 2λ |β|1/2, β ∈ R, and f2(β) :=
1
2 (β − 1)2 + 2λ |β|1/2, β ∈ R. One can therefore minimize
f1(β1) and f2(β2) separately. From the observation for the
one-dimensional case, it can be expected that both β1 and
β2 jump from zero to some values at different λs. The c-
trajectory and the λ-trajectory for this example are depicted
in Fig. 2. The c-trajectory is continuous in this case. On the
other hand, the λ-trajectory is as follows: it jumps from 0n

to [1.333, 0], moves along the β1-coordinate up to [1.797, 0],
jumps again to [1.797, 0.666], and then follows the c-trajectory
up to [2, 1]. This exemplifies that the λ-trajectory may have
multiple discontinuous points in general. Figures 3 and 4
depict the correspondence between c and β, and that between
λ and β, respectively. Figure 5 depicts the graph of αc.

For a more general case where ϕ(β) := 1
2 ‖β − β∗‖2

2, the
λ-trajectory behaves as follows: (i) β∗

λ jumps from 0n to some
point on the i∗th coordinate (i∗ := argmaxi=1,2 |ηi| assuming
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it is unique), (ii) moves along the coordinate in the direction
of increasing |βi∗ |, and (iii) at some point the j∗th element
βj∗ jumps, where j∗ ∈ {1, 2} \ {i∗}. We can indeed verify
the following observation.

Observation 5: For 0 < p < 1, the λ-trajectory is always
discontinuous at β = 0n.
Sketch of Proof : Recall first that ϕ is supposed to be dif-
ferentiable over R

n. The function Fp(β) can be expressed as
Fp(β) =

∑n
i=1 ψ(βi), where ψ(β) := 1

p |β|p for β ∈ R. It can
be verified that limβ↑0

d
dβψ(β) = ∞ and limβ↓0

d
dβψ(β) =

−∞. This implies that the function ϕ(β)+λFp(β) has a local
minimum at β = 0n for any λ > 0 and thus the λ-trajectory
is discontinuous at β = 0n. 2

D. Discussion

At any solution β∗
c of Pc, a contour of ϕ should touch a

contour of Fp at β∗
c ; in other words, the two contours should

share the same tangent plane. Therefore it holds that

∇Aϕ(β∗
c) = −αc∇AFp(β

∗
c), αc ≥ 0. (20)

Comparing (9) and (20), it is seen that αc plays a similar role
to λ. It should however be mentioned that αc is not monotone
in terms of c. Differentiating (20) with respect to c, it follows
that

[∇A∇Aϕ(β∗
c)+αc∇A∇AFp(β

∗
c)]β̇

∗

c,A = −α̇c∇AFp(β
∗
c),

(21)
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where β̇
∗

c,A := dβ∗
c,A/dc with β∗

c,A obtained by eliminating
all the zero components from β∗

c and α̇c := d
dcαc. Equation

(21) may offer a clue to construct the c-trajectory as like (10)
in the case of p = 1. However delicate care would be required
at turning points, as will be explained below with the example
shown in Fig. 2.

For 0 < p < 1, the derivative of ψ(β) := 1
p |β|p at a point

β 6= 0 is given by

ψ′(β) = sgn(β) |β|−(1−p) . (22)

Viewing the curving part (between [2, 1]T and [2, 0]T) of the
trajectory in Fig 2 with (20), it is seen that ∇AFp(β

∗
c) →

[1/
√

2,∞]T as β∗
c → [2, 0]T, and hence at the turning

point ∇Aϕ(β∗
c) ∼ [0, 1]T with αc = 0. If we follow the

trajectory from [0, 0]T to [2, 1]T, the αc value increases from
zero to some positive value, then starts to decrease until it
becomes zero at the turning point [2, 0]T, and then again it
increases up to some value and then keep decreasing until it
becomes zero again at [2, 1]T. Accordingly, the sign of α̇c

changes from positive to negative between [0, 0]T and [2, 0]T,
it changes from negative to positive at the turning point [2, 0]T,
and then again it changes from positive to negative between
[2, 0]T and [2, 1]T. This causes the cusp at the turning point
observed in Fig. 2. The large value of the second component of
∇AFp(β

∗
c) is scaled down by the multiplication of the inverse

of ∇A∇Aϕ(β∗
c) + αc∇A∇AF1(β

∗
c). Also we need to care

the changes of the sign of α̇c in the middle of adjacent turning
points.

The use of the ’jump’ phenomena of the λ-trajectory
would bypass the aforementioned delicate problem of the c-
trajectory. However there still remain some open issues in
this approach. The first issue is: at what value of λ does a
’jump’ phenomenon happen? Is this the point where the sign
of α̇c changes? This would be denied by Figs. 2, 3, and 5.
The second issue is: where to ’jump’? Is there any geometric
connection between the points before and after the ’jump’?
The λ value should be preserved by the ’jump’, and therefore
a possible approach would be to find a path along which the
λ value (i.e., |[∇ϕ(β)]1| / |[∇Fp(β)]1|) is unchanged.

V. CONCLUSION

This paper has presented a study of extending LARS
to a strictly-convex differentiable function and the `p-norm

constraint for p < 1 with the distinction between the c-
trajectory and the λ-trajectory. In the case of p = 1, the two
trajectories coincide and an iterative algorithm to construct
the trajectory has been presented based on simple differential
equations. In the case of p < 1, it has been shown that the
λ-trajectory is discontinuous and the two trajectories should
be distinguished. There are therefore two possibilities for the
extension: construct the c-trajectory or the λ-trajectory. The
former involves the delicate problem at turning points because
of the presence of cusps. The latter involves the problem of
finding from where to where the λ-trajectory jumps.
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