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Abstract—The sparse nature of location finding in the spatial 
domain makes it possible to exploit the compressive sensing (CS) 
theory for wireless location. CS-based location algorithm can 
largely reduce the number of measurements while achieve a high 
level of localization accuracy, which makes the CS-based 
solution very attractive for indoor positioning. In this paper, a 
novel CS-based fingerprinting location algorithm with minor 
component analysis (MCA) is proposed by us. MCA theory is 
firstly introduced into CS to solve the coherence of Received 
Signal Strength (RSS) measurements in wireless location 
scenario. MCA-based pre-processing can better satisfy the 
restricted isometry property (RIP) condition by finding the 
minor components of RSS measurements.   Analytical studies 
and simulations are provided to indicate that the proposed novel 
method using MAC significantly outperforms that with 
orthogonalization pre-processing, and also has lower complexity. 

I. INTRODUCTION 

Wireless location has drawn increasing attentions in the 
past few decades, mainly driven by the commercial and 
military potentials and government regulations[1][2][3]. 
Accurate and timely location information plays a prime role 
in personal and commercial applications including indoor 
positioning, equipment monitoring, and radio frequency 
identification (RFID)-based tracking.  However, it is usually 
difficult to provide a satisfactory level of accuracy in most 
applications due to very complex indoor environment. 
Besides, the cost also always restricts the application of the 
positioning techniques. Compared with other measurement-
based algorithms (e.g., time-of-arrival (TOA) or angle-of 
arrival (AOA) measurements), Received Signal Strength 
(RSS)-based localization algorithms have been extensively 
studied as an inexpensive solution for indoor positioning 
systems in recent years [4][5]. The key challenges for the 
RSS-based positioning systems comes from two aspects:1) 
the variations of RSS due to the radio channel impediments 
such as shadowing, multipath, and the orientation of the 
wireless device, etc. 2) only a small number of RSS 
measurements in real situations. These factors greatly increase 
the difficulty of realizing accurate indoor positioning 
objective. 

In general, two main approaches are proposed to solve the 
mentioned two difficulties in existing indoor positioning 
techniques. One method uses a prior theoretical or empirical 

radio propagation model to formulate the RSS position 
dependency for location estimation, which are unreliable due 
to the dynamic and unpredictable nature of indoor radio 
propagation [6] [7] . Another method known as fingerprinter 
is proposed [8], which includes the k-nearest neighbor 
algorithm (kNN) [9] and fingerprinter algorithm using 
Bayesian theory or kernel function [5]. The position of the 
target to be located is estimated by comparing its online RSS 
readings with offline observations. However, an accurate 
location scheme requires a large grid size, while on each grid 
point an RSS measurement is needed. In fact, the number of 
the available RSS measurements is always limited in the 
realistic environment, which results in the bad positioning 
performance. Besides, this method is highly dependent on the 
environment, any significant change to the topology implies a 
costly new recalibration. 
  Compressive sensing (CS) theory can recover signals that 
are sparse or compressible under a certain basis with far fewer 
noisy measurements than the Nyquist sampling theorem 
[10][11], so it provides a very good approach to solve the 
above problem. Since the location of a target is unique in the 
discrete spatial domain at a certain time, the localization 
problem can be modeled as an ideal 1-sparse vector. 
Motivated by the idea, the researchers [Chen Feng and 
Shahrokh Valaee el ta.] propose a CS-based multiple target 
localization algorithm in [12][13], which exploits far fewer 
number of RSS measurements to realize the good location 
accuracy. Compared with traditional fingerprinting algorithm, 
it reduces the number of measurements in a logarithmic sense, 
while achieves a high localization accuracy. 

Although the CS-based solution is very meaningful, two 
basic components need be held in CS: sparsity and 
incoherence. The RSS measurements from the different points 
are coherent in spatial domain under realistic envirnoment, so 
the CS-based solution has to solve one core problem that the 
sparsity basis and the measurement matrix must be spatially 
incoherent. The data of the offline stage and the online stage 
need be pre-processed to achieve the incoherent effects. The 
matrix orthogonalization transformation is adopted to reduce 
the correlation between the measurements matrix and the 
sparse matrix. Through the deeper analysis of simulation 
results, we discover that the orthogonalization –based pre-
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processing is not ideal so that the performance of CS-based 
location algorithm described in [12][13] is not as good as 
expected. The main reason is that the RSS fingerprints matrix 
isn't generally a square matrix so that its orthogonalization 
processing only can realize the normalization and correlation 
reducing of matrix row vectors, but the column vectors are 
not normalized and still strongly coherent. However, the 
incoherence of the column vectors is very important to 
recover the sparse signals, which greatly impact the 
positioning accuracy.  

Based on the deeper investigations, we propose a novel CS-
based fingerprinter positioning algorithm with minor 
component analysis (MCA) in this paper. MCA theory is 
firstly introduced into CS theory to solve the coherence 
between the measurements matrix and the sparse matrix in 
location scenario. MCA-based pre-processing can better 
satisfy the RIP condition by finding the minor components of 
RSS measurements from the grid points and the RPs [14]. 
Analytical studies and simulations are provided to indicate 
that the proposed novel method using MCA significantly 
outperforms that with orthogonalization pre-processing in 
[12][13]. 

The remainder of this paper is organized as follows: 
Section II briefly introduces the CS theory and the CS-based 
localization problem. In section III, CS-based wireless 
positioning algorithm is presented. Some corresponding 
theoretical analysis is also described in this section. Section 
VI gives the simulation results and analysis. Section V 
concludes the full paper.   

II. MODEL RESTATE AND ANALYSIS 

A. Brief Review of Compressive Sensing 
Compressive sensing is put forward to represent and 

capture a signal at a rate significantly below the Nyquist rate 
[10]. The transformed sparse signal can be recovered by some 
dedicated algorithms, such as orthogonal matching pursuit 
(OMP) [15] or basis pursuit (BP) [16] algorithms. Then the 
original signal can be obtained by the inverse transformation 
processor of the recovered sparse signals. The common CS 
model in the discrete domain is as follows: 

y = ΦΨs              (1) 

where s  is the original discrete-time signal that can be seen 
as a 1N × vector in N\ . Each column of sparsity matrix Ψ is 
an orthogonal basis, which is a N by N matrix. Then =x Ψs is 
a K-sparse transformed signal.Φ is the M by N measurements 
matrix, with K M N< << . y is the last measurements vector 
in M\ .The critical points in CS theory is the design of the 
sparsity matrix Ψ ,which is correlated to the character of the 
original signal [17]. A well-designed sparsity matrix can 
insure the higher sparsity of the transformed signal .Then the 
measurements matrix is chosen to be uncorrelated with the 
sparsity matrix. 

B. CS-based Localization problem 
Considering a case, where K  targets with unknown 

locations are located in an isotropic area that is divided into a 
discrete grid with N points. The localization area includes 
N N×  grids. Wireless nodes take RSS measurements from 
M  arbitrary reference points referred as RPs over the grids. 
RPs mainly realize the measurement function, and may be the 
points with known positions or with unknown positions. The 
goal is to determine the locations of the K targets 
simultaneously and accurately, using only a small of noisy 
RSS measurements and simple operation. It is noticed 
that K N� , M N� . 

The localization problem can be well formulated as a 
sparse matrix recovery problem in the discrete spatial domain. 

   = +y ΦΨΘ ε                                       (2) 

a) Φ is a M by N measurement matrix. Only a small number 
of measurements are collected from N grid points on arbitrary 
M  RPs. Each row of Φ is a 1 N× vector containing only one 
nonzero value of 1.The location of 1 in the row vector 
represents the location of one RP in the localization area. 
b) Ψ  is a N by N sparsity basis matrix. The element ,i jΨ  = 

,( )i jRSS d ,records the RSS reading on grid point i from the 
target located at grid point j, for all   1 i N≤ ≤ , 1 j N≤ ≤ . 

( )RSS d  denotes the radio propagation channel model 
including path loss, fast fading, and shadowing etc. ijd  
denotes the real transmitter-receiver distance from  the grid 
point i to the grid point j. The calculation of RSS 
measurements can utilize the given indoor radio propagation 
channel model in WLAN. 
c) Θ  is a N K×  matrix ,with one nonzero value of 1 in each 
of its column vector . Θ denotes the location of the targets 
over the grid. So there are K  targets located in the area. 
d) ε  is the unknown measurements noise. 
e) The M ×K matrix y ,is  the compressive noisy RSS 
measurements  from K targets on M RPs, with  each row 
vector indicating one measurement value. The number of 
measurements obeys M = O(K log(N/K)). 

Because of the space correlation between the RPs and the 
grid points, solving equation (2) to reconstruct Θ doesn’t 
satisfy the incoherence condition of CS theory. Reference [12] 

also presents a data pre-processing method as follows: 

            T T= ='y y (ΦΨΘ + ε)                         (3) 

where T denotes a linear transformation operation. 
Let =R ΦΨ , ( )orth= T TQ R , †T = QR , where orth(A) is an 
orthogonal basis for the range of A,{ }Ti denotes the transpose 
operation, and †{ }i returns the pseudo-inverse operation. Thus 

T T' 'y = y = QΘ + ε = QΘ + ε              (4) 

The simulation results have shown that the algorithm can 
obtain better performance than the other fingerprinting 
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algorithms, such as kNN algorithm. Moreover, it greatly 
reduces the number of measurements in a logarithmic sense. 

C. Restricted Isometry Property in CS Theory 
However, a major problem still remains through such data 

pre-processing. As we know, another very important restrict 
obeyed by CS theory is called the restricted isometry property 
(RIP) [18][19] .Given any set F of column indices, where F 

}{1, 2,3,... N⊂ . The formulation to express RIP in the CS 

localization model is as follows: 

2

2

(1 ) (1 )F J
k k

J

δ δ− ≤ ≤ +
Q Θ
Θ

          (5) 

where q
⋅ denotes the ql -norm. JΘ  denotes the vector 

corresponding to the column indices J in Θ ,where J ∈  
F. kδ is the smallest quantity satisfying the above formulation 
with the value between 0 and 1, for all the subsets 

}{1, 2,3,...F N⊂ with the cardinality F K≤ and all 

coefficient sequences ( )J J F∈Θ  . kδ is also correlated with the 
value of K , namely the sparsity of Θ . kδ determines the 
orthogonality of the column vectors of the measurements 
matrix with the column suffix in the subset F .The smaller 

kδ is, the higher accuracyΘ can be reconstructed. However, it 
is easy to prove that the matrix Q doesn’t satisfy this property. 
Because the signal to be recovered are 1-sparse column 
vectors of Θ , the 2l -norm of each column of Q should be 
nearly close to 1 but the fact isn’t the same as it. Under this 
condition, the normalization of the columns of Q  and 'y is an 
indispensible procedure. Then the general structure of the 
positioning model can be shown in Fig.1. Since the signal to 
be recovered is a 1-sparse signal, the normalization of the 
columns of measurements matrix R and the online readings 
y is essential to satisfy the constraints in (5).   
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Fig.1     The general structure of data processing 

Since R =ΦΨ , with the size M N× , isn’t a square matrix, 
orthogonalization can’t absolutely ensure the orthogonality of 

its column vectors. M is chosen to be far smaller than N in 
the real localization situation. Moreover, if the data 
processing is based on the principal of linear transformation, 
the space correlation can’t be lowered to a satisfactory degree. 

III. CS-BASED LOCATION ALGORITHM WITH MCA 

Before we introduce the proposed novel approach, some 
analysis about the factors influencing the accuracy of 
fingerprint localization is described to solve the existing 
problem in the CS model. 
    Comparing with the range-based localization algorithm 
using path-loss model of RSS values, the range-free methods 
using fingerprint of RSS in the CS model is more vulnerable 
to the variation of time and space. Generally speaking, N is 
chosen to be as large as possible for obtaining high accuracy 
of localization. But the RSS values collected at two adjacent 
grid points is more likely to be confused especially when the 
power of noise gets close to the difference of the average RSS 
values of the two grid points. So some previous algorithm, 
such as kNN, which uses the Euclidean distance to calculate 
the weight of each RP, may not obtain high accuracy of 
positioning if the number of RPs is not enough under a low 
signal-noise-ratio (SNR). 

As a result, the data pre-processing must be combined with 
the recovering algorithm in CS model. A widely applied 
approach to estimate the entries of nonzero value in the sparse 
signal is the computation of the projection, which is as 
follows: 

{{ } }
max

,
1, 2,3,..., :

,
i

i

S i N γ
< >

← ∈ ≥
< >

'

'

y R

y R
          (6) 

where γ is the threshold correlated to the sparsity of the signal, 
index i represents the ith RP. iR is the ith column vector of the 
original measurement matrix. The indices in the sets S are the 
probable entries of nonzero values in the signal to be 
recovered. So the data pre-processing should aims at 
maximizing the following: 

0

' '

, ,
, ,

arg max
i j

i j i j S

S
≠ ∈

< > − < >∑ ' 'y R y R

A

            (7) 

    Based on the above analysis, the MCA-based data pre-
processing method is proposed to lower the space correlation 
between the grid points and RPs by discarding part of the RSS 
variables with high variation received at each RP. MCA 
theory is widely utilized to find the minor components of 
interrelated variables in signal processing. It is contrary to the 
theory of principal components analysis (PCA) [20], which 
retains the principal components with the largest variance. 
The minor components are uncorrelated and of smaller 
variance in decreased dimension. MCA can reduce the 
dimension of a set of variables which are interrelated, by 



discarding as much as possible of the components with large 
variation present in the data set. Those components are more 
susceptible to the fluctuation of the environment. Besides, the 
minor components of a set of given variables can be achieved 
by transforming it into the direction with small variation in 
the low dimension space. 

Given a vector 1 2{ , ,..., }px x x=x with p variables, we are 
inclined to study the covariance matrix which contains both 
the variance and correlation of these variables. By subtracting 
the mean value of the samples from each variable in x , the 
covariance matrix can be calculated by 

{ }E= TC xx              (8) 

where C is a p p× matrix, with its diagonal elements being th
e variance and the other elements being the covariance betwee
n the p variables. { }E i  denotes the expectation operator. 

We define the minor components of x  as { } 1,2,...,i i q
η

=
=η .The 

transformation coefficients are denoted as U , and iμ = 
1 2{ , ,i iu u …, ipu } is  the ith column vector of U . 

  1 1 2 2 3 3 ... ,1i i i i ip px x x x i qη μ μ μ μ= = + + + + ≤ ≤T
iμ x     (9) 

The problem is to search the transformation coefficients 
U that can make the minor  components

 
to have the 

minimum variance : 

     [ ]arg min var { }i Eη = =T T T
i i i iμ xx μ μ Cμ           (10) 

However, with the restrict of RIP the transformation 
coefficients T

iμ should satisfy: 
1=T

i iμ μ                         (11) 
Then the optimization problem to find U  can be solved by 

{ }
1~

arg min ( 1)i i
i q

λ
=

Γ = + −T T
i i iμ Cμ μ μ          (12) 

Let’s find 1μ at first by the partial derivatives, which is 
presented by 

'1
1 1 10λ λ λ

∂Γ
= + = ⇒ = − =

∂ 1 1 1 1 1T
1

Cμ μ Cμ μ μ
μ

      
(13) 

Then 

[ ] ' '
1 1 1 1 1 1var η λ λ= = =T T

1μ Cμ μ μ              (14) 

According to equation (10), (13) and (14), it is known that 
when [ ]var iη is minimal '

1λ ’s value should be  smallest . 

Thus, '
1λ should be selected as the smallest eigenvalue of 

C when C  is not time-varying, and 1μ is the eigenvector 
corresponding to '

1λ . 
When 2μ is solved ，we have to consider the uncorrelation 

between 1μ and 2{ }i i q≤ ≤μ . 

'
1 2 2 1 2cov[ , ] cov[ ]η η λ= = =T T T T T

1 2 1 1μ x,μ x μ Cμ μ μ        (15) 

where '
1λ reflect the correlation of 1μ and 2μ .In general, '

1λ is 
quite small, so the following constraints can be given as 

0 0  ,2 i j q= = ≤ ≤ ≤T T
i j i jμ Cμ μ μ              (16) 

Based on the above analysis, the optimization problem of 
solving 2{ }i i q≤ ≤μ  can be strengthened as: 

2,..., 1

min { ( 1) }i i i iji q i j

aλ
=

> ≥

Γ = + − + ∑T T T
i i i i jμ Cμ μ μ μ Cμ     (17) 

When i=2, 2μ can be solved by the following 

2
2 21 1

2

0aλ
∂Γ

= + + =
∂ 2 2T Cμ μ μ
μ

                  (18) 

Equation (18) is multiplying by T
1μ , we get that 21 0a = , so 

'
2 2 2 2 2λ λ= − =Cμ μ μ                         (19) 

'
2λ should be the second smallest eigenvalue of C  and 2μ is 

the eigenvector corresponding to '
2λ . Now the algorithm 

similar to recursion can find each iμ .For, 2 ~i q= it is not 
difficult to demonstrate iμ is the eigenvector with respect to 
the ith smallest eigenvalue '

iλ of C . 
Now the main procedure of MCA will be combined with 

the data pre-processing model. R =ΦΨ is the 
M N× measurements matrix in the original CS model, where 
the nth column vector denotes the RSS measurements from M 
RPs at the nth grid point. We need multiple RSS samples in 
time domain, so the column vector is extended into a sample 
matrix.For example, the nth 1M ×  column vector is changed 
as one M L× sample matrix nA , 1 n N≤ ≤ . Each row of 

nA presents a sequence including L RSS samples from a 
certain RPs at the nth grid point, where L denotes the total 
sample times. The element n

mlA of nA denotes the RSS sample 
from the mth RP at the nth grid point on the lth sample time, 
where 1 m M≤ ≤ ,1 l L≤ ≤ . 

For 1 n N≤ ≤ , the calculation of the minor components of 
R will be depicted as follows: 

1. Firstly, we calculate the mean value of the mth row vector 
of nA for 1, 2,...,m M= . 

      
1

1 Ln n
m ml

l
A A

L =

= ∑           (20) 

2. Every element of nA is subtracted by
n
mA , then a new 

matrix 
∧

nA is obtained:   

 
nn n
mml mlA A A= −           (21) 



3. The M M× covariance matrix of
∧

nA is calculated in this 
step. 

4. Let us calculate the eigenvalues '
mλ and  the 

eigenvectors me  of the covariance matrix of
∧

nA . 
5. We further rank the eigenvalues in the ascending order. 

' ' '
1 2 ... Mλ λ λ≤ ≤ ≤          (22) 

6. The accumulated contribution rate Wρ  of the eigenvalues 
need to be computed here.  Wρ presents the number of the 
minor components saved by us.   

1 1

W M

W w M
w m

ρ λ λ α
= =

= ≤∑ ∑           (23) 

The threshold α of Wρ  should be adjusted according to the 
accuracy requirement. When α is larger, the reserved 
eigenvalues are more.  

7. It is assumed that W eigenvalues are preserved for the 
selected value α .So we select the retained eigenvalues 

' ' '
1 2, ,..., Wλ λ λ and the corresponding eigenvectors 1 2, , ..., We e e . 
8. According to 1 2, , ..., We e e , we construct a W M×  

whitening matrix wE . The wth row of wE  is the normalized 
eigenvector we ,1 w W≤ ≤  , an orthogonal basis uncorrelated 
with the other rows. Thus the minor components are  

   
n

n
wR = E R           (24) 

where nR is the nth column vector of the original 
measurement matrix. nR is the 1W ×  vector. 

Finally, a W N× matrix 
∧

R consisting of nR is acquired by 

the above processing. Here,
∧

R  very well satisfies the RIP 
condition, so Θ can be effectively recovered given the 
compressive noisy measurements only via an l1-minimization 
program.  In this paper, BP algorithm is employed for the 
recovery problem from compressive noisy measurements. 

Simultaneously, the online RSS values received at the 
targets to be located must be processed correspondingly in the 
proposed reconstruction algorithm. A major procedure in the 
proposed algorithm is to calculate the projections, namely 

,1nk k k K= ≤ ≤wy E y                                      (25) 

0 ( ) ,n
k nkx n =< >R y                                          (26) 

where ky is the RSS values collected online at the location of 
the kth target to be located , with nky of its minor components 
projected by wE . Then 0kx is the initial point utilized in the 
BP algorithm.   

 

IV. SIMULATION RESULTS AND ANALYSIS 

In order to compare the performance of the proposed CS-
based method with MCA-based pre-processing with that of 
the CS-based scheme with orthogolization pre-processing, 
simulation evaluations are performed under the same scenario 
assumption. The RSS values in the measurements matrix is 
obtained by the indoor propagation model defined by the 
IEEE 802.15.4 standard [21]: 

40.2 20 log , 8
( )

58.5 33 log , 8
t

r
t

P d d
P d

P d d
− − ≤⎧

= ⎨ − − >⎩
       (27) 

where tP is the transmission power for each target. d is the 
real transmitter-receiver distance. 

The average localization error versus the number of 
measurements M is presented in Fig.2. M varies from 2 to  
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Fig2.  The localization error versus the number of measurements. 

24, while the number of targets is fixed at 20 and SNR is 
fixed at 5dB. As shown in Fig.2, the average localization error 
declines very rapidly with the increasing of the number of 
measurements for two methods. The MCA-based algorithm 
achieves much less location error than the orthogonalization-
based algorithm under every fixed number of RPs. When 
M is larger than 15, the MCA-based algorithm can perfectly 
recover the location of targets. 

The cumulative average localization error versus the 
number of targets is given in Fig.3. The number of 
measurements is fixed at 20, with the number of targets 
varying from 2 to 30 and SNR equal to 5dB. The value of 
parameter α is the same as the first simulation. In Fig.3, with 
the increasing of the number of the targets, the accumulated 
average localization error of the MCA-based algorithm 
increases very slowly with some small fluctuation. However, 
the accumulated positioning error increases very fast with the 
increasing of the number of the targets for the 
orthogonalization-based algorithm. For a fixed number of 
targets, the localization error of the MCA-based algorithm is 
also smaller. 
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Fig.3.  The cumulative localization error versus number of targets. 

V. CONCLUSIONS 

 In this paper, a novel CS-based fingerprinter positioning 
algorithm with MCA-based pre-processing is proposed. This 
algorithm uses MCA theory to rotate the RSS variables in the 
direction of dimensions with smaller variance and lower 
correlation to reduce the influence of measurements noise and 
space correlation. Simulation and analysis illustrate that the 
proposed approach achieves the much higher localization 
accuracy than the previous algorithm with the orthogolization 
pre-processing, and also reduces the number of measurements 
during the online phase in some extent. 
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